34 research outputs found

    Distributed Data Aggregation for Sparse Recovery in Wireless Sensor Networks

    Get PDF
    We consider the approximate sparse recovery problem in Wireless Sensor Networks (WSNs) using Compressed Sensing/Compressive Sampling (CS). The goal is to recover the n \mbox{-}dimensional data values by querying only mnm \ll n sensors based on some linear projection of sensor readings. To solve this problem, a two-tiered sampling model is considered and a novel distributed compressive sparse sampling (DCSS) algorithm is proposed based on sparse binary CS measurement matrix. In the two-tiered sampling model, each sensor first samples the environment independently. Then the fusion center (FC), acting as a pseudo-sensor, samples the sensor network to select a subset of sensors (mm out of nn) that directly respond to the FC for data recovery purpose. The sparse binary matrix is designed using unbalanced expander graph which achieves the state-of-the-art performance for CS schemes. This binary matrix can be interpreted as a sensor selection matrix-whose fairness is analyzed. Extensive experiments on both synthetic and real data set show that by querying only the minimum amount of mm sensors using the DCSS algorithm, the CS recovery accuracy can be as good as dense measurement matrices (e.g., Gaussian, Fourier Scrambles). We also show that the sparse binary measurement matrix works well on compressible data which has the closest recovery result to the known best k\mbox{-}term approximation. The recovery is robust against noisy measurements. The sparsity and binary properties of the measurement matrix contribute, to a great extent, the reduction of the in-network communication cost as well as the computational burden

    Activity Report: Automatic Control 2001

    Get PDF

    Statistical Models and Optimization Algorithms for High-Dimensional Computer Vision Problems

    Get PDF
    Data-driven and computational approaches are showing significant promise in solving several challenging problems in various fields such as bioinformatics, finance and many branches of engineering. In this dissertation, we explore the potential of these approaches, specifically statistical data models and optimization algorithms, for solving several challenging problems in computer vision. In doing so, we contribute to the literatures of both statistical data models and computer vision. In the context of statistical data models, we propose principled approaches for solving robust regression problems, both linear and kernel, and missing data matrix factorization problem. In computer vision, we propose statistically optimal and efficient algorithms for solving the remote face recognition and structure from motion (SfM) problems. The goal of robust regression is to estimate the functional relation between two variables from a given data set which might be contaminated with outliers. Under the reasonable assumption that there are fewer outliers than inliers in a data set, we formulate the robust linear regression problem as a sparse learning problem, which can be solved using efficient polynomial-time algorithms. We also provide sufficient conditions under which the proposed algorithms correctly solve the robust regression problem. We then extend our robust formulation to the case of kernel regression, specifically to propose a robust version for relevance vector machine (RVM) regression. Matrix factorization is used for finding a low-dimensional representation for data embedded in a high-dimensional space. Singular value decomposition is the standard algorithm for solving this problem. However, when the matrix has many missing elements this is a hard problem to solve. We formulate the missing data matrix factorization problem as a low-rank semidefinite programming problem (essentially a rank constrained SDP), which allows us to find accurate and efficient solutions for large-scale factorization problems. Face recognition from remotely acquired images is a challenging problem because of variations due to blur and illumination. Using the convolution model for blur, we show that the set of all images obtained by blurring a given image forms a convex set. We then use convex optimization techniques to find the distances between a given blurred (probe) image and the gallery images to find the best match. Further, using a low-dimensional linear subspace model for illumination variations, we extend our theory in a similar fashion to recognize blurred and poorly illuminated faces. Bundle adjustment is the final optimization step of the SfM problem where the goal is to obtain the 3-D structure of the observed scene and the camera parameters from multiple images of the scene. The traditional bundle adjustment algorithm, based on minimizing the l_2 norm of the image re-projection error, has cubic complexity in the number of unknowns. We propose an algorithm, based on minimizing the l_infinity norm of the re-projection error, that has quadratic complexity in the number of unknowns. This is achieved by reducing the large-scale optimization problem into many small scale sub-problems each of which can be solved using second-order cone programming

    BRDF representation and acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    BRDF Representation and Acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    Structural Analysis Algorithms for Nanomaterials

    Get PDF
    corecore