Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks

Abstract

This paper proposes two new algorithms for inference in credal networks. These algorithms enable probability intervals to be obtained for the states of a given query variable. The first algorithm is approximate and uses the hill-climbing technique in the Shenoy–Shafer architecture to propagate in join trees; the second is exact and is a modification of Rocha and Cozman’s branch-and-bound algorithm, but applied to general directed acyclic graphs.TIN2004-06204-C03-0

    Similar works