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In this paper, a novel method termed Multi-Instance Dictionary Learning (MIDL) is presented for detecting 
abnormal events in crowded video scenes. With respect to multi-instance learning, each event (video clip) in videos 
is modeled as a bag containing several sub-events (local observations); while each sub-event is regarded as an 
instance. The MIDL jointly learns a dictionary for sparse representations of sub-events (instances) and multi-
instance classifiers for classifying events into normal or abnormal. We further adopt three different multi-instance 
models, yielding the Max-Pooling based MIDL (MP-MIDL), Instance based MIDL (Inst-MIDL) and Bag based 
MIDL (Bag-MIDL), for detecting both global and local abnormalities. The MP-MIDL classifies observed events by 
using bag features extracted via max-pooling over sparse representations. The Inst-MIDL and Bag-MIDL classify 
observed events by the predicted values of corresponding instances. The proposed MIDL is evaluated and 
compared with the state-of-the-art methods for abnormal event detection on the UMN (for global abnormalities) 
and the UCSD (for local abnormalities) datasets and results show that the proposed MP-MIDL and Bag-MIDL 
achieve either comparable or improved detection performances. The proposed MIDL method is also compared with 
other multi-instance learning methods on the task and superior results are obtained by the MP-MIDL scheme. 
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1. Introduction 

Detecting abnormal events in crowded video scenes is 
an important and challenging task in computer vision. 
Automatically detecting anomalies in surveillance 
videos, which are accumulating rapidly in the digital era, 
can facilitate efficient search and screening. The task 
otherwise may prove too costly or even impossible by 
manual operations. 

In the literature, the definition of abnormal events is 
often qualitative and subjective under different 
application scenarios. However, following the 
definitions in Refs. 1 and 3, abnormal events generally 
possess the following characters. One character is that 
the events seldom occur or have not been observed 
before. The other is that the events are unpredictable. 
Detection of abnormal events is challenging due to the 
fact that anomalies in videos often occur with a very 
low probability and also have dramatic appearance 
variations. Thus, the problem of abnormal event 

detection is to identify anomalies, given a large number 
of normal events and possibly a small portion of 
available abnormal events. In this case, it becomes an 
unbalanced learning problem. Much previous work has 
used one-class unsupervised methods to tackle the 
problem.1,4 Recently, Yang2

Motion based abnormal events in video can be 
classified into two categories: local and global.

 et al. proposed a framework 
based on trajectory segmentation and multi-instance 
learning to detect local anomalies. However, trajectories 
of objects are often hard to obtain in crowded video 
scenes. We herein propose to use motion-based 
abnormal event detection under the framework of multi-
instance learning. 

4 Local 
abnormal events are local behaviors with different 
motion patterns compared with its spatial-temporal 
neighbors on the scene (e.g. vehicles on crowded 
sidewalks). Global abnormal events are scenes where all 
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the local behaviors are abnormal (e.g. crowded escape 
events). The task thus is to identify frames containing 
either local or global abnormal events. In order to better 
depict local anomalies that appear in local regions of 
video frames, a given short video clip of several frames 
is first divided into small spatial-temporal cuboids. 
Motion features are then extracted in these cuboids. We 
define a video clip as an event and local motion patterns 
as sub-events. An event is abnormal if at least one of its 
sub-events is abnormal, that is, one local region contains 
an abnormal sub-event. An event is normal only if all its 
sub-events are normal. This can be naturally framed 
under the multi-instant learning methodology. In multi-
instance learning, a bag is defined as a collection of 
several instances. A bag is labeled positive if at least 
one of the instances is positive; or it is labeled negative 
if all of its instances are negative. Therefore if we define 
an event as a bag and abnormal sub-events as positive 
instances, then a positive bag corresponds to an 
abnormal event, while a negative bag corresponds to a 
normal event. Then abnormal event detection is to 
perform multi-instance classification to find positive 
bags, which correspond to abnormal events. The frames 
in a clip corresponding to a positive bag are identified as 
abnormal. 

In order to effectively detect abnormal events in 
videos, learning a good representation of events plays 
an essential role. Sparse coding has been used as an 
effective feature representation method in the 
literature.5,6,7 This is because when compared with other 
methods such as principal component analysis, sparse 
coding does not impose orthogonality constraints on 
basis vectors, thus leading to more flexible 
representations. Several previous abnormal event 
detection methods3,4,8

(1) Max-Pooling based MIDL (MP-MIDL): It 
classifies bags by using bag features extracted via max-
pooling over the sparse codes of instances. 

 adopt the sparse coding technique 
as feature representation for individual events and have 
shown superior performance. Sparse coding is also 
employed in the proposed method due to its 
effectiveness in representing events. Previous sparse 
coding based methods, however, learn the feature 
representation for each individual event separately in an 
unsupervised manner, leading to the learned sparse 
representation being good for reconstruction but 
inefficient for multi-instance classification. For multi-
instance classification, it is better to learn a dictionary 
that is able to produce sparse codes more effectively. To 
achieve this, we have developed a novel dictionary 
learning method called multi-instance dictionary 

learning (MIDL). The MIDL jointly learns the 
dictionary as well as solves the multi-instance learning 
problem by minimizing a classification loss function. 
The dictionary is learned for sparse coding of instances 
and the classification model for classifying bags. By 
using different classification models, three different 
schemes of the MIDL are naturally produced:  

(2) Instance based MIDL (Inst-MIDL): The label 
of a bag is determined by the maximal classification 
value of all instances in the bag. The learning of a 
dictionary uses all the instances. 

(3) Bag based MIDL (Bag-MIDL): The label of a 
bag is also determined by the maximal classification 
value of all instances in the bag. The learning of a 
dictionary uses selected instances in bags. In each bag, 
an instance with the maximal classification value is 
selected. 

Experimental results show that MP-MIDL is suited 
for global abnormal event detection and Bag-MIDL for 
local abnormal event detection. Inst-MIDL also shows a 
comparable result compared with MP-MIDL and Bag-
MIDL while it outperforms some existing abnormal 
event detection methods. 

This work is a significant extension of our earlier 
work,9

The contributions of the work can be summarized as 
follows: 

 in which only a prototype Bag-MIDL was 
experimented with. Here, the MIDL is considered as a 
general formulation and a further three different 
schemes of the MIDL are derived. Moreover, the 
relationships and differences among these three schemes 
are analyzed in detail. 

(i) Abnormal event detection is modeled as a 
multi-instance learning task for effective detection of 
abnormal events in crowded scenes.  

(ii) A novel dictionary learning method, i.e. MIDL, 
is proposed for learning dictionaries and sparse 
representations of sub-events that are adapted to the 
problem of multi-instance learning. 

(iii) Three schemes of the MIDL are developed 
depending on the classification model used, together 
with an analysis of the three schemes and comparisons 
with other methods. 

The rest of the paper is organized as follows. 
Section 2 gives a brief overview of related work. 
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Section 3 provides a detailed explanation of the 
proposed method, followed by experimental results, 
comparisons and analysis in Section 4. Section 5 
concludes the paper. 

2. Related Work 

Abnormal event detection is an active topic in the area 
of video processing.10,11,12,41,43,44

The trajectory based methods rely mainly on 
tracking of an object.

 The related methods 
can be categorized into two categories: trajectory based 
and motion feature based.  

2,13,14,42 However, reliable 
tracking15,16

There have been a lot of efforts devoted to motion 
feature based methods. In these methods, features such 
as optical flow, motion history, gradients are extracted 
at pixel level. Then different models are built to learn 
the spatial-temporal relations between different feature 
patterns. These models include the Markov Random 

Field,

 is still a challenging task. Besides, in many 
crowded scenes, tracking of an object can be unrealistic 
due to occlusions. This results in the trajectory based 
methods being unsuited for crowded scenes. 

17 Gaussian Mixture Model18,19 and Social Force 
Model.20

Recent studies show that sparse coding is effective 
for the task of abnormal event detection.

 Such methods avoid explicitly tracking 
moving objects and therefore are more suited for 
detecting abnormal events in crowded scenes.  

3,4,8 Previous 
work follows almost the same idea: using the sparse 
reconstruction cost to classify events. For example, in 
the method proposed by Zhao et al,3 motion features of 
events are calculated first. Then with a learned 
dictionary, sparse codes of these motion features are 
computed. The final step is to evaluate the value of the 
sparse reconstruction cost. If the reconstruction cost is 
greater than a user defined threshold, the event is 
considered as an abnormal event. The threshold is used 
to control the sensitivity of the detection. The methods 
proposed by Cong et al4 and Xu et al8 use similar ideas. 
Generally, a reconstruction cost is adopted in these 
methods. Unlike these previous sparse-coding based 
methods, the proposed method is able to learn 
discriminative sparse codes of instances for effective 
multi-instance classification. 

 

Fig. 1.  Flowchart of the proposed method. The first step is to extract features of events. Corresponding details are described in Section 
3.2. In the MIDL learning process, dictionary D and a classification parameter w are learned together, as detailed in Sections 3.3 and 
3.4. In the last process (abnormal event detection), features are extracted, and then with the learned dictionary, sparse codes of 
instance are computed, finally a new event is classified as normal or abnormal by using the obtained classification function. 
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3. Multi-instance Dictionary Learning for 
Abnormal Event Detection 

3.1. The framework 

Fig. 1. shows the flowchart of the proposed method. 
There are three steps in the proposed abnormal event 
detection method. First, a given video is divided into a 
set of clips, each containing a fixed number of frames. 
The number of frames in a clip is decided via cross 
validation. A video clip is regarded as a bag (an event). 
Then video clips are partitioned into spatial-temporal 
cuboids.†

The second step is a dictionary learning procedure. 
Here we use multi-instance dictionary learning to jointly 
learn a dictionary with a multi-instance classification 
function. Three different multi-instance dictionary 
learning schemes are proposed. Details of the proposed 
multi-instance dictionary learning method are given in 
Sections 3.3 and 3.4.  

 Frame differencing is used to calculate pixels 
of moving objects (or moving pixels). For the cuboids 
that contain moving pixels, motion based features are 
extracted. The motion feature extraction procedure will 
be described in Section 3.2. The motion features within 
a bag are considered as instances (sub-events).  

In the last step, given a video clip to classify, it is 
first represented as a bag and instances (local motion 
features) using the feature extraction method. With the 
learned dictionary, sparse codes of instances are first 
computed. Using the sparse codes of instances as 
feature vectors and together with the learned multi-
instance classification function, the bag is classified as 
positive or negative, corresponding to an abnormal or a 
normal event. Further details are presented in Section 
3.5. 

3.2. Event representation 

For normal and abnormal events in surveillance videos, 
the major differences between them are their motion 
direction and motion magnitude. Since Multi-scale 
Histogram of Optical Flow (MHOF)4

                                                 
† The frame number in a clip and the size of a cuboid are discussed in 
Section 3.2. 

 can capture well 
both motion direction and motion magnitude, it is 
adopted in our framework to depict events. Other 
feature representation methods designed for surveillance 
videos are also applicable. The MHOF feature has 16 
bins. The first 8 bins denote the 8 directions of the 

optical flow with its magnitude smaller than a 
threshold τ . If the magnitude of the optical flow is 
greater than the threshold, it is quantized into 8 
directions in the next 8 bins. The threshold τ  is selected 
based on a cross validation test in the experiments. 

The entire feature extraction procedure used in this 
paper has the following four steps: (1) Given a video, 
we first partition it into small clips. Each clip contains a 
fixed number of frames. In our case, every four frames 
create a clip, as shown in Fig. 2. This frame number was 
selected based on a cross validation test. By varying the 
number of frames in a clip and calculating the 
corresponding final prediction precision via cross 
validation, the number of frames in a clip with the 
highest prediction precision was then selected. (2) 
Moving pixels are then detected using the frame 
differencing method. Partition the video view into small 
overlapping cells, the cells between several successive 
frames form small spatial-temporal cuboids. And the 
moving pixels will fall into different cuboids. In Fig. 2, 
cells containing moving pixels are marked in red. The 
selection of the cell size is fairly flexible. Generally, 
smaller cells can capture smaller moving abnormal 
objects and thus give higher detection precision, but will 
lead to more instances in a bag and possible 
computational inefficiency. For a reasonable trade-off 
between the two aspects, in this work we have used the 
fixed settings with cells of size 24 24×  and cuboids of 
size 4 24 24× × . Other choices are also possible. (3) 
Optical flow21

For the frames in a succession, the MHOF features 
are considered as instances (i.e. sub-events). All the 
features jointly form the concept of a bag (i.e. event) in 
the multi-instance learning framework. The feature 
extraction process is summarized in Fig. 2. 

 is then computed between these frames. 
(4) For those cuboids that contain moving pixels, optical 
flow within the cuboids is used to extract the MHOF 
features. 

 

 
Fig. 2.  Flowchart of the feature extraction process. 



 MIDL for Detecting Abnormal Events in Surveillance Videos 
 

5 

3.3. General formulation of Multi-instance 
Dictionary Learning 

3.3.1 Sparse coding 

The basic formulation of sparse coding is two-fold: an 
input sample is modeled as a linear combination of the 
basis in a dictionary, and the coefficients are sparse. 
This is the so called sparse representation. Here, a 
learned dictionary given is 1 2( , ,..., ) m k

k
×= ∈RD d d d . 

The dictionary can be overcomplete with the number of 
its basis vectors greater than the dimension of the 
sample, k m> . An input sample is represented by 

m∈Rx , and the sparse representation of x can be 
represented as ( ) kˆ , ∈Rα x D  ( α̂  is used for short in the 
rest of the paper). 

21
2 1 12R( ) argmin ( )kˆ , || || || ||λ

∈
= − +αα α αx D x D     (1) 

where the first term is the sparse reconstruction error; 
the second term is the sparsity regularization term and 

1λ  is a regularization parameter. The 1l norm used in the 
second term guarantees that there are only a few non-
zero entries in α̂ .  

With D fixed, the above optimization task is an l1-
regularized least-square problem. Solutions of this 
problem include: the Interior Point,22 a modification of 
the Least Angle Regression (LARS),7,23Feature Sign 
Search,5

3.3.2 Multi-instance Dictionary Learning 

 etc.  

In the above formulation, D is assumed as given or 
fixed. However, in practice, D is learned from a set of 
training samples. A classical approach to obtain D is by 
minimizing the reconstruction error. 

 21 1
2 1 121

argmin ( )n
, i i in i

|| || || ||λ
=

− +∑α α αD x D  (2) 

where n is the total number of training samples.  
In Eq. (2), usually there is a constraint on the 

column of D, such that, 2
2j|| || c,≤d  {1 2 }j , ,...,k∀ ∈ . 

This is to avoid the elements of D being arbitrarily large. 
Eq. (2) aims to learn a dictionary that is best suited 

for signal reconstruction tasks.6,7

Suppose a set of training bags is given with their 
labels as: 

 As has been pointed 
out in Refs. 24, 25, 26 and 27, for classification tasks, it 
is not optimal to learn a dictionary in this way since the 
label information of samples is not used. It would be 
better to learn dictionaries while considering the labels 
of samples, so generating sparse codes that are 
discriminating with respect to the labels. Like in 

supervised dictionary learning, there is some prior 
information of the relationship between labels and bags 
that should be considered and used for multi-instance 
dictionary learning. Thus, we present here a multi-
instance dictionary learning method specifically 
designed for multi-instance classification.  

1 2{ }nB B ,B ,...,B=  and 1 2{ }nY Y ,Y ,...,Y= , 
where n is the number of training bags, 

( ) ( ) ( )
1 2{ }

i
i i i

i nB , ,...,= x x x  is the ith bag containing in  

instances, ( )i m
j ∈Rx  is the jth instance in bag iB , and 

{ 1 1}iY ,∈ + −  is the label of the ith bag. We use 

1 2{ }nA A ,A ,...,A=  to represent a set of sparse codes, 

where ( ) ( ) ( )
1 2{ }

i

i i i
i nˆˆˆA , ,...,= α α α  is the set of sparse codes 

of instances in bag iB , with ( )i k
jˆ ∈Rα  being the sparse 

code of instance ( )i
jx . 

For the task of multi-instance classification, the 
primary goal is to consider a multi-instance 
classification function to classify bags as positive or 
negative. The sparse codes of instances are treated as 
feature vectors and then the classification is carried out 
with respect to these sparse codes. By minimizing the 
total classification loss on the training set, the 
formulation becomes: 

 2
22min ( ( ) + ), f , || ||ν

D w D w w  (3) 

where m k×∈RD  is the dictionary and k∈Rw  is the 
classification parameter. It aims to jointly learn both D 
and w. ν  is a regularization parameter for avoiding over 
fitting. The function f is defined as the total 
classification loss of bags and is represented as, 
 1

1
( ) = ( )n

i in i
f , C Y ,B ,

=∑D w w   (4) 

where C  is a function measuring the classification loss 
of a bag. Thus, f represents the total classification loss 
of classifying bags.  

In the next subsection, we discuss the multi-instance 
classification functions. For the multi-instance 
classification problem, finding good representations of 
instances and bags is imperative. The multi-instance 
dictionary learning method plays an important role in 
the proposed abnormal event detection framework and 
the resulting three schemes. 
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3.4. Three schemes of Multi-instance Dictionary 
Learning 

3.4.1 Multi-instance Dictionary Learning using bag 
features extracted by max-pooling (MP-MIDL) 

Yang et al. proposed a supervised dictionary learning 
method26

The max-pooling procedure is shown as, 

 for image classification. In their work, an 
image is represented using features extracted by max-
pooling over the sparse codes of local descriptors within 
a spatial pyramid. The dictionary is trained for local 
descriptors through the back-propagation. Similar to this 
method, we also apply max-pooling over the sparse 
codes of instances to extract features of bags.  

( ) ( ) ( )
11 21 1

( ) ( ) ( )
12 22 2

( ) ( ) ( )
1 2

max{ }

max{ }
( )

max{ }

i

i

i

i i i
n

i i i
n

i i

i i i
k k n k

ˆˆˆ , ,...,

ˆˆˆ , ,...,
B

...
ˆˆˆ , ,...,

φ

 
 
 
 = =
 
 
  

α α α

α α α
β

α α α

  (5) 

where φ  represents the max-pooling operator.  

The resulting feature vector for bag iB  is k
i ∈Rβ , 

where its jth element is ( ) ( ) ( )
1 2= max{ }

i
i i i

ij j j n jˆˆˆ , ,...,β α α α , 

and the operator ( ) ( ) ( )
1 2max{ }

i
i i i
j j n jˆˆˆ , ,...,α α α  means taking 

the maximum with respect to the elements at the jth 
dimension of every sparse codes of instances in bag iB . 

For multi-instance classification tasks, we are 
interested in predicting bags. Linear classification 
function is employed to make predictions, described as 

T( ) =i i iF B ,A , βw w   (6) 

where iβ  is used as feature vector and k∈Rw  is the 
parameter of the linear classification model.  

Logistic loss,38,39 ( ) (1 )xL x log e−= + , is chosen to 
measure the classification loss of a bag, as it is both 
convex and differentiable. So the complete formulation 
of the classification loss of a bag, C , is shown as, 

( )( ) = ( ( )) (1 )i i iY F B ,A ,
i i i i iC Y ,B , L Y F B ,A , log e−= + ww w  

(7) 
And the final objective function of the Max-Pooling 

based MIDL (MP-MIDL) is given by, 
( ) 21

221min ( (1 ) + )i i in Y F B ,A ,
, n i log e || ||ν−

=
+∑ w

D w w  (8) 

As can be seen from Eq. (8), dictionary D and the 
classification parameter w are jointly optimized to 

minimize the sum of the classification loss of bags on 
the training set. 

Once D and w are learned, the label of bag iB  is 
given by the sign of the value T( )iβw . Let îY  denote the 
predicted label of iB , and then îY  is represented by the 
following formulation, 

T

T

1 0
sign( ( ))

1 0
i

i i i
i

-
Ŷ F B ,A , =

≤
= 

>

β
β

w
w

w
，

，
             (9) 

In the above equation, 1îY =  means iB  is predicted 

as a positive bag and 1îY =-  means iB  is predicted as 
negative. 

3.4.2 Multi-instance Dictionary Learning at 
instance level (Inst-MIDL) 

In this scheme, the classification model is learned with 
respect to instances. It is clear that every instance (local 
motion pattern) has its own associated label though not 
directly accessible. If the instance corresponds to an 
abnormal sub-event, the instance is positive, or negative 
otherwise. A bag is labeled positive if there is at least 
one positive instance in the bag, or is labeled negative 
otherwise. So once we are able to classify instances, the 
label of a bag is also determined. 

The classification of an instance is performed with 
respect to its sparse code using a linear classification 
model represented as, 

( ) T ( )( ) =i i
j jˆˆl ,α αw w           (10) 

where k∈Rw  is the classification parameter and ( )i
jα̂  

is the sparse code of instance ( )i
jx .  

Sparse codes of instances are used as feature vectors. 
The predicted label ( )i

jŷ  of instance ( )i
jx  can be 

represented using, 
( ) ( ) T ( )sign( ( )) = sign( )i i i
j j jˆˆŷ l ,= α αw w          (11) 

If ( ) 1i
jŷ = , ( )i

jx  is predicted as a positive instance and 
( ) 1i
jŷ =-  means ( )i

jx  is labeled as negative. 
Suppose the true label of an instance is known, then 

the classification loss of a bag can be defined as, 
( ) ( )( )

1( ) (1 )
i i

i j jˆy l ,n
i i jC Y ,B , log e−

=
= +∑ α ww         (12) 

where ( )i
jy  is the true label of instance ( )i

jx  and in  is 

the number of instances in bag iB .  
As can be seen, the classification loss of bag iB  is 

the sum of all the classification loss of instances within 
this bag. 
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However, in Eq. (12), ( )i
jy  is unknown in positive 

bags in practice. Motivated by the scheme of the mi-
SVM,28

1) For negative bags, all the instance labels are set 
as -1.  

 we use a heuristic scheme to infer the labels of 
instances. To solve for the final objective function, two 
steps are used at each iteration:  

2) For positive bags, firstly, the label of instances 
are set using Eq. (11). Then, if there is no positive 
instance in the positive bag, the label of the instance 
with the maximal T ( )( )i

jα̂w  value is set as +1, where 

w is the current learned classification parameter. 
The final objective function of this scheme is given 

as,  
( ) ( )( ) 21

221 1min ( (1 ) + )
i i

i j jˆy l ,n n
, s i j log e || ||ν−

= =
+∑ ∑ α w

D w w  

 (13) 
where 

1

n
ii

s n
=

= ∑ is the total number of instances in all 
the training bags. 

Since the classification loss of a bag is defined as 
the sum of all the classification loss of instances within 
this bag, Eq. (13) can be interpreted as jointly 
optimizing D and w in order to minimize the total 
classification loss of all instances in all the training bags. 

Given the learned parameters D and w, the 
classification function for instances is determined. Then 
the classification for a bag is carried out by predicting 
the labels of all the instances in the bag, if there is at 
least one positive instances in the bag, the bag is 
classified as positive. It means, for positive bags, the 
maximum classification value of instances is positive, 
while the maximum classification value of instances in a 
negative bag is negative. That is, the classification value 
of a bag is represented as,  

T ( )
1( ) = max ( )

i
i

i i j ,...,n jˆF B ,A , = αw w          (14) 

And the predicted label of a bag is given by, 
T ( )

1sign( ( )) = sign(max ( ))
i

i
i i i j ,...,n j

ˆ ˆY F B ,A , == αw w (15) 

3.4.3 Multi-instance Dictionary Learning at bag 
level (Bag-MIDL) 

The above instance based learning relies on a heuristic 
scheme to get the labels of instances. In many cases, 
however, what we know is the labels of bags. If 1iY = − , 
then 1ijy = − , for all 1 ij ,...,n= . On the other hand, if 

1iY = , then there is at least one instance in the bag that 
is positive. Therefore, as stated in the previous 
subsection, the classification value of a bag is 
represented by Eq. (14). The Inst-MIDL tries to learn a 

linear classifier for all the instances. Now using Eq. (14), 
the target is changed to learning a classifier for a set of 
selected instances. In each bag, an instance is selected to 
learn the classifier, the instance with the maximum 
classification value in a bag. For negative bags, the 
selected instance is the one nearest to the separation 
plane, which is the most uncertain or most 
discriminative instance in the bag. While for positive 
bags, the selected instance is the one farthest from the 
separation plane, which is the most certain or least 
discriminative instance in the bag. The difference 
between this scheme (Bag-MIDL) and the Inst-MIDL 
scheme is illustrated in Fig. 3. 

The classification loss of a bag and the final 
objective function of Bag-MIDL are presented in the 
following two formulae, respectively. 

 
( )T

1max ( )( ) (1 )
i

i j ,...,n ji
ˆY

i iC Y ,B , log e =−
= +

αww        (16) 
( )T

1max ( ) 21
221min ( (1 ) + )

i
i j ,...,n ji

ˆYn
, n i log e || ||ν=−

=
+∑ αw

D w w  

 (17) 
Once D and w are learned, the label of a bag is given 

by Eq. (15). 

3.4.4 Optimization method 

In the previous subsections, three different schemes of 
MIDL are presented. The three objective functions can 
be solved using the same optimization method. We 
optimize alternatively between sparse code α̂ , 
dictionary D and classification parameter w. Sparse 
code α̂  are optimized with dictionary D fixed. Then 
with α̂  fixed, D and w are optimized. 

Learning sparse code α̂  with D fixed. This is the 
coding phase. With D fixed, the optimization of α̂  in 
Eq. (1) is solved using the Euclidean projection based 
method by projecting the coefficient vector onto the 1l  
ball.40,30,29 Other sparse coding methods can also be used, 
such as a modified LARS7 and the Feature Sign Search.

Learning dictionary D and w with 

5 
α̂  fixed. This 

is the dictionary learning phase, together learning a 
classifier. Gradient and subgradient methods are used 
for optimization. We adopt the method proposed in Ref. 
26. A brief description of the optimization method of D 
and w is given below, taking the objective function of 
Eq. (17) as an example (the other two schemes can also 
be solved using the same scheme).  

The optimization of w in Eq. (17) is straightforward. 
Since w is explicit in Eq. (17). Gradient of w can be 
calculated directly. If the gradient is not available, we 
use subgradient instead. The optimization of D in Eq. 
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(17) is not as easy as the optimization of w, since D is 
not explicit in Eq. (17). Therefore implicit 
differentiation and chain rule are used to compute the 
gradient of D in Eq. (17). Compute the gradient of D 
using chain rule: 

1 1 1

1 1 1

n n n

n n n
i i i

ˆf C C F C F
ˆF F= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ α
αD D D D

  (18) 

The problem turns into computing ˆ∂
∂
α
D , since D and α̂  

are not explicitly linked. However, this can be solved by 
taking the derivation of D with respect to a fixed point 
equation. The way of calculating a fixed point equation 
is described in Ref. 26. Finally, we obtain the partial 
derivative of D in the following form,  

 
T

1( ) ( )
T

T

mn mn mn

−∂ ∂ ∂
= −

∂ ∂ ∂

     
α αD x D DD D

D D D
  (19) 

where α  means the nonzero elements in α̂  and D  the 
corresponding bases, mnD is the element of dictionary D 
at the mth row and the nth column. 

Implementation details: 1) Stochastic gradient 
descent is used in the implementation for efficient 
training. A sample is drawn from the training set at each 
iteration. 2) The learning rate of w is updated in the 
form of 0min( ), t / tλ λ λ=wt w w , where λw  is a constant. 
And if the current iteration number t  satisfies 0t t≤ , 
λ λ=wt w , or λwt decreases if 0t t> . 0t  is therefore a 
threshold, set to 0 10t T /= , where T  is the total 
number of iterations. λDt  is set as a constant in the 
experiments, that is, λDt  is always equal to λD . Based 
on a cross validation test, the best parameters λw  and 
λD  are selected. For ν , it is set as a constant. 3) For D 
and w, D is initialized using unsupervised dictionary 
learning, and w is initialized as a vector with its all 
elements set as one. The algorithm is summarized in 
Algorithm 1. 

In Algorithm 1, ( )f ,D w  in Eq. (20) is either the 
first term in Eq. (8), Eq. (13) or Eq. (17) depending on 
which scheme is adopted. ( )f ,D w  in Eq. (21) has the 
same meaning. Now we discuss the training speed of the 
three schemes using the stochastic gradient descent. If 
one bag is chosen at each iteration, then ( )f ,D w  
reduces to the classification loss of one bag equal to C  
as defined in Eqs. (7), (12) and (16). From Eqs. (7), (12) 
and (16), if the time complexity of the MP-MIDL and 
Bag-MIDL is (1)Ο  in each iteration, then it is ( )inΟ for 
the Inst-MIDL, where in is the number of instances in 

the selected bag. This is because the Inst-MIDL defines 
the classification loss of a bag as the sum of all the 
classification loss of instances in Eq. (12). We have 
observed the same result from experiments that the 
optimization speed of the Inst-MIDL is slower than the 
other two schemes. The convergence of the algorithm 
can be improved by randomly selecting a set of bags at 
each iteration instead of one bag at a time. 

 

Algorithm 1: MIDL 

Input: Initialize D and w. Training set B, A, Y 
Output: D and w 
Step 1: 
For 1:t T=  
Randomly select one or several bags in the training set. 
Update λDt  and λwt . 

1. Compute α̂  in Eq. (1). 
2. Optimize D and w using gradient descent. 

2.1 Optimize D 
1 ( ( ))t t f ,λ−= − ∇Dt DD D D w                (20) 

2.2 Optimize w  
1 1( ( ) )t t tf ,λ ν− −= − ∇ +wt ww w D w w       (21) 

end 
Step2: 
Output D and w 

 

3.5. Abnormal event detection 

Section 3.4 describes and discusses the three schemes 
for learning multi-instance dictionary and the 
corresponding classification parameters. As stated 
before, the detection of abnormal events in the proposed 
framework is to perform multi-instance classification in 
order to find positive bags corresponding to abnormal 
events. So once the dictionary D and the classification 
parameter w are learned, the classification of an 
unlabeled bag iB (or the detection of an abnormal event) 
follows the following procedure.  

(1) With the learned dictionary D, solve Eq. (1) to 
learn the sparse representations of the instances in iB .  

(2) With the learned sparse codes of instances and 
also the classification parameter: if MP-MIDL is 
adopted, use Eq. (9) to classify bag iB ; if Inst-MIDL or 
Bag-MIDL is adopted, Eq. (15) is used for classification 
of iB . After classification, we obtained the predicted 
label îY  of bag iB . 
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Fig. 3.  Illustration of the differences between three schemes of MIDL. Left figure shows in MP-MIDL, a bag is projected into a new 
bag feature space; the classification function is learned directly for classification of bags. Right figure shows the differences between 
Inst-MIDL and Bag-MIDL, the main one being the training instances selected by the two methods. The classifier is learned in the 
feature space of instances.  

If îY  is equal to -1, bag iB  is negative and 
corresponds to a normal event. While îY  is +1, then 
bag iB  is positive and it relates to an abnormal event. 
When a positive bag is detected, the frames in the 
corresponding video clip of this positive bag are all 
labeled as abnormal. It deals with the frame level 
abnormal event detection problem and is a problem we 
are mostly interested in. 

We now describe how to detect pixel level abnormal 
events using the Inst-MIDL and Bag-MIDL. Eq. (11) 
can be used to predict the label of sub-events. If an 
instance is classified as positive, it corresponds to an 
abnormal sub-event, so the cuboid corresponding to this 
instance contains abnormal sub-event. The region of this 
cuboid in the frame is marked as an abnormal region, as 
shown in Section 4.2. 

3.6. Comparison of the three schemes 

A comparison of the three methods is illustrated in Fig. 
3. The interpretation of the max-pooling based method 
is learning a bag based feature space. Projecting bags 
into the new feature space, a linear classifier is able to 
separate those bags. The dictionary learning procedure 
is to find a best feature space that helps classification. 
While the Inst-MIDL and Bag-MIDL learn to classify 
bags in the instance feature space, the Inst-MIDL uses 
all the instances to learn a classifier. Though the labels 
of instances are unknown in positive bags, we can use a 
heuristic scheme to infer the labels of these instances. 
Contrary to the Inst-MIDL, Bag-MIDL selects one 
instance in every bag for training, the one with the 
maximal classification value. 

The three schemes are suited where multi-instance 
learning can be adopted. For the abnormal event 
detection task, the MP-MIDL mainly deals with frame 
level abnormal event detection. Whilst the Inst-MIDL 
and Bag-MIDL learn a classifier in the instances feature 
space. These two schemes can predict the labels of 
instances (sub-events). Therefore, not only frames of 
abnormal events are detected, but also the cuboids 
containing abnormal sub-event, thus the locations of 
these abnormal sub-events. 

The performances and differences of these three 
methods will be further discussed in Section 4. A 
conclusion is that the MP-MIDL is relatively suited for 
global abnormal event detection, while the Bag-MIDL 
for local abnormal event detection. The Bag-MIDL is 
able to select discriminated normal instances, with such 
discriminative information added into dictionary 
learning, it achieves better performance. 

4. Experiments and Results 

To evaluate and verify the effectiveness of the proposed 
method, two public available datasets: the UMN 
dataset31 and the UCSD dataset32 were used. The UMN 
dataset is commonly used for global abnormal event 
detection, while the UCSD for local abnormal event 
detection. Fig. 4 shows examples of normal and 
abnormal events in the two datasets. 
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Fig. 4  Examples of events in UMN scene 1 (top) and UCSD 
Peds 1 (bottom). Top left image is a frame of normal walking 
events and top right image is a frame of abnormal crowd 
escape event (global abnormal event). Bottom left shows a 
frame of normal pedestrian walking event and bottom right a 
frame of abnormal vehicles on crowded sidewalk event (local 
abnormal event). 

4.1. Detection of global abnormal events 

The UMN dataset consists of three different scenes of 
crowded escape events with people walking as normal 
event and people running to escape as abnormal event. 
And the total number of frames of the video is 7740 
(1450, 4415 and 2145 for scenes 1, 2, and 3, 
respectively). The original resolution of the UMN 
dataset is 320 240× . For the MHOF feature extraction 
procedure, there are two parameters to adjust. One is the 
motion magnitude threshold and the other is the number 
of frames in a clip. The two parameters are set by two-
fold cross validation. The motion magnitude threshold is 
first adjusted by fixing the number of frames in a clip 
and then in turn the number of frames is adjusted by 
fixing the threshold. The MIDL models are trained 
separately on three scenes. The parameters of the MIDL 
models are adjusted using grid search and two-fold 
cross validation. 

4.1.1 Comparison of frame level abnormal event 
detection of the three schemes of MIDL 

We first compare the results of frame level abnormal 
event detection of the three schemes of MIDL. Area 
under the ROC curve (AUC) is calculated as the 
criterion. The results are summarized in Table 1. The 
MP-MIDL performs the best on all three scenes 
compared to other two schemes, though the differences 
are small. The AUC values of the Inst-MIDL and Bag-

MIDL are slightly lower than that of the MP-MIDL on 
Scene 2. On Scene 3, the Bag-MIDL has a marginally 
lower AUC value compared with the MP-MIDL and 
Inst-MIDL. But the differences are very small. This 
shows that the proposed MIDL method is capable for 
the task of frame level abnormal events and all the three 
schemes perform well. From the result, the MP-MIDL 
performs best and this demonstrates the proposed bag 
feature extraction method works well in practice.  

Table 1.  AUC of frame level abnormal event detection of the 
three schemes on three scenes of UMN dataset. 

 Scene 1 Scene 2 Scene 3 
MP-MIDL 0.99 0.98 0.99 
Inst-MIDL 0.99 0.96 0.99 
Bag-MIDL 0.99 0.97 0.98 

4.1.2 Comparison of MIDL with other abnormal 
event detection methods 

Table 2 lists the AUC results of other abnormal event 
detection methods4,20,33 on the UMN dataset. From 
Tables 1 and 2, it can be seen that the proposed method 
outperforms the methods of Social Force20 and Optical 
Flow20 and is comparable with the Chaotic Invariants33 
and SRC4

Table 2.  AUC results of other abnormal event detection 
methods on UMN dataset 

. This demonstrates strength of the proposed 
method for global abnormal event detection. 

Method Area under ROC 
Social Force 0.96 20 
Optical Flow 0.84 20 
Chaotic Invariants 0.99 33 
SRC (Scene 1) 0.99 4 
SRC (Scene 2) 0.97 4 
SRC (Scene 3) 0.96 4 

4.2. Detection of local abnormal events 

The UCSD datasets contains two scenes of pedestrian 
walking on a sidewalk. The UCSD Peds1 contains 34 
clips of videos for training, and 36 clips for testing with 
resolution of 158 238× , and the UCSD Peds2 contains 
16 clips for training and 12 clips for testing with 
resolution of 360 240× . The training clips only contain 
normal events. As this is a scene of sidewalk, normal 
events of this dataset are pedestrian walking. And 
examples of abnormal events include buses, wheelchairs, 
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bicycles, and skaters which seldom appear in the scene. 
These abnormal events only exist in the testing data. 

For both sets, we only used the testing clips. The 
testing clips were partitioned for training and testing 
because the proposed method requires both normal and 
abnormal events in the training stage. The parameters 
were adjusted and two-fold cross validation was used. 

4.2.1 Comparison of MIDL with other abnormal 
event detection methods 

The equal error rates (EER) is computed as the criterion. 
The EER is where the false accept rate equates the false 
reject rate. For a good classification algorithm, the EER 
should be as low as possible. A comparison of EER for 
frame level detection is shown in Table 3. On both 
Peds1 and Peds2, the lowest EER values are highlighted 
in boldface.  

Table 3.  Equal Error Rates (EER) for frame level abnormal 
event detection on UCSD Peds1 and UCSD Peds2 

 Peds1 Peds2 
MP-MIDL 31% 25% 
Inst-MIDL 32 % 24% 
Bag-MIDL 27% 8% 
SF 31% 34 42% 
MPPCA 40% 17 30% 
SF-MPPCA 32% 34 36% 
MDT 25% 34 25% 
Adam 38% 35 42% 
SRC 19% 4 / 
Sparse 33 % 8 9% 
Sparse-CS 31% 8 6% 

 
As can be seen, the Bag-MIDL performs the best 

among the three schemes of the proposed method. On 
Peds1, though SRC4 is better than Bag-MIDL, Bag-
MIDL achieves comparable result compared with 
MDT34 and outperforms the rest of the methods. The 
result of MP-MIDL and Inst-MIDL is also comparable 
with SF34, SF-MPPCA34, Sparse8 and Sparse-CS8 and is 
better than MPPCA17 and Adam35. On Peds2, the EER 
value of Bag-MDIL, Sparse8 and Sparse-CS8 are close. 
In particular, these three methods are significantly 
superior to the rest of the methods. While the results of 
MP-MIDL and Inst-MIDL are close to the results of 
MDT, they are much better than that of SF34, MPPCA17, 
SF-MPPCA34 and Adam35

4.2.2 Results on pixel level abnormal event 
detection 

. This shows that for the 

detection of local abnormal events, the proposed method 
also performs fairly well. The reason for the good result 
is that local abnormal events are modeled as instances 
and thus are not neglected in the framework of multi-
instance learning. 

We now discuss the results of pixel level abnormal 
event detection. One thing needs to be mentioned is that 
only the Bag-MIDL and Inst-MIDL are able to detect 
abnormal events at pixel level. The MP-MIDL is only 
suited for frame level abnormal event detection. The 
pixel level detection has been mentioned in Section 3.5. 
Some pixel level detection results of the Bag-MIDL are 
shown in Fig. 5, in which cells containing sub-events 
that are classified as abnormal are marked. As can be 
seen, though no information about the label of sub-
events was used, the method was able to learn the 
concept of normal and abnormal automatically with the 
help of the labels of training bags. Detection of 
abnormal events at pixel level can give more detailed 
information about abnormal events, i.e. not only in 
which frames but also the locations of the abnormal 
events. The good results achieved at pixel level may 
also illustrate why the proposed method achieves good 
result at the frame level detection. 

 

Fig. 5  Examples of pixel level abnormal event detection on 
UCSD Peds1 using Bag-MIDL. Abnormal events are well 
detected (skater, wheelchair, vehicle and bicycle). The local 
regions are classified using the function defined by Eq. (11). 

4.3. Comparison with other multi-instance 
learning methods 

For a fair comparison, several other multi-instance 
methods have been applied to the same datasets for 
abnormal event detection. They include the mi-SVM,28 
MI-SVM,28 EM-DD,36 and Citation-KNN.37 The 
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methods were tested on the UMN datasets. On all the 
three scenes, 200 bags were used for both training and 
testing after feature extraction. Only a part of the 
datasets was used because methods such as Citation-
KNN are very time consuming when running on the 
entire dataset. For all the methods, we ran ten times and 
the average precision was taken. Each time, two-fold 
cross validation was used. Results are shown in Table 4. 
On Scene 1, MP-MIDL, Inst-MIDL, EM-DD and 
Citation-KNN achieved the best results. On Scene2, the 
best result was achieved by MP-MIDL. On Scene 3, all 
the methods performed fairly well with Inst-MIDL, mi-
SVM and MI-SVM having a slightly lower prediction 
precision. From the table, it is apparent that the 
proposed method is either better or comparable with the 
current state-of-the-art multi-instance learning method 
for this abnormal event detection task. 

Table 4.  Precision of various multi-instance learning methods 
on UMN dataset. 

Method Scene1 Scene2 Scene3 
MP-MIDL 0.99 0.95 0.99 
Inst-MIDL 0.99 0.85 0.95 
Bag-MIDL 0.96 0.87 0.99 
mi-SVM 0.87 28 0.79 0.93 
MI-SVM 0.88 28 0.79 0.94 
EM-DD 0.99 36 0.84 0.99 
Citation-KNN 0.98 37 0.87 0.98 

5. Conclusions 

A method termed Multi-instance Dictionary Learning 
(MIDL) is proposed for automatic detecting abnormal 
events in videos. A dictionary learning procedure is 
carried out together with the learning of a multi-instance 
classifier. By adopting different multi-instance learning 
models, the proposed method yields three schemes. MP-
MIDL is suited for frame level abnormal event detection; 
while Inst-MIDL and Bag-MIDL for both frame level 
and pixel level abnormal event detection. Various 
experiments have been conducted to verify effectiveness 
of the method. The results show that, compared with the 
state-of-the-art abnormal event detection techniques, the 
proposed method demonstrates its strength and 
compared with the current multi-instance learning 
methods, the proposed method is either superior or 
comparable. Specifically, among the three schemes, 
MP-MIDL is the most suited for global abnormal event 

detection and Bag-MIDL performs best for local 
abnormal event detection. 

The future work will include exploring how to 
automatically set the parameters of the MHOF feature 
extraction procedure, so that optimal parameters can be 
learned automatically for different usage scenarios. 
Faster optimization methods will also be explored such 
as the Alternative Least Squares for the multi-instance 
dictionary learning task and further parameter selection 
tests to verify the robustness of the method. We also 
plan to apply the method to other multi-instance 
learning tasks, such as image classification and to 
abnormal event detection scenarios other than 
surveillance videos. 
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