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Abstract In the face of the growing complexity of HPC

systems, their growing energy costs, and the increasing

difficulty to run applications efficiently, a number of

monitoring tools have been developed during the last

years. SIOX is one such endeavor, with a uniquely holis-

tic approach: Not only does it aim to record a certain

kind of data, but to make all relevant data available

for analysis and optimization. Among other sources,

this encompasses data from hardware energy counters

and trace data from different hardware/software layers.

However, not all data that can be recorded should be

recorded. As such, SIOX needs good heuristics to de-

termine when and what data needs to be collected, and

the energy consumption can provide an important sig-

nal about when the system is in a state that deserves

closer attention. In this paper, we show that SIOX can

use Likwid to collect and report the energy consump-

tion of applications, and present how this data can be

visualized using SIOX’s web-interface. Furthermore, we

outline how SIOX can use this information to intelli-

gently adjust the amount of data it collects, allowing it

to reduce the monitoring overhead while still providing

complete information about critical situations.
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1 Introduction

Analysis of performance and energy consumption of

parallel applications is a challenging task. In principle,

two different points of view can be distinguished: From

the user’s perspective, the goal is to analyze an appli-

cation in order to improve its performance or energy

footprint. From the perspective of a data center, gain-

ing an overview of the performance and power char-

acteristics of the applications is key to understanding

usage and guiding future investments in machines and

support staff to optimize the applications.

Analysis of parallel I/O is one of the most com-

plex topics in HPC, as it involves different and poten-

tially heterogeneous hardware components. Moreover,

to potentially improve the performance of slow back-

end storage, these components utilize a variety of in-

dividual optimizations that lead to a complex inter-

play between them. The Scalable I/O for Extreme Per-

formance (SIOX) project provides a versatile environ-

ment for monitoring I/O activities and learning from

the gained information [13]. The ultimate goal of SIOX

is to automatically suggest and apply performance opti-

mizations, as well as to assist in locating and diagnosing

performance problems.

The contributions of this paper are:

1) We introduce a Likwid-based plug-in that enables

SIOX to track both the application’s and system-

wide energy consumption.

2) We describe SIOX’s front-end tool for the visual-

ization, correlation and analysis of application and

system behavior.

The final publication is available at Springer via http://dx.doi.org/10.1007/s00450-014-0271-y
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3) We present strategies to restrict monitoring to phases

of abnormal energy consumption.

This paper is structured as follows: Section 2 sketches

the state of the art in I/O performance analysis. The

modular architecture and implementation of SIOX is

introduced in Section 3. Section 4 describes tools to

analyze and visualize instrumented applications. Sec-

tion 5 introduces the hierarchical control approach to

intelligently monitor, and to react upon relevant activ-

ities. Evaluation procedures are discussed in Section 6.

Finally, ongoing and future work is discussed in Sec-

tion 7.

2 Related Work

There are several key aspects relevant to this paper:

Monitoring tools to capture energy consumption, anal-

ysis and characterization of I/O access patterns, in-

telligent monitoring and anomaly detection with au-

tonomous reaction to abnormal behavior.

Various solutions to measuring power and energy

consumption in HPC nodes have been developed. Appro-

aches to measure power consumption usually use power

meters or microcontroller-based meters, measuring the

current and voltage of external AC outside the platform

or internal DC power lines using the Hall effect, there-

with, capturing the power profile of a full node [1]. Re-

cent processors have built-in energy consumption mea-

suring capabilities. Starting with the Sandy Bridge pro-

cessors, for example, Intel provides the RAPL (Running

Average Power Limit) interface [17]. However, these in-

ternal performance meters often cannot match the pre-

cision of external power meters [6]. The correlation be-

tween the RAPL interface measurement and the refer-

ence measurement depends on the workload type. Li-

braries such as pmlib [1] and light-weight tools such as

Likwid [21] or interfaces such as PAPI [22] can use the

RAPL interface to query the energy consumption. Lik-

wid controls and samples the performance counters of

the microprocessor with low overhead, extracting infor-

mation like memory bandwidth, and power and energy

consumption.

There are several tools which use these interfaces

and relate energy or power metrics with application be-

havior. The Vampir tool-set [12] can be used to capture

power consumption in Watts and visualize application

traces together with energy statistics [6]. In pmlib, dif-

ferent energy states can be distinguished and measured

using the Extrae capture tool and the visualization tool

Paraver. Another energy monitoring tool named FEPA

(Flexible Framework for Energy and Performance Ana-

lysis of Highly Parallel Applications) is currently under

development [3]. The system uses simple locking mech-

anisms to ensure that only one module measures at any

time.

Analysis and characterization of I/O access patterns

can be performed using the measurement tool Darshan

which generates reports on application read and write

behavior [4]. It can be deployed in an HPC center to

gather system-wide knowledge for all instrumented ap-

plications. Event-based systems are playing an increas-

ingly important role in a broad range of application do-

mains, including management, environmental monitor-

ing, information dissemination, autonomic computing,

collaborative working and learning [8].

Intelligent monitoring involves observing and guid-

ing the behavior of a system toward a predefined ob-

jective. Generic functional requirements for the task of

intelligent monitoring include the integration of per-

ception, reasoning, and action as well as that of multi-

ple reasoning activities, reasoning about complex, time-

varying systems, and the coordination of multiple re-

sponse modes [7]. Using ontologies permits the integra-

tion of information sources for intelligent monitoring;

to be able to react to a behavior and activities of a

complex system, a semantic reasoning framework can

be used [18]. Approximate monitoring of complex dy-

namic systems using clustered subsystems helps to de-

crease the exponentially growing inference. Reasoning

may be done only at the onset of interesting events, and

extended through learning about the model parameters

to be incorporated. A reactive answer set allows for rea-

soning on real-time dynamic systems running online [5].

Of the approaches interpreting system metrics, Clue-

box by Sandeep et al. [19] points out the system coun-

ters most likely involved in the problem by principal

feature analysis, ranking by decision trees and subse-

quent clustering. All anomaly detection systems always

have the inherent problem of false positives. Both nor-

mal and abnormal conditions can occasionally result

in the same observable characteristic. Building groups

with those identifiers proven to be most effective for a

certain issue, results in a more precise detection and

reduction of false positives [11]. Identification and de-

tection of nonlinear energy anomalies of system-related

events can be performed using thresholds and a multi-

variate transformation based on multicasting informa-

tion, monitoring tools and intensity matrices [16]. Usu-

ally, when using statistics to detect anomalies, a cate-

gorization is performed in advance to assemble heuris-

tics in groups [9]. Finally, rather than indicating fail-

ures, anomalies can also expose abnormal situations or

configurations [16]. In all these anomaly occasions, it is

desirable to have an intelligent system that overcomes
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false positives and efficiently reacts to the anomalies’

behavior using a classification system.

An early classification of I/O access patterns is pre-

sented in the work of Madhyastha and Reed [14] by

means of feed-forward neural networks and hidden Mar-

kov models. Using this approach, the I/O patterns of

higher level applications are inferred and looked up in a

table to determine the file system policy to be set for the

next accesses. Later approaches store their results in a

database. Problem analysis benefits from past diagnos-

tic efforts, possibly applying known corrective reactions

to recurring problems. The reaction can also be based

on classifications using I/O signatures [2], where a sig-

nature notation is introduced to represent the observed

patterns. A toolkit generates these signatures automat-

ically and feeds the information to a prefetching thread

that reads the applications’ signatures, adjusts them

and reissues their calls at runtime for improved I/O.

There are several energy saving schemes for application

runs based on pattern classification and reorganization

of active data parts. In this way, reduced energy con-

sumption is achieved by decrementing the access time

to active data, while increasing it for cold data [24].

SIOX [13] unites all the existing solutions and yet

differs, because it is built with the idea in mind to auto-

matically analyze system behavior and intelligently op-

timize I/O operations using a multitude of approaches.

Among them are the injection of optimization hints, as

well as the querying of optimal parameters to support

decision making in existing libraries. Fusing the capa-

bilities of existing tools into one framework and combin-

ing it with intelligent monitoring, we have taken a step

forward integrating energy consumption awareness into

SIOX’s capabilities for abnormal behavior recognition

and adaptive monitoring.

3 The SIOX Architecture

SIOX collects event-based information about the I/O

activities taking place at the instrumented software and

hardware components of a system, and samples statis-

tics about the resource usage of the nodes where the

SIOX daemons are running. Furthermore, SIOX com-

bines online monitoring with offline learning. Monitor-

ing data flows from the instrumented component into

the daemon process, and from there into one of SIOX’s

transaction servers as detailed in Wiedemann et al. [23].

If relevant, the monitoring data is correlated and sim-

plified at the transaction server, and finally sent to the

data warehouse for long-term archiving. The recorded

information will be analyzed offline to update a knowl-

edge base holding optimized parameter suggestions for

common or critical situations. During online operations,

these parameters may be queried and used as prede-

fined responses whenever such a situation occurs. The

choice of responses to each situation is diverse, rang-

ing from adjusting the monitoring level in the pres-

ence of anomalies, to automatically enforcing optimiza-

tion techniques to achieve better performance, includ-

ing alerting users and administrators with informative

reports about problems and corrective actions. In Zim-

mer et al. [25], we discussed this workflow in more detail

and sketched several modules for anomaly detection.

Another noteworthy capability in SIOX is the pos-

sibility to correlate system-wide and application-local

monitoring. SIOX was conceived to be very flexible and

modular: Upon startup of either a process, component,

or daemon, a configuration file is read containing the de-

sired hierarchy of nested modules and plug-ins that are

to be used. Several modules offer additional optimiza-

tion interfaces that can be used by specialized plug-ins

to detect anomalies in different ways, and to trigger

corrective actions based on the observed activities and

system state. Details of the existing modules are given

in Kunkel et al. [13]. This paper extends the previous

work by introducing concepts to monitor and analyze

energy consumption at socket level.

3.1 Monitoring Energy-Efficiency

Figure 1 shows a configuration of modules involved in

the measurement and evaluation of energy metrics. The

interplay of the modules is explained in brief, starting

from the capturing of energy metrics. A more detailed
explanation of SIOX’s basic modules is given in [13].

StatisticsCollector: This module queries the reg-

istered provider plug-ins to retrieve the performance

counters every 100 ms and notifies the multiplexer com-

ponent inside the daemon about the new performance

data. The statistics multiplexer, in turn, notifies an-

other set of plug-ins about the availability of new data.

If desired, the flow of statistical data can be sent to a

database server using a database writer plug-in. Finally,

the statistics health anomaly detection plug-in checks

the statistics for soundness and flags anomalies.

Likwid: This statistics provider plug-in uses Lik-

wid to retrieve performance counters, including energy

counters. To this end, Likwid has been patched to sup-

port a light-weight C interface which allows the setup

of different counter groups and retrieval of performance

values. According to the Intel 64 and IA-32 Architec-

tures Software Developer’s Manual, Volume 3A [10], the

Sandy Bridge processor supports power, energy and

time counters with increments of granularity 0.125 W,
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15.3 mJ and 976µs respectively1. Since the wraparound

of the counters takes significantly longer than the 100 ms

polling interval, any overflow is detected correctly.

Reasoner: The reasoner component aggregates re-

ports from different sources and triggers anomaly han-

dlers in case of abnormal behavior. Reasoners are de-

ployed at process, node and system level and form a

hierarchy, exchanging state information amongst them-

selves. This is further explained in Section 5.

Reporters: Upon process termination, reporters re-

ceive statistical information from all SIOX modules;

this does not only include debugging data, but also

performance-relevant information, such as elapsed CPU

time and amount of data transferred. The console re-

porter simply outputs the retrieved information and it’s

not aware of parallel applications. If an application uses

an MPI instrumentation, an MPI reporter module is

available that aggregates the statistics over all partici-

pating MPI processes and presents one joint report for

all of them.

Monitoring activities: The SIOX low-level API

forwards observed activities to a layer-specific activity

multiplexer. Similar to its statistics counterpart, this

multiplexer can dispatch the activity to multiple plug-

ins. Activity forwarders connect the activity multiplex-

ers across layers or processes. At node level, a database

writer module may store the activities in a database

server; other back-ends are available to record activi-

ties into different file formats as well.

3.2 SIOX-induced Overhead

One of the main concerns regarding online tracing ap-

plications like SIOX is the performance overhead they

introduce in the system. This is specially true when we

are trying to determine the energy consumption of the

applications monitored without disturbing their energy

pattern. SIOX addresses this problem by minimizing

its overhead as much as possible: Firstly, the tracing

and statistic collection levels are dynamically adapted

as needed in order preventing unnecessary logging. Sec-

ondly, the daemon is free from heavy computation code

with most of its decision-making plug-ins based on sim-

ple action tables. Finally, SIOX is configurable and thus

allows users and administrators to select the appropri-

ate plug-ins that are beneficial for the application. Em-

piric experiences have shown that the only significant

overhead introduced by SIOX takes place during the

initialization of the instrumented applications, where a

delay of about 2.5 seconds per instrumented layer was

1 These values have been queried from the model-specific reg-

isters (MSR) and verified.

Fig. 1: SIOX configuration for analyzing energy consumption:
modules within a process, local daemon, and their interactions.

observed. This has been caused by the prototypical im-

plementation for the database topology component and

is subject to current optimization efforts. These obser-

vations are formally documented in [13].

4 Analyzing Energy Consumption

SIOX offers two methods of accessing collected statis-

tics like, in this case, the energy consumption: First,

the sampled flow of statistical information can be sent

to a database server and kept there for later analysis;

SIOX comes with a convenient web interface to visu-

alize the information stored in this database. Second,

at program termination, the reporters provide a short

summary of performance characteristics and consumed

resources. The former method is considered to work at

system-level as it focuses on the system-wide analysis.

The latter method works at user-level, since it is centric

to application runs. Remember, statistics are sampled

by the SIOX daemons at a dynamically assigned sam-

pling rate appropriate to the current logging level.

As mentioned in Section 3, the set of available statis-

tics is determined by the corresponding plug-ins speci-

fied in the configuration file of the SIOX daemon. Typ-

ical examples of statistics provided are memory con-

sumption, CPU utilization, network load, different I/O

4/9



5

1 ID Command
2 [3666]: ./ parabench -e -D pattern0.pbl
3 [3828]: ./ parabench -e -D pattern1.pbl
4 [3979]: ./ parabench -e -D pattern2.pbl
5 [4156]: ./ parabench -e -D pattern3.pbl
6
7 ID Duration Socket/RAPL
8 3666 377 s 23605 J
9 3828 133 s 8279 J

10 3979 119 s 7453 J
11 4156 120 s 7541 J

Fig. 2: Comparison of the cumulative energy counters for four
different runs of Parabench.

statistics like number of blocks read and written, and

energy consumption. Moreover, given the flexibility of

SIOX’s architecture, new statistical modules can be

implemented without much effort. System utilization

statistics can be divided into two classes: cumulative

and consecutive statistics. Summation over consecutive

statistics, like the system utilization metrics, is rarely

useful. On the other hand, cumulative statistics like en-

ergy consumption and CPU time provide proper means

of aggregation, and we consider this fact when present-

ing the information to the users.

4.1 System-Level Analysis

Armed with SIOX’s web interface, the user may not

only list and analyze the I/O activities his application

run has created, but also produce plot diagrams of the

statistics collected during the time frame of one or more

application executions. Moreover, the knowledge gained

can be used by administrators to analyze the system

behavior. This permits a quick inspection and compar-

ison of the effects that different parametrizations or al-

gorithm choices have had on the system. The interface

leverages the SQL-API of SIOX’s transaction server to

extract correlated information, so that it can be dis-

played without additional preprocessing. The informa-

tion available to the user includes detailed statistics on

energy consumption.

Consecutive statistics are shown as plot diagrams

over time, like those in Figure 4. Since more than one

logged execution can be selected for display, this of-

fers an easy way of qualitative comparison. Cumulative

statistics, e.g. the energy consumption in Joules, num-

ber of bytes read or written, etc., are additionally ag-

gregated in a summary at the beginning of the page,

similar to Figure 2.

4.2 User-Level Analysis

When an application terminates, the reporters are trig-

gered writing information about the application’s be-

havior to the console. Amongst others, the Reasoner

manages statistics about the CPU time and energy con-

sumed during the program run, providing direct feed-

back to the user. Listing 1 shows an example excerpt.

The CPU time consumed is taken from “Likwid’s Run-

time (RDTSC)” counter, which indicates the time the

CPU was busy processing instructions. Additional statis-

tics cover the amount of data accessed from a local

block storage and the data transferred across the net-

work. Finally, the overall time span during which statis-

tics have been updated is indicated in Line 5.

Listing 1: Example output reported by the Reasoner.

1 CONSUMED_CPU_SECONDS = 2.285407
2 CONSUMED_ENERGY_JOULE = 46.924286
3 ACCESSED_IO_BYTES = 23068672
4 TRANSFERRED_NETWORK_BYTES = 6336953
5 OBSERVED_RUNTIME_MS = 2600

5 Intelligent Monitoring

In this section, we detail and expand upon the concepts

introduced in [25].

To stem the tide of logging information, SIOX em-

ploys a tree-shaped hierarchy of “Reasoner” modules,

acting as arbiters and, if need be, inhibitors.

First, activities and statistics are collected at the

respective multiplexer and further distributed to spe-

cialized “anomaly detection plug-ins” (ADPIs) for fur-

ther investigation. Should any of these deem its input
anomalous, it will generate an issue report describing

the problem and the values concerned.

Dedicated reasoners exist at process, node and sys-

tem level, and will regularly exchange status informa-

tion with their direct neighbors in the hierarchy. At the

same interval, each one will poll all its assigned ADPIs

for issues witnessed during the last cycle. All are united

into a differentiated status report, taking into account

local as well as neighboring components’ general condi-

tions (see Listing 2). Should any reasoner detect anoma-

lous behavior at this stage, it will trigger another set

of specialized plug-ins, each custom-tailored to provide

an appropriate response. Also, it will preserve the ab-

normal state for one more cycle to capture the effect

of the abnormally for further inspection. This strategy

also guarantees that no actvities are lost, if consecutive

cycles are flagged abnormal. Possible actions include

archiving all or selected log data from a given time

window, automatic adjustment of system parameters,

and a message to a human administrator containing
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detailed information about the problem and its prelim-

inary analysis. It should be noted that in the context of

SIOX, the term anomalous behavior may describe un-

usually good as well as exceptionally bad performance/-

consumption: Reproducing the former is as desirable as

avoiding the latter during future operations.

By this device, SIOX is able to differentiate bottle-

necks due to high system load from those engendered

by system faults or misconfigurations.

Anomalies may cover the whole range of system con-

ditions detectable through metrics available to SIOX.

As these, too, may be extended via dedicated plug-ins,

there is virtually no limit to the auto-diagnostic pos-

sibilities of a system running SIOX. At this time, the

data sources available include the RAPL interface and

several statistics offered by /proc.

As statistics vary, so do anomalies detected through

them. For this paper, we will list but a few prominent

examples for ADPIs possible and already implemented:

– As any system operation will consume energy, a re-

ported value of 0 J will clearly signify a sensor prob-

lem.

– For most metrics available, values within the top or

bottom 5 % of the possible range mark anomalous

behavior worthy of further investigation by the rea-

soner. The results of a sample implementation are

shown in Table 3, under “StatisticsADPI” (S).

– For modern CPUs, power consumption is correlated

to the instruction cycles executed. FLOPS and other

operation types are available via hardware counters,

allowing for fairly accurate estimates of energy used.

Even for CPUs for which this data is unavailable,

the ratio of energy consumed to CPU time spent

will be a constant for any given clock speed, and

can easily be estimated from observations. Any ma-

jor deviation from the estimate may hint at irregu-

larities (see Listing 3). Results for this scheme are

shown in Table 3, under “EnergyEfficiencyADPI”

(E).

– For long-running applications (e. g., climate mod-

els), any major discrepancy between recent consump-

tion and average behavior over the last hours or days

will most likely indicate a problem.

Listing 2: Pseudocode for simple reasoning rules. Any

k. . . variables are program parameters.

1 query_current(var nBadAnomalies , var
↪→ nGoodAnomalies , var nOtherAnomalies)

2 if (nBadAnomalies + nGoodAnomalies +
↪→ nOtherAnomalies > 0)

3 if (nBadAnomalies > kThreshold &&
↪→ nBadAnomalies > kRatio *
↪→ nGoodAnomalies)

4 currentState = ABNORMAL_BAD
5 else if (nGoodAnomalies > kThreshold &&

↪→ nGoodAnomalies > kRatio *
↪→ nBadAnomalies)

6 currentState = ABNORMAL_GOOD
7 else
8 currentState = ABNORMAL_OTHER
9 ...

10 if (currentState != GOOD && currentState !=
↪→ ABNORMAL_GOOD)

11 for (c in categories)
12 if (utilization[c] > kMaxLoad)
13 raise_issue("Overloaded", c)

Listing 3: Pseudocode for sample ADPI algorithm.

1 query_current(var cpuConsumed)
2 query_current(var energyConsumed)
3 currentEfficiency = cpuConsumed / energyConsumed
4 nValues = nValues + 1
5 update_distribution_estimate(currentEfficiency)
6 query_estimated_distribution(var mean , var stddev)
7 if (nValues > nStabilizationLimit)
8 if (currentEfficiency > mean + stddev)
9 flag_anomaly(ABNORMAL_GOOD)

10 if (currentEfficiency < mean - stddev)
11 flag_anomaly(ABNORMAL_BAD)

6 Evaluation

6.1 Applications

Parabench is a programmable benchmark that can mi-

mic different temporal and spatial access patterns [15].

In this experiment, we analyze the four levels of access

in MPI [20] using a strided access pattern. The four

levels of access are described in Table 1 and defined by

two orthogonal aspects: collective vs. independent I/O,

and contiguous vs. non-contiguous I/O. In the spatial

access pattern, each process accesses 6400 blocks with

a size of 100 KB, which accumulate in a shared file of

5 GByte.

Level 0: non-collective, contiguous

Level 1: collective, contiguous

Level 2: non-collective, non-contiguous
Level 3: collective, non-contiguous

Table 1: Parabench’s access levels.

ICON is a climate model developed by the Max

Planck Institute for Meteorology and the German Na-

tional Weather Service. ICON is under active develop-

ment with one of its main features being that it uses an

icosahedral grid to discretize the earth surface. This al-

lows the model to avoid the pole problem inherent to all

longitude/latitude based grids. Output is written along

a space filling curve that traverses the grid and fuses

the two surface dimensions of the earth into one grid

coordinate. Height and time are used as two additional

dimensions. By default, all data is written into one com-

mon file. This file contains a two- or three-dimensional

array for each physical variable that is recorded during

6/9



7

define pattern {"pattern0", 2, 6400, (100 * 1024), 0};
time["MPI-IO test"] {

time["pwrite-lvl0"] pwrite("output.dat", "pattern0");
barrier;
clearcache;
time["pread-lvl0"] pread("output.dat", "pattern0", "world");
barrier;
pdelete("output.dat");
barrier;

}

Fig. 3: Parabench’s test definition file for level 0 access.

the run. From time to time, the output file is closed and

a new one is started to avoid intractably large files. In

addition to the model output, a restart file is written

at fixed intervals.

6.2 Analysis of Energy Consumption and Behavior

The Parabench tests were conducted using the local

storage of the Sandy system hosted at German Cli-

mate Research Center (DKRZ) and 8 Open MPI pro-

cesses. The test definition file for the access level 0 is

shown in Figure 3. The test definitions for levels 1 to 3

are almost identical, only differing in the pattern num-

ber. The clearcache instruction after the write barrier

clears the system cache in the traditional way by setting

/proc/sys/vm/drop caches to the value 3.

Table 2 shows a summary of the runtime as well

as energy consumption of the process with rank 0 for

all four access levels. Figure 4 shows the energy con-

sumption for every access level as obtained by Lik-

wid through the RAPL interface. All four access lev-

els showed a similar energy consumption pattern. The

test using a non-collective, contiguous pattern required

around three times the runtime (and thus also the en-

ergy) required by the other levels since it doesn’t profit

from MPI I/O optimizations like collective operations

and data sieving.

Level Runtime [s] Energy [J] Activities

0 377 23605 21335

1 133 8279 17390
2 119 7453 11704

3 120 7541 2826

Table 2: Parabench runtime and energy consumption per process.

6.3 Intelligent Monitoring

Two of the anomaly detection plug-ins we developed

were evaluated by running ICON with either none of

them, the StatisticsADPI, the EnergyEfficiencyADPI

Fig. 4: Energy consumption of the Parabench test for the different

access levels.

or both together. In the last configuration, an abnormal

state is triggered if any of the plug-ins detects an abnor-

mal state. Table 3 shows the runtime, the percentage

in which abnormal phases are detected and the number

of activities stored. It can be observed that the num-

ber of stored activities decreases from 100% to between

7 % and 18 % when the ADPIs are used. The Statis-

ticsADPI fires rarely, while the EnergyEfficiencyADPI

rates a state abnormal twice as often. In contrast to the

activities stored, the number of phases which are clas-

sified to behave abnormally varies between 0.2 % and

88 %.

The StatisticsADPI detects only a few abnormal

phases and remains quite stable with its detection rate.

Presumably, the EnergyEfficiencyADPI identifies many

computational and communication phases with incon-

sistent energy behavior – since these do not generate

I/O activities there is nothing to record there. Still, in

both cases the number of activities is quite stable; this

demonstrates that I/O patterns with interesting energy

consumption are preserved while irrelevant patterns are

discarded.

Already these first prototypical plug-ins show the

benefit of the approach. While the intelligent monitor-

ing is only a first step in the analysis chain, the number

of activities can be reduced by a factor of 5 to 10. This

will decrease the burden of the monitoring system and

storage system and increase the scalability significantly

– with the right configuration and plug-ins.

7 Summary and Conclusion

We have shown how information from hardware en-

ergy counters can be used to focus monitoring on sys-

tem states that deserve attention. This way, we can

provide the system administrators with detailed data
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Table 3: Recorded activities for the ICON runs. S: StatisticsADPI only, E: EnergyEfficiencyADPI only, S&E: both.

Application Runtime Abnormal phases Activities Activities stored

S E S&E S E S&E

Average 553 s 0.3 % 5.8 % 39.4 % 15,297 6.9 % 12.7 % 11.3 %
Min 552 s 0.2 % 4.6 % 3.0 % 15,297 6.7 % 6.5 % 6.5 %

Max 553 s 0.4 % 7.2 % 87.7 % 15,297 7.4 % 18.4 % 18.4 %

about critical situations while omitting less valuable

data to reduce the overhead of data collection. Even

though the monitoring strategy of SIOX proves effective

at focusing monitoring efforts and thus reducing over-

head, we are only beginning to take advantage of the

intelligent monitoring and self optimization provided by

this framework.

Opportunities for further research abound: Which

algorithms are suited best to focusing our attention on

the data most valuable? How can this information be

best put to use, and what kind of self-optimizations

does it facilitate? Which of these are the most efficient

at reducing the amount of energy consumed by high-

performance computing systems? And finally, what ad-

ditional analyses and feedback should a system like

SIOX provide to both users and system administrators

to help them unlock their machine’s full potential?
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12. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber,

M., Mickler, H., Müller, M., Nagel, W.: The Vampir perfor-
mance analysis tool-set. In: M. Resch, R. Keller, V. Himmler,

B. Krammer, A. Schulz (eds.) Tools for High Performance

Computing, pp. 139–155. Springer Berlin Heidelberg (2008)
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