7 research outputs found

    Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks

    Get PDF
    This paper proposes two new algorithms for inference in credal networks. These algorithms enable probability intervals to be obtained for the states of a given query variable. The first algorithm is approximate and uses the hill-climbing technique in the Shenoy–Shafer architecture to propagate in join trees; the second is exact and is a modification of Rocha and Cozman’s branch-and-bound algorithm, but applied to general directed acyclic graphs.TIN2004-06204-C03-0

    Comparing Binary and Standard Probability Trees in Credal Networks Inference

    Get PDF
    Abstract This paper proposes the use of Binary Probability Trees in the propagation of credal networks. Standard and binary probability trees are suitable data structures for representing potentials because they allow to control the accuracy of inference algorithms by means of a threshold parameter. The choice of this threshold is a trade-off between accuracy and computing time. Binary trees enable the representation of finer-grained independences than probability trees. This leads to more efficient algorithms for credal networks with variables with more than two states. The paper shows experiments comparing binary and standard probability trees in order to demonstrate their performance

    Generalized belief change with imprecise probabilities and graphical models

    Get PDF
    We provide a theoretical investigation of probabilistic belief revision in complex frameworks, under extended conditions of uncertainty, inconsistency and imprecision. We motivate our kinematical approach by specializing our discussion to probabilistic reasoning with graphical models, whose modular representation allows for efficient inference. Most results in this direction are derived from the relevant work of Chan and Darwiche (2005), that first proved the inter-reducibility of virtual and probabilistic evidence. Such forms of information, deeply distinct in their meaning, are extended to the conditional and imprecise frameworks, allowing further generalizations, e.g. to experts' qualitative assessments. Belief aggregation and iterated revision of a rational agent's belief are also explored

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Learning Bayesian networks based on optimization approaches

    Get PDF
    Learning accurate classifiers from preclassified data is a very active research topic in machine learning and artifcial intelligence. There are numerous classifier paradigms, among which Bayesian Networks are very effective and well known in domains with uncertainty. Bayesian Networks are widely used representation frameworks for reasoning with probabilistic information. These models use graphs to capture dependence and independence relationships between feature variables, allowing a concise representation of the knowledge as well as efficient graph based query processing algorithms. This representation is defined by two components: structure learning and parameter learning. The structure of this model represents a directed acyclic graph. The nodes in the graph correspond to the feature variables in the domain, and the arcs (edges) show the causal relationships between feature variables. A directed edge relates the variables so that the variable corresponding to the terminal node (child) will be conditioned on the variable corresponding to the initial node (parent). The parameter learning represents probabilities and conditional probabilities based on prior information or past experience. The set of probabilities are represented in the conditional probability table. Once the network structure is constructed, the probabilistic inferences are readily calculated, and can be performed to predict the outcome of some variables based on the observations of others. However, the problem of structure learning is a complex problem since the number of candidate structures grows exponentially when the number of feature variables increases. This thesis is devoted to the development of learning structures and parameters in Bayesian Networks. Different models based on optimization techniques are introduced to construct an optimal structure of a Bayesian Network. These models also consider the improvement of the Naive Bayes' structure by developing new algorithms to alleviate the independence assumptions. We present various models to learn parameters of Bayesian Networks; in particular we propose optimization models for the Naive Bayes and the Tree Augmented Naive Bayes by considering different objective functions. To solve corresponding optimization problems in Bayesian Networks, we develop new optimization algorithms. Local optimization methods are introduced based on the combination of the gradient and Newton methods. It is proved that the proposed methods are globally convergent and have superlinear convergence rates. As a global search we use the global optimization method, AGOP, implemented in the open software library GANSO. We apply the proposed local methods in the combination with AGOP. Therefore, the main contributions of this thesis include (a) new algorithms for learning an optimal structure of a Bayesian Network; (b) new models for learning the parameters of Bayesian Networks with the given structures; and finally (c) new optimization algorithms for optimizing the proposed models in (a) and (b). To validate the proposed methods, we conduct experiments across a number of real world problems. Print version is available at: http://library.federation.edu.au/record=b1804607~S4Doctor of Philosoph
    corecore