7 research outputs found

    Sistema adaptativo para pré-distorção de amplificadores

    Get PDF
    In today’s world, with the demands needed to fulfil the challenges on 5G, it is important that Radio Frequency (RF) amplifiers work in a more efficient way. To meet this objective, one of the existing options focuses on the usage of linearization techniques to improve amplifier performance on its saturation zone. One relevant technique, which has great efficiency and linearization potential is the application of predistorters. They can be used with a pre-programed configuration or they may adapt their response in real-time, with the help of signal readings at the power amplifier’s (PA) output. This work focuses on the design and implementation of an amplifier predistortion real-time adaption system. This system measures the spectral power of an RF signal with the purpose of, in the future, incorporating a predistorter automatic adaption system. Having the Multiple-Input and Multiple-Output (MIMO) transmitter scenario as background, where a single transmitter is built from several low-power and wideband amplifiers (each of which require linearization actions), the developed spectrum measurement system assumed, from the start, the requirements of achieving a very low cost and reduced space confinement.No mundo de hoje, com as exigências necessárias para cumprir os requisitos para o 5G, é fundamental que os amplificadores de Rádio Frequência (RF) funcionem de uma forma cada vez mais eficiente. Para cumprir esse objetivo, uma das opções existentes foca-se no uso de técnicas de linearização para melhorar o seu desempenho na sua zona de saturação. Uma das técnicas que mais se destaca, quer seja pela sua eficiência ou pelo nível de linearização que proporciona, é aquela que consiste na aplicação de pré-distorsores. Estes podem ser utilizados com uma configuração pré-programada ou podem adaptar a sua resposta em tempo real, recorrendo à leitura do sinal existente na saída do amplificador de potência. Este trabalho foca-se na construção de um sistema adaptativo para pré-distorção de amplificadores em tempo real. Este sistema realiza a medição espetral de um sinal de RF com o objetivo de no futuro ser usado para controlar um pré-distorsor. Tendo em consideração um cenário de Multiple-Input and Multiple-Output (MIMO), onde um transmissor é construído através de vários amplificadores de baixa potência e com banda larga (em que cada um requer algum tipo de linearização), o sistema de medida espectral assume, desde o início, os requisitos de obter um produto de baixo custo e que exija o mínimo espaço possível.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Modeling Approaches for Active Antenna Transmitters

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interest to Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies. MIMO systems exploit active antenna arrays transmitter configurations to obtain higher energy efficiency and beamforming flexibility. The analysis of transmitters in MIMO systems becomes complex due to the close integration of several antennas and power amplifiers (PAs) and the problems associated with heat dissipation. Therefore, the transmitter analysis requires efficient joint EM, circuit, and thermal simulations of its building blocks, i.e., the antenna array and PAs. Due to small physical spacing at mmWave, bulky isolators cannot be used to eliminate unwanted interactions between PA and antenna array. Therefore, the mismatch and mutual coupling in the antenna array directly affect PA output load and PA and transmitter performance. On the other hand, PAs are the primary source of nonlinearity, power consumption, and heat dissipation in transmitters. Therefore, it is crucial to include joint thermal and electrical behavior of PAs in analyzing active antenna transmitters. In this thesis, efficient techniques for modeling active antenna transmitters are presented. First, we propose a hardware-oriented transmitter model that considers PA load-dependent nonlinearity and the coupling, mismatch, and radiated field of the antenna array. The proposed model is equally accurate for any mismatch level that can happen at the PA output. This model can predict the transmitter radiation pattern and nonlinear signal distortions in the far-field. The model\u27s functionality is verified using a mmWave active subarray antenna module for a beam steering scenario and by performing the over-the-air measurements. The load-pull modeling idea was also applied to investigate the performance of a mmWave spatial power combiner module in the presence of critical coupling effects on combining performance. The second part of the thesis deals with thermal challenges in active antenna transmitters and PAs as the main source of heat dissipation. An efficient electrothermal modeling approach that considers the thermal behavior of PAs, including self-heating and thermal coupling between the IC hot spots, coupled with the electrical behavior of PA, is proposed. The thermal model has been employed to evaluate a PA DUT\u27s static and dynamic temperature-dependent performance in terms of linearity, gain, and efficiency. In summary, the proposed modeling approaches presented in this thesis provide efficient yet powerful tools for joint analysis of complex active antenna transmitters in MIMO systems, including sub-systems\u27 behavior and their interactions

    Baseband linearization schemes for high efficiency power amplifiers

    Get PDF
    High efficiency and high linearity microwave power amplifiers (PAs) are a critical element in modern wireless applications. Over recent years, modern communica-tions systems and the complex modulated signals they use have presented signif-icant challenges in terms of maintaining acceptable efficiency and achieving the high degrees of linearity required in microwave radio frequency power amplifier (RFPA) designs. The next ‘big’ challenge is the deployment of the fifth-generation (5G) mobile network, which is scheduled for commercial launch in 2020. Although the specification for 5G is not completely known at this point, the expectations in terms of what 5G will bring most certainly are; including 1000x more capacity, less than 1ms latency and 100x network energy efficiency. New 5G systems will need to provide higher spectral efficiency, wide and fragmented signal spectra and dy-namic spectrum access (DSA). As a result, the waveforms used in 5G systems will be characterised by high peak to average power ratio (PAPR) and high bandwidth, especially for high data rate applications, which brings additional challenges in terms of achieving system efficiency and linearity. Digital Predistortion (DPD) has been widely and very successfully applied in modern communication systems to linearize PAs and meet system require-ments. However, as the signal bandwidth widens and carrier aggregation be-comes commonplace in 5G system, higher complexity DPD algorithms and an Abstract II increased number of associated parameters will be required. This will inevitably result in a more complex DPD systems with higher power consumption and overall, lower system efficiency. This is especially problematic when systems advance into massive multiple-input, multiple-output (MIMO) scenarios, where the distrib-uted systems are smaller in size and massive in number. The research work in this thesis starts by analysing the different nonlinear distortion mechanisms present in the typical microwave power transistor devices that would be deployed in an RFPA within a 5G system. A tunable analytical device model is established to investigate the individual contributions of key nonlinear el-ements in the device. A number of important observations, such as “sweet-spots”, sideband asymmetry and drive dependent optimum baseband termination have been discovered and analysed in detail. Using the developed analytical model, a linearity optimization strategy in circuit design has been discussed and applied to a commercially available and widely used nonlinear device model CGH60015D from Cree (now Wolfspeed). For the first time, a systematic study of all main non-linear components has been done and the interaction between these components has been discussed. In the second part of the thesis, a pair of novel system-level envelope do-main linearization techniques are presented and analysed. They are applied at the input node and output node of the power amplifier, respectively. The envelop line-arization techniques have been demonstrated with both the analytical model, de-veloped in this thesis, and the nonlinear device model CGH60015D. The Abstract III advantages of envelope linearization has been discussed as well as the challenges such an approach presents. The Linearizability of a system, both in terms of circuit design and lineariza-tion techniques are discussed. In fact, linearity and linearizability of power amplifi-ers forms the central thread that runs through this thesis together with linearity, which provides guidance for a top-to-bottom level PA linearization strategy

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202
    corecore