2,126 research outputs found

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Highly Undecidable Problems about Recognizability by Tiling Systems

    Get PDF
    to appear in a Special Issue of the journal Fundamenta Informaticae on Machines, Computations and Universality.International audienceAltenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with usual acceptance conditions, such as the Büchi and Muller ones [1]. It was proved in [9] that it is undecidable whether a Büchi-recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We show here that these two decision problems are actually Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and ``highly undecidable". We give the exact degree of numerous other undecidable problems for Büchi-recognizable languages of infinite pictures. In particular, the non-emptiness and the infiniteness problems are Σ11\Sigma^1_1-complete, and the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, are all Π21\Pi^1_2-complete. It is also Π21\Pi^1_2-complete to determine whether a given Büchi recognizable language of infinite pictures can be accepted row by row using an automaton model over ordinal words of length ω2\omega^2

    The decision problem of modal product logics with a diagonal, and faulty counter machines

    Get PDF
    In the propositional modal (and algebraic) treatment of two-variable first-order logic equality is modelled by a `diagonal' constant, interpreted in square products of universal frames as the identity (also known as the `diagonal') relation. Here we study the decision problem of products of two arbitrary modal logics equipped with such a diagonal. As the presence or absence of equality in two-variable first-order logic does not influence the complexity of its satisfiability problem, one might expect that adding a diagonal to product logics in general is similarly harmless. We show that this is far from being the case, and there can be quite a big jump in complexity, even from decidable to the highly undecidable. Our undecidable logics can also be viewed as new fragments of first- order logic where adding equality changes a decidable fragment to undecidable. We prove our results by a novel application of counter machine problems. While our formalism apparently cannot force reliable counter machine computations directly, the presence of a unique diagonal in the models makes it possible to encode both lossy and insertion-error computations, for the same sequence of instructions. We show that, given such a pair of faulty computations, it is then possible to reconstruct a reliable run from them

    Synchronous Subsequentiality and Approximations to Undecidable Problems

    Full text link
    We introduce the class of synchronous subsequential relations, a subclass of the synchronous relations which embodies some properties of subsequential relations. If we take relations of this class as forming the possible transitions of an infinite automaton, then most decision problems (apart from membership) still remain undecidable (as they are for synchronous and subsequential rational relations), but on the positive side, they can be approximated in a meaningful way we make precise in this paper. This might make the class useful for some applications, and might serve to establish an intermediate position in the trade-off between issues of expressivity and (un)decidability.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    The Complexity of Infinite Computations In Models of Set Theory

    Get PDF
    We prove the following surprising result: there exist a 1-counter B\"uchi automaton and a 2-tape B\"uchi automaton such that the \omega-language of the first and the infinitary rational relation of the second in one model of ZFC are \pi_2^0-sets, while in a different model of ZFC both are analytic but non Borel sets. This shows that the topological complexity of an \omega-language accepted by a 1-counter B\"uchi automaton or of an infinitary rational relation accepted by a 2-tape B\"uchi automaton is not determined by the axiomatic system ZFC. We show that a similar result holds for the class of languages of infinite pictures which are recognized by B\"uchi tiling systems. We infer from the proof of the above results an improvement of the lower bound of some decision problems recently studied by the author

    Well structured program equivalence is highly undecidable

    Full text link
    We show that strict deterministic propositional dynamic logic with intersection is highly undecidable, solving a problem in the Stanford Encyclopedia of Philosophy. In fact we show something quite a bit stronger. We introduce the construction of program equivalence, which returns the value T\mathsf{T} precisely when two given programs are equivalent on halting computations. We show that virtually any variant of propositional dynamic logic has Π11\Pi_1^1-hard validity problem if it can express even just the equivalence of well-structured programs with the empty program \texttt{skip}. We also show, in these cases, that the set of propositional statements valid over finite models is not recursively enumerable, so there is not even an axiomatisation for finitely valid propositions.Comment: 8 page

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    Are there new models of computation? Reply to Wegner and Eberbach

    Get PDF
    Wegner and Eberbach[Weg04b] have argued that there are fundamental limitations to Turing Machines as a foundation of computability and that these can be overcome by so-called superTuring models such as interaction machines, the [pi]calculus and the $-calculus. In this paper we contest Weger and Eberbach claims
    corecore