28 research outputs found

    SENATUS: An Approach to Joint Traffic Anomaly Detection and Root Cause Analysis

    Full text link
    In this paper, we propose a novel approach, called SENATUS, for joint traffic anomaly detection and root-cause analysis. Inspired from the concept of a senate, the key idea of the proposed approach is divided into three stages: election, voting and decision. At the election stage, a small number of \nop{traffic flow sets (termed as senator flows)}senator flows are chosen\nop{, which are used} to represent approximately the total (usually huge) set of traffic flows. In the voting stage, anomaly detection is applied on the senator flows and the detected anomalies are correlated to identify the most possible anomalous time bins. Finally in the decision stage, a machine learning technique is applied to the senator flows of each anomalous time bin to find the root cause of the anomalies. We evaluate SENATUS using traffic traces collected from the Pan European network, GEANT, and compare against another approach which detects anomalies using lossless compression of traffic histograms. We show the effectiveness of SENATUS in diagnosing anomaly types: network scans and DoS/DDoS attacks

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Detecting Flow Anomalies in Distributed Systems

    Get PDF
    Deep within the networks of distributed systems, one often finds anomalies that affect their efficiency and performance. These anomalies are difficult to detect because the distributed systems may not have sufficient sensors to monitor the flow of traffic within the interconnected nodes of the networks. Without early detection and making corrections, these anomalies may aggravate over time and could possibly cause disastrous outcomes in the system in the unforeseeable future. Using only coarse-grained information from the two end points of network flows, we propose a network transmission model and a localization algorithm, to detect the location of anomalies and rank them using a proposed metric within distributed systems. We evaluate our approach on passengers' records of an urbanized city's public transportation system and correlate our findings with passengers' postings on social media microblogs. Our experiments show that the metric derived using our localization algorithm gives a better ranking of anomalies as compared to standard deviation measures from statistical models. Our case studies also demonstrate that transportation events reported in social media microblogs matches the locations of our detect anomalies, suggesting that our algorithm performs well in locating the anomalies within distributed systems

    Methodology of Acquiring Valid Data by Combining Oil Tankers’ Noon Report and Automatic Identification System Satellite Data

    Get PDF
    Fuel consumption of marine vessels plays an important role in both generating air pollution and ship operational expenses where the global environmental concerns toward air pollution and economics of shipping operation are being increased. In order to optimize ship fuel consumption, the fuel consumption prediction for her envisaged voyage is to be known. To predict fuel consumption of a ship, noon report (NR) data are available source to be analysed by different techniques. Because of the possible human error attributed to the method of NR data collection, it involves risk of possible inaccuracy. Therefore, in this study, to acquire pure valid data, the NR raw data of two very large crude carriers (VLCCs) composed with their respective Automatic Identification System (AIS) satellite data. Then, well-known models i.e. K-Mean, Self-Organizing Map (SOM), Outlier Score Base (OSB) and Histogram of Outlier Score Base (HSOB) methods are applied to the collected tankers NR during a year. The new enriched data derived are compared to the raw NR to distinguish the most fitted methodology of accruing pure valid data. Expected value and root mean square methods are applied to evaluate the accuracy of the methodologies. It is concluded that measured expected value and root mean square for HOSB are indicating high coherence with the harmony of the primary NR data.</p

    WK-FNN DESIGN FOR DETECTION OF ANOMALIES IN THE COMPUTER NETWORK TRAFFIC

    Get PDF
    Anomaly-based intrusion detection systems identify abnormal computer network traffic based on deviations from the derived statistical model that describes the normal network behavior. The basic problem with anomaly detection is deciding what is considered normal. Supervised machine learning can be viewed as binary classification, since models are trained and tested on a data set containing a binary label to detect anomalies. Weighted k-Nearest Neighbor and Feedforward Neural Network are high-precision classifiers for decision-making. However, their decisions sometimes differ. In this paper, we present a WK-FNN hybrid model for the detection of the opposite decisions. It is shown that results can be improved with the xor bitwise operation. The sum of the binary “ones” is used to decide whether additional alerts are activated or not
    corecore