517,387 research outputs found

    Prospects for large-scale financial systems simulation

    No full text
    As the 21st century unfolds, we find ourselves having to control, support, manage or otherwise cope with large-scale complex adaptive systems to an extent that is unprecedented in human history. Whether we are concerned with issues of food security, infrastructural resilience, climate change, health care, web science, security, or financial stability, we face problems that combine scale, connectivity, adaptive dynamics, and criticality. Complex systems simulation is emerging as the key scientific tool for dealing with such complex adaptive systems. Although a relatively new paradigm, it is one that has already established a track record in fields as varied as ecology (Grimm and Railsback, 2005), transport (Nagel et al., 1999), neuroscience (Markram, 2006), and ICT (Bullock and Cliff, 2004). In this report, we consider the application of simulation methodologies to financial systems, assessing the prospects for continued progress in this line of research

    Adaptive Systems: History, Techniques, Problems, and Perspectives

    Get PDF
    We survey some of the rich history of control over the past century with a focus on the major milestones in adaptive systems. We review classic methods and examples in adaptive linear systems for both control and observation/identification. The focus is on linear plants to facilitate understanding, but we also provide the tools necessary for many classes of nonlinear systems. We discuss practical issues encountered in making these systems stable and robust with respect to additive and multiplicative uncertainties. We discuss various perspectives on adaptive systems and their role in various fields. Finally, we present some of the ongoing research and expose problems in the field of adaptive control

    Parameter control by the entire search history: Case study of history-driven evolutionary algorithm

    Get PDF
    Special Session on Evolutionary Computer VisionHistory-driven Evolutionary Algorithm (HdEA) is an EA that uses the entire search history to improve searching performance. By building the approximated fitness landscape and estimating the gradient using the entire history, HdEA performs a parameter-less adaptive mutation. In order to decrease the number of parameters that makes the HdEA more robust, this paper proposes a novel adaptive parameter control system. This system is as an add-on component to HdEA, which uses the whole search history in HdEA to control the parameters in an automatic manner. The performance of the proposed system is examined on 34 benchmark functions. The results shows that the parameter control system gives similar or better performance in 24 functions and has the benefit that two parameters of the HdEA are eliminated; they are set and varied automatically by the system. © 2010 IEEE.published_or_final_versio

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    Decentralised adaptive control of a class of hidden leader–follower non-linearly parameterised coupled MASs

    Get PDF
    In this study, decentralised adaptive control is investigated for a class of discrete-time non-linear hidden leader–follower multi-agent systems (MASs). Different from the conventional leader–follower MAS, among all the agents, there exists a hidden leader that knows the desired reference trajectory, while the follower agents know neither the desired reference signal nor which is a leader agent. Each agent is affected from the history information of its own neighbours. The dynamics of each agent is described by the non-linear discrete-time auto-regressive model with unknown parameters. In order to deal with the uncertainties and non-linearity, a projection algorithm is applied to estimate the unknown parameters. Based on the certainty equivalence principle in adaptive control theory, the control for the hidden leader agent is designed by the desired reference signal, and the local control for each follower agent is designed using neighbourhood history information. Under the decentralised adaptive control, rigorous mathematical proofs are provided to show that the hidden leader agent tracks the desired reference signal, all the follower agents follow the hidden leader agent, and the closed-loop system eventually achieves strong synchronisation in the presence of strong couplings. In the end, the simulation results show the validity of this scheme
    • …
    corecore