1,432 research outputs found

    HBIM and Virtual Tools: A New Chance to Preserve Architectural Heritage

    Get PDF
    Nowadays, architectural heritage is increasingly exposed to dangers due to natural disasters or human invasive actions. However, management and conservation represent crucial phases within the life cycle of historical buildings. Unfortunately, the complexity of conservation practices and the lack of knowledge of historic buildings are the cause of an inefficient recovering process in case of emergencies. To overcome this problem, this research aims to ensure the preservation of relevant information through the use of building information modeling (BIM) methodology. By developing historic building information models (HBIMs), it is possible to enhance the architectural heritage. This represents an opportunity to incorporate digital media into the global heritage conservation field. To achieve this goal, a historical castle was selected as a case study; this unique piece of architecture is located in the Piedmont Region, close to city of Turin (Italy). The results show a direct relation between a historical digital model, finalized to the management of architectural and system components, and visualization tools. To conclude, the adoption of this strategy is an effective way to preserve and consult information using advanced visualization techniques based on augmented and virtual reality (AR and VR)

    Virtual Heritage Learning Environments

    Get PDF
    . The change and restrictions in how we react with cultural heritage because of the COVID-19 pandemic has created an urgency in advancing remote and digital access to objects and sites. This paper outlines the process for developing Virtual Learning Environments (VLEs) using digital recording and modelling of architectural heritage and archaeology. Virtual Reality (VR) software, game engine platforms and WEB platforms are outlined which can be applied to represent heritage sites in addition to emerging screen based technological learning systems. The application Historic Building Information Modelling (HBIM) and Game Engine Platforms for creating Virtual Learning Environments (VLEs) is also examined. The design-theory based on Virtual Learning Objects for cultural heritage is explored. Two case studies are explored for their potential to create Virtual Heritage Learning Environments. Finally, a design framework is proposed for developing Virtual Heritage Learning Environments

    Smart Heritage for Urban Sustainability: A Review of Current Definitions and Future Developments

    Get PDF
    Smart heritage is still novel in heritage discourse, with a few relevant review articles. In this regard, a specific interpretation of smart architectural heritage and a framework for instructing its development is lacking. This article reviews the literature on smart heritage in sustainable development to fill the knowledge gap. As a methodology for this study, the integrative review approach and thematic analysis are adopted to review references located at the crossroads of historic, smart, and sustainable disciplines. The review and interpretation draw on literature from relevant fields to understand implementations, current states, and support to interpret smart heritage. Review outcomes indicate that smart heritage is becoming dynamic as technologies are increasingly applied to more detailed heritage branches. This article lists the factors that heritage should possess to be defined as smart, and it provides a framework that might be followed to achieve the aims of this discourse by stating that smart heritage discussions are relevant to smart cities, as they may have a mutual effect and interact to promote each other.

    Methods, data and tools for facilitating a 3D cultural heritage space

    Get PDF
    In recent years, the cultural heritage (CH) sector has experienced a rapid evolution due to the introduction of increasingly powerful digital technologies and ICT (Information and Communication Technologies) solutions. As for many other domains, digital data, Artificial Intelligence (AI), and Extended Reality (XR) are opening up extraordinary opportunities for expanding heritage knowledge capabilities while boosting the research on innovative solutions for its valorisation and preservation. Being aware of the fundamental and strategic role of CH in the history and identity of the European countries, the European Commission has assumed a central role in fuelling the policy debate and putting together stakeholders to take a step forward in CH digitization and use, primarily through initiatives, programs, and recommendations. Within this framework, the ongoing European 5DCulture project (https://www.5dculture.eu/) has been funded to enrich the offer of 3D CH digital assets in the common European Data Space for Cultural Heritage by creating high-quality 3D contents and to foster their re-use in several sectors, from tourism to education. Through 8 re-use scenarios around historic buildings and cityscapes, archaeology, and fashion, the project aims to deliver a set of digital tools and increase the capacity of CH institutions to more effectively re-use their 3D digital assets

    VIRTUAL ACCESS TO HERITAGE THROUGH SCIENTIFIC DRAWING, SEMANTIC MODELS AND VR-EXPERIENCE OF THE STRONGHOLD OF ARQUATA DEL TRONTO AFTER THE EARTHQUAKE

    Get PDF
    Interactive representation has proven to be an effective tool in various disciplines related to Digital Cultural Heritage (DCH). This study proposes a research method that uses interactive representation to share complex scenarios like the Stronghold of Arquata del Tronto, facilitating novel forms of heritage dissemination. The scan-to-BIM process made it possible to digitise complex structural elements damaged by the 2016 earthquake. The investigation of the complexity paradigm improved the reliability of the semantic model that supports the preservation process. Interoperability and accessibility paradigms were explored to create a more comprehensive and accurate understanding of the built heritage. A web-VR platform was developed to enhance user interaction and simplify virtual environment exploration without using complex hardware (VR headset and controllers), making it possible to experience VR in the browser

    CULTURAL HERITAGE DISSEMINATION: BIM MODELLING AND AR APPLICATION FOR A DIACHRONIC TALE

    Get PDF
    The research purpose is to present a project of cultural dissemination and enhancement of the “Madonna della Pace” Sanctuary at Rocchetta di Airuno (Lecco - Italy), based on an immersive experience of knowledge of the history and places that characterize not only the sanctuary but also the “Cammino di Sant’Agostino” (of which it is one of the stages). The research goal focuses on the direct employment and exploitation of HBIM models for the digital fruition project. An integrated digital survey based on a terrestrial laser scanner and photogrammetry was conducted to provide a complete geometrical representation of the sanctuary and its surroundings. Both output point clouds were employed as metric and geometric references to create the reality-based parametric model. Specifically, the work focuses on creating a three-dimensional chronological model of the sanctuary, which not only represents the current state of the cultural asset but is also enriched through the definition of different evolutionary phases of the architectural artifact based on an indepth study of the photographic and bibliographic documentations. Four Project Phasing has been identified to represent the most significant transformations of the building and were managed using the time parameter in the same BIM project. The sanctuary geometric and parametric models were displayed and navigable thanks to the aid of Virtual and Augmented Reality applications. A VR environment was defined to display in the first person the textured model. Finally, an AR smartphone app prototype was developed to show tourists the sanctuary’s historical transformation over time

    HBIM TO VR. SEMANTIC AWARENESS AND DATA ENRICHMENT INTEROPERABILITY FOR PARAMETRIC LIBRARIES OF HISTORICAL ARCHITECTURE

    Get PDF
    Recently we assist to an increasing availability of HBIM models rich in geometric and informative terms. Instead, there is still a lack of researches implementing dedicated libraries, based on parametric intelligence and semantically aware, related to the architectural heritage. Additional challenges became from their portability in non-desktop environment (such as VR). The research article demonstrates the validity of a workflow applied to the architectural heritage, which starting from the semantic modeling reaches the visualization in a virtual reality environment, passing through the necessary phases of export, data migration and management. The three-dimensional modeling of the classical Doric order takes place in the BIM work environment and is configured as a necessary starting point for the implementation of data, parametric intelligences and definition of ontologies that exclusively qualify the model. The study also enables an effective method for data migration from the BIM model to databases integrated into VR technologies for AH. Furthermore, the process intends to propose a methodology, applicable in a return path, suited to the achievement of an appropriate data enrichment of each model and to the possibility of interaction in VR environment with the model

    The BIM process for the architectural heritage: New communication tools based on AR/VR Case study: Palazzo di Città

    Get PDF
    The present study aims at presenting the application of the Building Information Modeling methodology to the case study of Palazzo di Città, the Turin City Hall, investigating the possibilities of integration of new technologies in Cultural Heritage preservation and valorization. From the survey phase to the communication of the CH to end-users, BIM methodology, combined with the latest digital innovations (AR, VR, 3d Laser Scanner and much more), allows a fast and highly communicative representation of buildings to both professionals and common visitors who interact with the building life-cycle. An important objective of this work is moreover to demonstrate the advantages of adopting and integrating this technologies in Real Estate Management at a national scale, fully testing the adaptability of parametric software and Virtual Reality modeling to complex and highly decorated buildings, confirming the potentiality of BIM software upon an uncommon field: the historic buildings. The case study is in fact Palazzo di Città, the baroque, seventieth century City Hall of Turin. The research fully meets the latest directives of European Union and other International Organizations in the field of digitization of archives and Public Property management, participating to the international community effort to overcome the contemporary deep Construction Field crisis. In particular, the methodology has been focused and adapted to the protection and management of our huge Heritage, founding its objectives on the quest of cost-saving processes and instruments, applied to the management of a CH. Through BIM it is in fact possible to increase the communication and cooperation among all the actors involved in the building life-cycle behaving as a common working platform. Draws, 3D model and database are shared by all the actors and integrated in the same digital structure, where control tools and cooperation can prevent the designers from errors, saving time and money in the construction phase. The particularity of the case study, Palazzo di Città, being contemporarily a CH, a public asset and a working space, allows a deep study of the possibilities of BIM applied to a complex building, touching very important aspects of a historic building management: digitization of the historic information, publication of modeling techniques of complex architectonical elements, transformations reconstruction, energy consumption control, Facility Management, dissemination, virtual reconstructions of the lost appearance and accessibility for people with sensory and motor impairments. Moreover, the last chapters of the study focus on the fruition of this paramount Turin CH, making available for all kind of people interesting and not well known aspects of the history of the building and of the city itself. This part of the research suggests a methodology to translate static 2d images and written descriptions of a CH into living and immersive VR environment, presenting in an interactive way the transformation of the Marble Hall, once called Aula Maior: the room where the Mayor meets his citizens. Besides the aspects related to the valorization and preservation of the CH, the study reserves considerable space to the deepening of technical aspects involving advanced parametric modeling techniques, use of BIM software and all the vital procedures necessary to the generation of an efficient management informative platform. The whole work is intended as a guide for future works, structuring a replicable protocol to achieve an efficient digitization of papery resources into a 3d virtual model

    HBIM, dibujo 3D y realidad virtual aplicados a sitios arqueológicos y ruinas antiguas

    Full text link
    [EN] Data collection, documentation and analysis of the traces of ancient ruins and archaeological sites represent an inestimable value to be handed down to future generations. Thanks to the development of new technologies in the field of computer graphics, Building Information Modelling (BIM), Virtual Reality (VR) and three-dimensional (3D) digital survey, this research proposes new levels of interactivity between users and virtual environments capable of communicating the tangible and intangible values of remains of ancient ruins. In this particular field of development, 3D drawing and digital modelling are based on the application of new Scan-to-HBIM-to-VR specifications capable of transforming simple points (point clouds) into mathematical models and digital information. Thanks to the direct application of novel grades of generation (GOG) and accuracy (GOA) it has been possible to go beyond the creation of complex models for heritage BIM (HBIM) and explore the creation of informative 3D representation composed by subelements (granular HBIM objects) characterized by a further level of knowledge. The value of measurement, 3D drawing and digital modelling have been investigated from the scientific point of view and oriented to the generation of a holistic model able to relate both with architects, engineers, and surveyors but also with archaeologists, restorers and virtual tourists.[ES] La captura de datos, la documentación y el análisis de los restos de las ruinas antiguas y  de  los sitios arqueológicos representan una herencia inestimabile que debe ser transferida a las generaciones futúras. Gracias al desarrollo de las nuevas tecnologías en el campo de los gráficos por ordenador, el modelado de información de la construción (BIM), la realidad virtual (RV) y el levantamiento  digital tridimensional (3D), esta investigación propone nuevos niveles de interacción entre los usuarios y los entornos digitales que pueden comunicar los valores tangibiles e intangibles de los restos de las ruinas antiguas. En este particular ámbito de desarrollo, el dibujo 3D y la modelización digital se basan en la aplicación de las nuevas especificaciones escaneado-a-HBIM-a-RV, capaces de transformar puntos simples (nubes de puntos) en modelos matemáticos e informacción digital. Gracias a la aplicación directa de los GOG (grados of generación) y GOA (grados de exactitud) ha sido posible ir más allá de la creacción de los complejos BIM patrimoniales (HBIM) y explorar la creacción de representaciones 3D, formada por sub-elementos (objetos HBIM granulares) caracterizados por un mayor nivel de conocimiento. El valor de la medición, el dibujo 3D y el modelado digital ha sido investigado desde un enfoque científico y orientado a la generación de un modelo holístico capaz de relacionar tanto a arquitectos, ingenieros y aparejadores con arqueológos, restauradores y turistas virtuales.Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review. 11(23):16-33. https://doi.org/10.4995/var.2020.12416OJS16331123Alby, E., Vigouroux, E., & Elter, R. (2019). Implementation of survey and three-dimensional monitoring of archaeological excavations of the Khirbat al-Dusaq site, Jordan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 41-47. https://doi.org/10.5194/isprs-archives-XLII-2-W15-41-2019Alia, A., & Cuomo, L. (2017). Bajardo 360: Strategie di rigenerazione per un borgo dell'entroterra ligure (Master's thesis Politecnico di Milano ICAR/21 Urbanistica).Antonopoulou, S., & Bryan, P. (Eds.). (2017). Historic England BIM for Heritage: Developing a Historic Building Information Model. Swindon: Historic England. Retrieved March 10, 2019, from https://historicengland.org.uk/imagesbooks/publications/bim-for-heritage/heag-154-bim-for-heritage/Anzani, A., Baila, A., Penazzi, D., & Binda, L. (2004). Vulnerability study in seismic areas: the role of on-site and archives investigation. In IV International Seminar on Structural Analysis of Historical Constructions (Vol. 2, pp. 1051-1059).Arayici, Y., Counsell, J., Mahdjoubi, L., Nagy, G. A., Hawas, S., & Dweidar, K. (Eds.) (2017). Heritage building information modelling. Abingdon: Routledge. Taylor & Francis. https://doi.org/10.4324/9781315628011Banfi, F. (2019). HBIM generation: extending geometric primitives and bim modelling tools for heritage structures and complex vaulted systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 139-148. https://doi.org/10.5194/isprs-archives-XLII-2-W15-139-2019Banfi, F. (2017). BIM orientation: grades of generation and information for different type of analysis and management process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(2/W5), 57-64. https://doi.org/10.5194/isprs-archives-XLII-2-W5-57-2017Banfi, F., Brumana, R., & Stanga, C. (2019). Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality. Virtual Archaeology Review, 10(21), 14-30. https://doi.org/10.4995/var.2019.11923Barba, S., Barbarella, M., Di Benedetto, A., Fiani, M., & Limongiello, M. (2019). Quality assessment of UAV photogrammetric archaeological survey. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W9, 93-100. https://doi.org/10.5194/isprs-archives-XLII-2-W9-93-2019Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71-87. https://doi.org/10.1016/j.simpat.2015.06.004Binda, L., Anzani, A., Baila, A., & Penazzi, D. (2004). Indagine conoscitiva, per l'analisi di vulnerabilità, di due centri storici liguri. In XI Cong. Naz. L'Ingegneria Sismica in Italia (pp. 1-8). Padova: Servizi Grafici Editoriali.Bolognesi, C., & Aiello, D. (2019). The secrets of s. Maria delle Grazie: virtual fruition of an iconic milanese architecture. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W15, 185-192. https://doi.org/10.5194/isprs-archives-XLII-2-W15-185-2019Brumana, R., Banfi, F., Cantini, L., Previtali, M., & Della Torre, S. (2019). HBIM level of detail-geometry and survey analysis for architectural preservation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W11, 293-299. https://doi.org/10.5194/isprs-archives-XLII-2-W11-293-2019Brumana, R., Condoleo, P., Grimoldi, A., Banfi, F., Landi, A. G., & Previtali, M. (2018). HR LOD based HBIM to detect influences on geometry and shape by stereotomic construction techniques of brick vaults. Applied Geomatics, 10(4), 529-543. https://doi.org/10.1007/s12518-018-0209-3Biagini, C., Capone, P., Donato, V., & Facchini, N. (2016). Towards the BIM implementation for historical building restoration sites. Automation in Construction, 71, 74-86. https://doi.org/10.1016/j.autcon.2016.03.003Böhler, W., & Marbs, A. (2004). 3D scanning and photogrammetry for heritage recording: a comparison. In S. Anders Brandt (Ed.), Proceedings of 12th International Conference on Geoinformatics (pp. 291-298). Gävle, Sweden.Caballero Zoreda, L. (2010). Experiencia metodológica en Arqueología de la Arquitectura de un grupo de investigación. In Actas del congreso Arqueología aplicada al estudio e interpretación de edificios históricos. Últimas tendencias metodológicas (pp. 103-119). Madrid: Ministerio de Cultura.Chiabrando, F., Lo Turco, M., & Rinaudo, F. (2017). Modeling the decay in an HBIM starting from 3D point clouds. a followed approach for cultural heritage knowledge. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W5, 605-612. https://doi:10.5194/isprs-archives-XLII-2-W5-605-2017Cogima, C. K., Paiva, P. V. V., Dezen-Kempter, E., Carvalho, M. A. G., & Soibelman, L. (2019). The role of knowledge-based information on BIM for built heritage. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 27-34). Cham: Springer. https://doi.org/10.1007/978-3-030-00220-6_4Cuca, B., & Barazzetti, L. (2018). Damages from extreme flooding events to cultural heritage and landscapes: water component estimation for Centa River (Albenga, Italy). Advances in Geosciences, 45, 389-395. https://doi.org/10.5194/adgeo-45-389-2018Della Torre, S. (2012). Renovation and post-intervention management. Annales, Series Historia et Sociologia, 22(2), 533-538.Diara, F., & Rinaudo, F. (2019). From reality to parametric models of cultural heritage assets for HBIM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W15, 413-419, https://doi.org/10.5194/isprs-archives-XLII-2-W15-413-2019Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 351-357. https://doi:10.5194/isprsarchives-XL-5-W4-351-2015Fai, S., & Rafeiro, J. (2014). Establishing an appropriate level of detail (LoD) for a building information model (BIM)-West Block, Parliament Hill, Ottawa, Canada. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5, 123-130. https://doi:10.5194/isprsannals-II-5-123-2014Fazio, L., & Lo Brutto, M. (2019). 3D Survey for the archaeological study and virtual reconstruction of the "Sanctuary of Isis" in the ancient Lilybaeum (Italy). Virtual Archaeology Review, 11(22), 1-14. https://doi.org/10.4995/var.2020.11928Garagnani, S., Gaucci, A., & Gruška, B. (2016). From the archaeological record to ArchaeoBIM: the case study of the Etruscan temple of Uni in Marzabotto. Virtual Archaeology Review, 7(15), 77-86. https://doi.org/10.4995/var.2016.5846Georgopoulos, A., (2018a). Contemporary Digital Technologies at the Service of Cultural Heritage. In B. Chanda, S. Chaudhuri, S. Chaudhury (Eds.), Heritage Preservation (pp. 1-20). Singapore: Springer. https://doi.org/10.1007/978-981-10-7221-5_1Georgopoulos, A., Ioannidis, C., Soile, S., Tapeinaki, S., Chliverou, R., Moropoulou, A., Tsilimantou, E., & Lampropoulos, K. (2018b). The role of Digital Geometric Documentation in the Rehabilitation of the Tomb of Christ. In 3rd International Congress & Expo Digital Heritage 2018. https://10.1109/DigitalHeritage.2018.8810044Grussenmeyer, P., Landes, T., Voegtle, T., & Ringle, K. (2008). Comparison Methods of Terrestrial Laser Scanning, Photogrammetry and Tacheometry Data for Recording of Cultural Heritage Buildings. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B5): 213-218. https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/38.pdfIoannides, M., Magnenat-Thalmann, N., & Papagiannakis, G. (2017). Mixed Reality and Gamification for Cultural Heritage. Cham: Springer. https://doi.org/10.1007/978-3-319-49607-8Khalil, A., & Stravoravdis, S. (2019). H-BIM and the domains of data investigations of heritage buildings current state of the art. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W11, 661-667. https://doi.org/10.5194/isprs-archives-XLII-2-W11-661-2019Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., ... & Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153, 224-238. https://doi.org/10.1016/j.engstruct.2017.10.026Kuo, C. L., Cheng, Y. M., Lu, Y. C., Lin, Y. C., Yang, W. B., & Yen, Y. N. (2018). A Framework for Semantic Interoperability in 3D Tangible Cultural Heritage in Taiwan. In Euro-Mediterranean Conference (pp. 21-29). Cham: Springer. https://doi.org/10.1007/978-3-030-01765-1_3Kumar, S. S., & Cheng, J. C. (2015). A BIM-based automated site layout planning framework for congested construction sites. Automation in Construction, 59, 24-37. https://doi.org/10.1016/j.autcon.2015.07.008Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. https://doi.org/10.1016/j.jas.2009.10.011López, F. J., Lerones, P. M., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). Linking HBIM graphical and semantic information through the Getty AAT: Practical application to the Castle of Torrelobatón. In IOP Conference Series: Materials Science and Engineering (Vol. 364, No. 1, p. 012100). IOP Publishing. https://doi.org/10.1088/1757-899X/364/1/012100Masiero, A., Chiabrando, F., Lingua, A. M., Marino, B. G., Fissore, F., Guarnieri, A., & Vettore, A. (2019). 3D modeling of Girifalco Fortress. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W9, 473-478, https://doi.org/10.5194/isprs-archives-XLII-2-W9-473-2019Nieto Julián, J. E., & Moyano Campos, J. J. (2013). La necesidad de un modelo de información aplicado al patrimonio arquitectónico. In 1er Congreso Nacional BIM-EUBIM. Valencia, Spain. https://pdfs.semanticscholar.org/4979/bf843da620460cdaa4c3520acd5d5ad8a23c.pdfNieto Julián, J., & Moyano Campos, J. (2014). The paramental study on the model of information of historic building or "HBIM Project". Virtual Archaeology Review, 5(11), 73-85. https://doi.org/10.4995/var.2014.4183Parrinello, S., Bercigli, M., & Bursich, D. (2017). From survey to 3D model and from 3D model to "videogame". The virtual reconstruction of a Roman Camp in Masada, Israel. DISEGNARECON, 10(19), 11.1-11.19.Penna, A., Calderini, C., Sorrentino, L., Carocci, C. F., Cescatti, E., Sisti, R., ... & Prota, A. (2019). Damage to churches in the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering, 17(10), 5763-5790. https://doi.org/10.1007/s10518-019-00594-4Piegl, L., & Tiller, W. (2012). The NURBS book. Springer Science & Business Media. Cham: Springer.Previtali, M., Barazzetti, L., Banfi, F., & Roncoroni, F. (2019). Informative content models for infrastructure load testing management: the Azzone Visconti Bridge In Lecco. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 995-100. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-995-2019Pybus, C., Graham, K., Doherty, J., Arellano, N., & Fai, S. (2019). New Realities for Canada's Parliament: a Workflow for Preparing Heritage Bim for Game Engines and Virtual Reality. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 945-952. https://doi.org/10.5194/isprs-archives-XLII-2-W15-945-2019Reina Ortiz, M., Yang, C., Weigert, A., Dhanda, A., Min, A., Gyi, M., ... & Santana Quintero, M. (2019). Integrating heterogeneous datasets in HBIM of decorated surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 981-988. https://doi.org/10.5194/isprs-archives-XLII-2-W15-981-2019Riveiro, B., & Lindenbergh, R. (Eds.) (2020). Laser Scanning: An Emerging Technology in Structural Engineering. CRC Press. London: Taylor & Francis Group. https://doi.org/10.1201/9781351018869Rossi, C. (2019). Aristotle's mirror: combining digital and material culture. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 1025-1029. https://doi.org/10.5194/isprs-archives-XLII-2-W11-1025-2019, 2019.Russo, M., Remondino, F., & Guidi, G. (2011). Principali tecniche e strumenti per il rilievo tridimensionale in ambito archeologico. Archeologia e calcolatori, 22, 169-198.Rua, H., & Alvito, P. (2011). Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage-the case-study of the Roman villa of Casal de Freiria. Journal of Archaeological Science, 38(12), 3296-3308. https://doi.org/10.1016/j.jas.2011.07.015Scianna, A., Gristina, S., & Paliaga, S. (2014). Experimental BIM applications in archaeology: a work-flow. In Euro-Mediterranean Conference (pp. 490-498). Cham: Springer. https://doi.org/10.1007/978-3-319-13695-0_48Stampouloglou, M., Toska, O., Tapinaki, S., Kontogianni, G., Skamantzari, M., & Georgopoulos, A. (2019). 3D documentation and virtual archaeological restoration of Macedonian tombs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 1073-1080, https://doi.org/10.5194/isprs-archives-XLII-2-W11-1073-2019Saglietto G. (ND). Breve guida illustrata di Bajardo (Imperia). Municipality of Bajardo.Stanga, C., Spinelli, C., Brumana, R., Oreni, D., Valente, R., & Banfi, F. (2017). A n-d virtual notebook about the basilica of S. Ambrogio in Milan: information modeling for the communication of historical phases subtraction process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 653-660. https://doi.org/10.5194/isprs-archives-XLII-2-W5-653-2017Solarino, S. (2007). Il terremoto del 23 Febbraio 1887 in Liguria Occidentale, Descrizioni, considerazioni e prevenzione 120 anni dopo il grande evento, in "Memoria in occasione della mostra Terremoti: conoscerli per difendersi" . Retrieved from https://docplayer.it/18977788-Il-terremoto-del-23-febbraio-1887-in-liguria-occidentale-descrizioni-considerazioni-e-prevenzione-120-anni-dopo-il-grande-evento.htmlTrizio, I., Savini, F., Giannangeli, A., Boccabella, R., & Petrucci, G. (2019). The Archaeological Analysis of Masonry for the Restoration Project in HBIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 715-722. https://doi.org/10.5194/isprs-archives-XLII-2-W9-715-2019Tucci, G., Conti, A., Fiorini, L., Corongiu, M., Valdambrini, N., & Matta, C. (2019). M-BIM: a new tool for the Galleria dell'Accademia di Firenze. Virtual Archaeology Review, 10(21), 40-55. https://doi.org/10.4995/var.2019.11943Quattrini, R., Clementi, F., Lucidi, A., Giannetti, S., & Santoni, A. (2019). From TLS to FE analysis: points cloud exploitation for structural behaviour definition. The San Ciriaco's bell tower. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 957-964. https://doi.org/10.5194/isprs-archives-XLII-2-W15-957-2019Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 707-712. https://doi.org/10.5194/isprs-archives-XLII-2-W5-707-2017Yang, X., Koehl, M., & Grussenmeyer, P. Mesh-to-BIM: from segmented mesh elements to BIM model with limited parameters. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2, 1213-1218. https://doi.org/10.5194/isprs-archives-XLII-2-1213-201
    corecore