6,061 research outputs found

    Gauge-invariant implementation of the Abelian Higgs model on optical lattices

    Full text link
    We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics) with a chemical potential μ\mu on a 1+1 dimensional lattice. This formulation provides an expansion in the hopping parameter κ\kappa which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling βpl\beta_{pl} and small values of the scalar self-coupling λ\lambda. In the opposite limit of infinitely large λ\lambda, the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Their numerical implementation requires truncations but there is no sign problem for arbitrary values of μ\mu. We show that the time continuum limit of the blocked transfer matrix can be obtained numerically and, in the limit of infinite βpl\beta_{pl} and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this procedure for finite βpl\beta_{pl} and derive a spin-1 approximation of the Hamiltonian. It involves new terms corresponding to transitions among the two species in the Bose-Hubbard model. We propose an optical lattice implementation involving a ladder structure.Comment: 10 pages, 9 figure

    Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories

    Full text link
    Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.Comment: 27 pages, 6 figures, invited contribution to the "Annalen der Physik" topical issue "Quantum Simulation", guest editors: R. Blatt, I. Bloch, J. I. Cirac, and P. Zolle

    Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    Full text link
    Can high energy physics be simulated by low-energy, non-relativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the confinement of dynamical quarks, phase transitions, and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing quantum simulation of Abelian and non-Abelian lattice gauge theories in 1+1 and 2+1 dimensions using ultracold atoms in optical lattices.Comment: A review; 55 pages, 14 figure

    Ordering in a frustrated pyrochlore antiferromagnet proximate to a spin liquid

    Full text link
    We perform a general study of spin ordering on the pyrochlore lattice with a 3:1 proportionality of two spin polarizations. Equivalently, this describes valence bond solid conformations of a quantum dimer model on the diamond lattice. We determine the set of likely low temperature ordered phases, on the assumption that the ordering is weak, i.e the system is close to a ``U(1)'' quantum spin liquid in which the 3:1 proportionality is maintained but the spins are strongly fluctuating. The nature of the 9 ordered states we find is determined by a ``projective symmetry'' analysis. All the phases exhibit translational and rotational symmetry breaking, with an enlarged unit cell containing 4 to 64 primitive cells of the underlying pyrochlore. The simplest of the 9 phases is the same ``R'' state found earlier in a theoretical study of the ordering on the magnetization plateau in the S=3/2S=3/2 materials \cdaf and \hgaf. We suggest that the spin/dimer model proposed therein undergoes a direct transition from the spin liquid to the R state, and describe a field theory for the universal properties of this critical point, at zero and non-zero temperatures

    Solvable Hydrodynamics of Quantum Integrable Systems

    Get PDF
    The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudo-momenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudo-momentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.Comment: 6+5 pages, published versio
    corecore