72 research outputs found

    MIMO linear equalization with an H∞ criterion

    Get PDF
    In this paper, we study the problem of linearly equalizing the multiple-input multiple-output (MIMO) communications channels from an H∞ point of view. H∞ estimation theory has been recently introduced as a method for designing filters that have acceptable performance in the face of model uncertainty and lack of statistical information on the exogenous signals. In this paper, we obtain a closed-form solution to the square MIMO linear H∞ equalization problem and parameterize all possible H∞-optimal equalizers. In particular, we show that, for minimum phase channels, a scaled version of the zero-forcing equalizer is H∞-optimal. The results also indicate an interesting dichotomy between minimum phase and nonminimum phase channels: for minimum phase channels the best causal equalizer performs as well as the best noncausal equalizer, whereas for nonminimum phase channels, causal equalizers cannot reduce the estimation error bounds from their a priori values. Our analysis also suggests certain remedies in the nonminimum phase case, namely, allowing for finite delay, oversampling, or using multiple sensors. For example, we show that H∞ equalization of nonminimum phase channels requires a time delay of at least l units, where l is the number of nonminimum phase zeros of the channel

    Blind deconvolution techniques and applications

    Get PDF

    Resource-aware motion control:feedforward, learning, and feedback

    Get PDF
    Controllers with new sampling schemes improve motion systems’ performanc

    Detection of Nonlinear Behavior in Voltage Source Converter Control in Wind Farms Based on Higher-Order Spectral Analysis

    Full text link
    In recent years, the sub-synchronous oscillation (SSO) accidents caused by wind power have received extensive attention. A method is needed to distinguish if nonlinear behavior exists in the recorded equal-amplitude accident waveforms, so that different methods can be adopted to analyze the mechanism of the oscillation. The theory of higher-order statistics (HOS) has become a powerful tool for detection of nonlinear behavior (DNB) in production quality control since 1960s. However, HOS analysis has been applied in mechanical condition monitoring and fault diagnosis, even after being introduced into the power system and wind farms. This paper focuses on the voltage source converter (VSC) control systems in wind farms and tries to detect the nonlinear behavior caused by the bilateral or unilateral saturation hard limits based on HOS analysis. First, the traditional describing function is extended to obtain more frequency domain information, and hereby the harmonic characteristics of bilateral and the unilateral saturation hard limit are studied. Then the bispectrum and trispectrum are introduced as HOS, which are extended into bicoherence and tricoherence spectrums to eliminate the effects from linear parts in the VSC control system. The effectiveness of DNB and classification based on HOS is strictly proved and its detailed calculation and estimation process is illustrated. Finally, the proposed method is demonstrated and further discussed through simulation results

    Repetitive Control Systems: Stability and Periodic Tracking beyond the Linear Case

    Get PDF
    Periodic output regulation studies the problem of steering the output of a dynamical system along a periodic reference. This is a fundamental control problem which has a great interest from a practical point of view, since most industrial activities oriented to production are based on tasks with a cyclic nature. Nevertheless this interest extends rapidly to a theoretical framework once the problem is formalized. Mathematical tools coming from different fields can be used to provide an insight to the output regulation problem in different ways. An important control technique that is classically used to achieve periodic out- put regulation si called Repetitive Control (RC) and this thesis focuses on (but is not limited to) the development and the analysis with novel tools of RC schemes. Periodic output regulation for nonlinear dynamical systems is a challenging topic. This thesis, besides of providing consistent and practically useful results in the linear case, introduces promising tools dealing with the nonlinear periodic output regulation problem, whose solution is presented for particular classes of systems. The contribution of this research is mainly theoretical and relies on the use of mathematical tools like infinite-dimensional port-Hamiltonian systems and autonomous discrete-time systems to study stability and tracking properties in RC schemes and periodic regulation in general. Differently from the classical continuous-time formulation of RC, internal model arguments are not directly used is this work to study asymptotic tracking. In this way the linear case can be reinterpreted under a new light and novel strategies to consistently attack the nonlinear case are presented. Furthermore an application-oriented chapter with experimental results is present which describes the possibility of implementing a discrete-time RC scheme involving trajectory generation and non-minimum phase systems

    Active Control of Sound Transmission Into Three-Dimensional Enclosures

    Get PDF
    The aim of this dissertation work is to understand active control of sound fields inside a three-dimensional rectangular enclosure into which noise is transmitted through a flexible boundary. To this end, analytical and numerical studies have been conducted. In the modeling efforts, a spherical wave excitation, which is generated by a noise source located in the near field of the flexible panel, is considered. Piezoelectric patches, which are bonded symmetrically to the top and bottom surfaces of the panel, are used as actuators. Microphones located inside and outside the enclosure serve as pressure sensors. The efforts account for panel interactions with both the external sound field and the enclosed sound field, and this feature makes it appealing for model-based active control schemes. The feasibility of implementing two zero spillover schemes for active structural-acoustic control systems has been studied through analysis and experiments. These schemes have been developed to ensure that spillover does not occur outside the control bandwidth. The numerical results are found to be in good agreement with the corresponding experimental observations; attenuations ranging up to 18.1 dB are experimentally obtained for narrowband disturbances and an attenuation of 8.3 dB is obtained for broadband excitation in the frequency range of 40 Hz £ f £ 230 Hz. The following contributions have resulted from this work: i) an analytical model capable of predicting the external pressure fields due to both the noise source and structural?acoustic interactions and that accounts for the general case of spherical wave propagation, ii) development of zero spillover, active structural-acoustic control schemes for controlling three?dimensional sound fields, and iii) a new relaxed zero spillover control scheme to ensure that the controlled response is bounded over the entire frequency range

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique
    • …
    corecore