170 research outputs found

    Bayesian Generative Model Based on Color Histogram of Oriented Phase and Histogram of Oriented Optical Flow for Rare Event Detection in Crowded Scenes

    Get PDF
    In this paper, we propose a new method for rare event detection in crowded scenes using a combination of Color Histogram of Oriented Phases (CHOP) and Histogram of Oriented Optical Flow (HOOF). We propose to detect and filter spatio-temporal interest points (STIP) based on the visual saliency information of the scene. Once salient STIPs are detected, the motion and appearance information of the surrounding scene are extracted. Finally, the extracted information from normal scenes are modelled by using a Bayesian generative model (Latent Dirichlet Allocation). The rare events are detected by processing the likelihood of the current scene in regard to the obtained model. The proposed method has been tested on the publicly available UMN dataset and compared with different state-of-the-art algorithms. We have shown that our method is very competitive and provides promising results

    Deep Learning for Crowd Anomaly Detection

    Get PDF
    Today, public areas across the globe are monitored by an increasing amount of surveillance cameras. This widespread usage has presented an ever-growing volume of data that cannot realistically be examined in real-time. Therefore, efforts to understand crowd dynamics have brought light to automatic systems for the detection of anomalies in crowds. This thesis explores the methods used across literature for this purpose, with a focus on those fusing dense optical flow in a feature extraction stage to the crowd anomaly detection problem. To this extent, five different deep learning architectures are trained using optical flow maps estimated by three deep learning-based techniques. More specifically, a 2D convolutional network, a 3D convolutional network, and LSTM-based convolutional recurrent network, a pre-trained variant of the latter, and a ConvLSTM-based autoencoder is trained using both regular frames and optical flow maps estimated by LiteFlowNet3, RAFT, and GMA on the UCSD Pedestrian 1 dataset. The experimental results have shown that while prone to overfitting, the use of optical flow maps may improve the performance of supervised spatio-temporal architectures

    An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos

    Full text link
    Videos represent the primary source of information for surveillance applications and are available in large amounts but in most cases contain little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.Comment: 15 pages, double colum

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art

    3D People Surveillance on Range Data Sequences of a Rotating Lidar

    Get PDF
    In this paper, we propose an approach on real-time 3D people surveillance, with probabilistic foreground modeling, multiple person tracking and on-line re-identification. Our principal aim is to demonstrate the capabilities of a special range sensor, called rotating multi-beam (RMB) Lidar, as a future possible surveillance camera. We present methodological contributions in two key issues. First, we introduce a hybrid 2D--3D method for robust foreground-background classification of the recorded RMB-Lidar point clouds, with eliminating spurious effects resulted by quantification error of the discretized view angle, non-linear position corrections of sensor calibration, and background flickering, in particularly due to motion of vegetation. Second, we propose a real-time method for moving pedestrian detection and tracking in RMB-Lidar sequences of dense surveillance scenarios, with short- and long-term object assignment. We introduce a novel person re-identification algorithm based on solely the Lidar measurements, utilizing in parallel the range and the intensity channels of the sensor, which provide biometric features. Quantitative evaluation is performed on seven outdoor Lidar sequences containing various multi-target scenarios displaying challenging outdoor conditions with low point density and multiple occlusions

    Applying computer analysis to detect and predict violent crime during night time economy hours

    Get PDF
    The Night-Time Economy is characterised by increased levels of drunkenness, disorderly behaviour and assault-related injury. The annual cost associated with violent incidents is approximately ÂŁ14 billion, with the cost of violence with injury costing approximately 6.6 times more than violence without injury. The severity of an injury can be reduced by intervening in the incident as soon as possible. Both understanding where violence occurs and detecting incidents can result in quicker intervention through effective police resource deployment. Current systems of detection use human operators whose detection ability is poor in typical surveillance environments. This is used as motivation for the development of computer vision-based detection systems. Alternatively, a predictive model can estimate where violence is likely to occur to help law enforcement with the tactical deployment of resources. Many studies have simulated pedestrian movement through an environment to inform environmental design to minimise negative outcomes. For the main contributions of this thesis, computer vision analysis and agent-based modelling are utilised to develop methods for the detection and prediction of violent behaviour respectively. Two methods of violent behaviour detection from video data are presented. Treating violence detection as a classification task, each method reports state-of-the-art classification performance and real-time performance. The first method targets crowd violence by encoding crowd motion using temporal summaries of Grey Level Co-occurrence Matrix (GLCM) derived features. The second method, aimed at detecting one-on-one violence, operates by locating and subsequently describing regions of interest based on motion characteristics associated with violent behaviour. Justified using existing literature, the characteristics are high acceleration, non-linear movement and convergent motion. Each violence detection method is used to evaluate the intrinsic properties of violent behaviour. We demonstrate issues associated with violent behaviour datasets by showing that state-of-the-art classification is achievable by exploiting data bias, highlighting potential failure points for feature representation learning schemes. Using agent-based modelling techniques and regression analysis, we discovered that including the effects of alcohol when simulating behaviour within city centre environments produces a more accurate model for predicting violent behaviour
    • …
    corecore