5,319 research outputs found

    Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    Get PDF
    The development of scalable sources of non-classical light is fundamental to unlocking thetechnological potential of quantum photonics. Semiconductor quantum dots are emerging asnear-optimal sources of indistinguishable single photons. However, their performance assources of entangled-photon pairs are still modest compared to parametric down converters.Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shownnon-optimal levels of entanglement and indistinguishability. For quantum networks, bothcriteria must be met simultaneously. Here, we show that this is possible with a system thathas received limited attention so far: GaAs quantum dots. They can emit triggered polar-ization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguish-ability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity(0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dotentanglement sources in future quantum technologie

    Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices

    Full text link
    Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but QD structural asymmetries lower dramatically the degree of entanglement of the sources and hamper severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of highly polarization-entangled photons. The electrically-controlled sources violate Bell inequalities without the need of spectral or temporal filtering and they feature the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75(2). These quantum-devices are at present the most promising candidates for the direct implementation of QD-based entanglement-resources in quantum information science and technology

    Voltage-Controlled Optics of a Quantum Dot

    Full text link
    We show how the optical properties of a single semiconductor quantum dot can be controlled with a small dc voltage applied to a gate electrode. We find that the transmission spectrum of the neutral exciton exhibits two narrow lines with 2\sim 2 μ\mueV linewidth. The splitting into two linearly polarized components arises through an exchange interaction within the exciton. The exchange interaction can be turned off by choosing a gate voltage where the dot is occupied with an additional electron. Saturation spectroscopy demonstrates that the neutral exciton behaves as a two-level system. Our experiments show that the remaining problem for manipulating excitonic quantum states in this system is spectral fluctuation on a μ\mueV energy scale.Comment: 4 pages, 4 figures; content as publishe

    Nuclear spin physics in quantum dots: an optical investigation

    Get PDF
    The mesoscopic spin system formed by the 10E4-10E6 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counter-part as well as that of atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum dot nuclear spin systems and their coupling to confined electron spins has been fueled by its direct implication for possible applications of such systems in quantum information processing as well as by the fascinating nonlinear (quantum-)dynamics of the coupled electron-nuclear spin system. In this article, we review experimental work performed over the last decades in studying this mesoscopic,coupled electron-nuclear spin system and discuss how optical addressing of electron spins can be exploited to manipulate and read-out quantum dot nuclei. We discuss how such techniques have been applied in quantum dots to efficiently establish a non-zero mean nuclear spin polarization and, most recently, were used to reduce fluctuations of the average quantum dot nuclear spin orientation. Both results in turn have important implications for the preservation of electron spin coherence in quantum dots, which we discuss. We conclude by speculating how this recently gained understanding of the quantum dot nuclear spin system could in the future enable experimental observation of quantum-mechanical signatures or possible collective behavior of mesoscopic nuclear spin ensembles.Comment: 61 pages, 45 figures, updated reference list, corrected typographical error

    Resonant photoluminescence and dynamics of a hybrid Mn-hole spin in a positively charged magnetic quantum dot

    Full text link
    We analyze, through resonant photoluminescence, the spin dynamics of an individual magnetic atom (Mn) coupled to a hole in a semiconductor quantum dot. The hybrid Mn-hole spin and the positively charged exciton in a CdTe/ZnTe quantum dot forms an ensemble of Λ\Lambda systems which can be addressed optically. Auto-correlation of the resonant photoluminescence and resonant optical pumping experiments are used to study the spin relaxation channels in this multilevel spin system. We identified for the hybrid Mn-hole spin an efficient relaxation channel driven by the interplay of the Mn-hole exchange interaction and the coupling to acoustic phonons. We also show that the optical Λ\Lambda systems are connected through inefficient spin-flips than can be enhanced under weak transverse magnetic field. The dynamics of the resonant photoluminescence in a p-doped magnetic quantum dot is well described by a complete rate equation model. Our results suggest that long lived hybrid Mn-hole spin could be obtained in quantum dot systems with large heavy-hole/light-hole splitting

    Bright single photon emission from a quantum dot in a circular Bragg grating microcavity

    Full text link
    Bright single photon emission from single quantum dots in suspended circular Bragg grating microcavities is demonstrated. This geometry has been designed to achieve efficient (> 50 %) single photon extraction into a near-Gaussian shaped far-field pattern, modest (~10x) Purcell enhancement of the radiative rate, and a spectral bandwidth of a few nanometers. Measurements of fabricated devices show progress towards these goals, with collection efficiencies as high as ~10% demonstrated with moderate spectral bandwidth and rate enhancement. Photon correlation measurements are performed under above-bandgap excitation (pump wavelength = 780 nm to 820 nm) and confirm the single photon character of the collected emission. While the measured sources are all antibunched and dominantly composed of single photons, the multi-photon probability varies significantly. Devices exhibiting tradeoffs between collection efficiency, Purcell enhancement, and multi-photon probability are explored and the results are interpreted with the help of finite-difference time-domain simulations. Below-bandgap excitation resonant with higher states of the quantum dot and/or cavity (pump wavelength = 860 nm to 900 nm) shows a near-complete suppression of multi-photon events and may circumvent some of the aforementioned tradeoffs.Comment: 11 pages, 12 figure

    Fast spin rotations by optically controlled geometric phases in a quantum dot

    Full text link
    We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-plane magnetic field, these optically induced geometric phases result in the effective rotation of the spin about the magnetic field axis and manifest as phase shifts in the spin quantum beat signal generated by two time-delayed circularly polarized optical pulses. The geometric phases generated in this manner more generally perform the role of a spin phase gate, proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter
    corecore