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Repetitive Control Systems: Stability and Periodic Tracking beyond the Linear
Case

by Federico Califano

Periodic output regulation studies the problem of steering the output of a dynamical
system along a periodic reference. This is a fundamental control problem which has
a great interest from a practical point of view, since most industrial activities oriented
to production are based on tasks with a cyclic nature.

Nevertheless this interest extends rapidly to a theoretical framework once the
problem is formalized. Mathematical tools coming from different fields can be used
to provide an insight to the output regulation problem in different ways.

An important control technique that is classically used to achieve periodic out-
put regulation si called Repetitive Control (RC) and this thesis focuses on (but is not
limited to) the development and the analysis with novel tools of RC schemes.

Periodic output regulation for nonlinear dynamical systems is a challenging topic.
This thesis, besides of providing consistent and practically useful results in the linear
case, introduces promising tools dealing with the nonlinear periodic output regula-
tion problem, whose solution is presented for particular classes of systems.

The contribution of this research is mainly theoretical and relies on the use of
mathematical tools like infinite-dimensional port-Hamiltonian systems and autonomous
discrete-time systems to study stability and tracking properties in RC schemes and pe-
riodic regulation in general. Differently from the classical continuous-time formu-
lation of RC, internal model arguments are not directly used is this work to study
asymptotic tracking. In this way the linear case can be reinterpreted under a new
light and novel strategies to consistently attack the nonlinear case are presented.

Furthermore an application-oriented chapter with experimental results is present
which describes the possibility of implementing a discrete-time RC scheme involv-
ing trajectory generation and non-minimum phase systems.
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ix

Summary

This thesis is divided in 5 Chapters.
Chapter 1 introduces the reader to the Repetitive Control (RC) framework and

gives an insight of applications that use this technique as well as the state of the art.
Besides of the classical representation of RC, some key observations for the develop-
ment of the topics in the following chapters are discussed within this introduction.
References to the main related works are present as well as the detailed contribution
of the thesis.

The main contribution of this research is present in Chapters 2, 3 and 4, that rep-
resent three different approaches to periodic output regulation. These three chapters
can be read independently since they use different tools to treat the problem in dif-
ferent ways but are deeply related since they treat the same topic (especially chapter
2 and 3).

Chapter 2 introduces a novel way to tackle the main problems connected to
continuous-time implementation of RC schemes. In particular infinite-dimensional
port-Hamiltonian systems are introduced to study well-posedness and stability in the
framework of dissipative systems. This approach leads to an original way to attack
the nonlinear case.

Chapter 3 studies the periodic output regulation problem in a more abstract way
in which RC will turn out to be a particular case. Here the analysis is based on system
theory and in particular on invariance analysis of autonomous discrete-time systems.

Chapter 4 deals with a different way to apply RC. In fact it is about a discrete-
time implementation of RC in connection to B-spline trajectory generation by means of
dynamic filters. It is an application-oriented topic that aims at successfully achieving
periodic tracking for linear non-minimum phase systems. Experimental results are
presented to validate the proposed method.

Chapter 5 contains the conclusions and the future perspectives connected to this
research.
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1

Chapter 1

Repetitive Control: an Overview

1.1 History and Motivation

Repetitive Control (RC) is a control technique used to achieve periodic output regulation.
The latter is the branch of control theory that studies the problem of steering an
output of a dynamical system along a periodic reference with known and fixed time
period.

More precisely RC is applied to dynamical systems in order to track arbitrary
periodic signals of a fixed period (or equivalently reject unknown periodic distur-
bance signals of the same period). Thus RC systems can be seen as servosystems
with a periodic exogenous signal. However there are two main reasons, described
in the next two subsections, why this particular technique has been deserving since
the early 80’s a great amount of attention.

1.1.1 A simple controller for high precision tasks

The first one is related to the variety and large range of applications that has been
successfully implemented with RC. Indeed it is not difficult to understand that a
deep interest from an industrial point of view is present for RC systems. In in-
dustrial and production-oriented applications, control tasks are often of repetitive
nature, and the increasingly high demand of quality and productivity has become a
challenging practical problem. RC accomplishes perfectly these needs since the high
precision that is achieved through this technique comes together with a quite simple
implementation and little dependency on the physical parameters of the system to
be controlled.

Historically RC was first developed in (Inoue, Iwai, and Nakano, 1981) where
the motivation was to control proton synchrotron magnet power supply to a pre-
cise shape periodically, with a magnitude of order 103 V and a required precision
of order 10−1 V. To achieving a tracking accuracy of a factor 10−4 robustly was an
impossible task using techniques based on dynamic inversion of the system. The
fortunate novel idea that was used to accomplish the task gave raise to the first SISO
continuous-time RC scheme. The use of RC schemes in applications grew very fast
in different fields1 ranging from rejection of power supply interferences (Nakano
and Hara, 1986"), accurate placement of the head of a disk-drive systems (Chew
and Tomizuka, 1990), of optical disk-drives (Moon, Lee, and Chung, 1998), vibra-
tion suppression (Hillerstrom, 1996; Hattori, Ishida, and Hori, 2001) to control of
robotic manipulators performing repetitive tasks (Omata, Hara, and Nakano, 1987;
Tomizuka, Tsao, and Chew, 1988; Sadegh et al., 1990; Biagiotti, Moriello, and Mel-
chiorri, 2015).

1The number of applications in which RC-based techniques are used is really big, here only some
of the most historically important or to-the-author interesting examples are cited.
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The main contribution of this thesis in terms of application is present in chapter
4 where a novel way to use RC at a trajectory generation layer in combination with a
B-spline generator is presented. This control scheme is suitable to be used for linear
non-minimum phase systems.

1.1.2 A theoretically challenging subject

The second reason why RC has been received a great amount of attention is related
to the theoretical challenges that come together with its formal representation in its
continuous-time description (Hara, Omata, and Nakano, 1985; Hara et al., 1988; Ya-
mamoto and Hara, 1988; Yamamoto, 1993). As discussed more in detail in section
1.2, RC schemes in their initial design where based on the internal model principle
(IMP) (Francis and Wonham, 1975) , which was formalized at that time only in the
linear, finite-dimensional case. The main theoretical problem derives from the fact
that an arbitrarily periodic signal has an infinite number of harmonics, and thus the
exosystem that generates the periodic reference is in general infinite-dimensional.
From a system theory perspective a continuous-time RC systems is indeed infinite-
dimensional and for such systems most of the control theoretical main aspects, e.g.
stabilizability, need to be re-investigate with finer mathematical tools, which where
not necessarily present or used during the development of RC-related researches.
Furthermore the extension to the case in which the systems to be controlled are non-
linear is deeply involved because internal model based arguments can not be used
to proof robust periodic tracking.

Chapter 2 is dedicated to the use of distributed port-Hamiltonian systems to study
rigorously RC in its infinite-dimensional nature. With this new perspective, that
does not rely on internal model arguments, the linear case can be reinterpreted under
a new light and novel ways to attack the nonlinear case consistently are presented.
Another way to look at RC schemes is as learning scheme. In fact, since the aim of
RC is to adjust cycle after cycle the control input in order to reduce iteratively the
error signal, it can be interpreted as the system is learning from the previous cycles as
periods go by. In this perspective there is a deep connection between RC and iterative
learning control (ILC) (see Wang, Gao, and Doyle, 2009 for an excellent survey about
this connection) with the subtle difference that the latter technique is not in general
causal since the initial condition needs to be reset at the beginning of every iteration.

Chapter 3 exploits this learning paradigm to model a system that aims at achiev-
ing periodic regulation (RC will be a particular case) as an autonomous discrete-time
system. System theory is used to derive consistent sufficient conditions for perfect
tracking.

1.2 RC and Internal Model Principle

In this section the basics of RC are briefly summarized together with the classical
interpretation that is behind its classical design. Most of the results stated in this
section are present in (Hara et al., 1988), which collects all the main early results
in the continuous-time RC framework and represents still now a cornerstone in the
field.
The aim of RC systems is to solve the periodic output regulation problem, i.e. to achieve
perfect tracking in a servosystem when the reference is a generic periodic signal
with known time period τ. When such tracking problems are considered the internal
model principle (IMP) (Francis and Wonham, 1975) plays a key role.
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In the following, theorems are not stated and rigorous mathematical derivations
are omitted since the aim is to introduce the reader to the RC framework in an intu-
itive way and summarize early results about RC that will be confirmed and devel-
oped in the next chapters using different mathematical tools, not involving directly
the IMP. Nevertheless some non classical features and observations that will be used
in the following chapters will be highlighted in this introduction.

1.2.1 RC interpreted with IMP

Classically the IMP states that a necessary condition for asymptotic perfect tracking
of a servosystem is that the generator for the reference signal is included in the stable
closed-loop system. Then, in the finite-dimensional case, sufficiency can be achieved
through proper designs of stabilizing compensators.

As celebrated examples of this concept let us refer to the necessity of the model
of the generator of some important reference signals to be present in the control
loop. For a step signal as reference the corresponding model (which is the Laplace
transform) 1

s must be present in the loop for perfect asymptotic regulation. The same
reasoning can be repeated for a sinusoidal reference, say sin(ωt): the model that
incapsulates the pair of generating poles of the reference, i.e. the transfer function

1
s2+ω2 , must be present in the stable closed-loop system for perfect tracking.

In the RC setting the reference signal is a generic periodic signal r(t) of period τ,
i.e. r(t+ kτ) = r(t) ∀k ∈ Z. This type of signal, contrarily of the case of the constant
or sinusoidal reference, has in general an infinite number of harmonics.

In fact r(t) can be characterized by its Fourier expansion

r(t) =
+∞

∑
k=−∞

r̂kejωkt

where

r̂k =
1

T

∫ T

0
r(t)e−jωτ ktdt, k ∈ Z

are the Fourier coefficients of the reference r(·) over one period and ωτ = 2π
τ .

The IMP suggests then that an internal model based compensator, say I(s), must
be present in the loop for perfect asymptotic tracking and should contain all poles
that generate the periodic reference, i.e.

I(s) = 1

s ∏
∞
k=1(s

2 + k2ω2
τ)

.

It is not surprising that this model contains an infinite number of poles since the
exosystem that generates a generic periodical signal is indeed infinite-dimensional,
and in particular a neutral system with infinite many poles on the imaginary axis,
placed at multiple integers of the fundamental frequency ωτ.

At this point a quite ironical fact that characterizes RC comes into the game: the
minimal realization of such a compensator has a very simple structure considering
its infinite-dimensional nature. In fact it is easy to see2 that the poles of I(s) can be
realized by a dynamical system with characteristic equation esτ − 1. This suggests

2A formal derivation of this correspondence based on the identity sinh(πs) = πs ∏
∞
k=1(1+ (s2/k2))

is present in (Yamamoto, 1993)



4 Chapter 1. Repetitive Control: an Overview

+

FIGURE 1.1: The repetitive compensator (Hara et al., 1988; Ya-
mamoto, 1993)

+−

FIGURE 1.2: Continuous-time RC scheme.

that a valid internal model based compensator to be included in the loop is

I(s) = 1

esτ − 1
.

This dynamical system can be realized by a pure time delay of τ seconds surrounded
by a positive feedback loop as shown in figure 1.1. Such a system is called repetitive
compensator.

It is clear that such a system can generate any periodic signal of period τ au-
tonomously, just by storing as initial condition in the delay the waveform of one
period.

Now following the classical "internal model rule", a stabilizing compensator that
achieves a stable closed-loop system would solve the problem of asymptotic per-
fect tracking for any periodic reference. Nevertheless this was proven in the finite-
dimensional case and only in (Yamamoto, 1993) this nontrivial generalization in the
RC case was carried out. In particular in the latter work it is proven that the presence
in the control loop of the repetitive compensator is necessary for achieving perfect
asymptotic tracking.

1.2.2 Stabilizability of linear RC

As consequence of the latter results, the problem of perfect tracking turns into a
problem of stabilizability of the closed-loop system depicted in figure 1.2, where
the controlled plant P(s) is intended to merge from the factorization between a sta-
bilizing compensator R(s) and the uncontrolled plant G(s), i.e. in the linear case
P(s) = R(s)G(s).

In particular the RC scheme design reduces to the choice of R(s) such that the
autonomous (with r(t) = 0) closed-loop system in figure 1.2 is exponentially stable.

From the stability analysis in e.g. (Hara et al., 1988) it turns out that not all plants
G(s) are admissible to be stabilized in a continuous-time RC scheme.

In particular only those plants which are not strictly proper, i.e. have relative
degree 0, can be stabilized by means of a compensator R(s).
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FIGURE 1.3: Equivalent scheme of RC for stability analysis.

1

FIGURE 1.4: Stability region of RC for P(jω).

A sufficient condition for stability in the linear case can be derived as follows3 on
the basis of classical Nyquist analysis.

The characteristic equation of the scheme is

1 +
e−τs

1 − e−τs
P(s) = 0.

After some algebraic manipulation, the latter can be rewritten as can be rewritten as

1 + e−τs(P(s)− 1) = 0

which can be interpreted as the characteristic equation of the dynamic system shown
in 1.3, in which the positive feedback loop of I(s) is no more present. By apply-
ing Nyquist criterion to the scheme of 1.3 it descends that the closed-loop system
is exponentially stable if and only if the polar plot of the loop function L(jω) =
e−τjω(P(jω) − 1) does not encircle or touch the critical point −1. This can be as-
sured by imposing that

|P(jω)− 1| < 1, ∀ω. (1.1)

A graphic interpretation of this sufficient condition is shown in figure 1.4. The
Nyquist plot of P(jω) must lie entirely within the open unit disk centered in (1, 0)
in the complex plane.

This condition can be interpreted from a dynamic cancellation perspective: the
more the control plant P(s) is close to the identity operator (meaning that the sta-
bilizing compensator is close to the inverse of the uncontrolled plant, i.e. R(s) ≃
G−1(s)) the better the stability condition is satisfied. Intrinsic robustness of RC
schemes allows imperfect cancellations up to margins characterized by the stabil-
ity circle.

An observation representing the key to develop RC in the framework presented
in chapter 2 is that the presented stability condition can be equivalently stated in

3In (Hara et al., 1988) the proof is slightly different but leads to the same sufficient condition.
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a frequency free way. In particular dissipativity conditions on operators (and on
dynamical systems in this case) having their roots in the passivity framework can be
used to formulate in time-domain the same mathematical condition. This allows to
extend consistently the analysis to nonlinear systems, for which frequency domain
tools can not be used. In this case condition (4.9) can be equivalently formulated
imposing the system P(s) to be a α-output strict passive system, with α > 1

2 (see e.g.
Lozano et al., 2000 for informations about dissipativity properties).

Even if this condition is only sufficient, intuitively it is very close to a necessary
one since in a high-frequency range the phase shift caused by the pure delay can
assume high values. The fact that for strictly proper systems P(jω) → 0 when ω →
∞ suggests that these types of plants can not be stabilized.

Furthermore a specific proof that states that it is impossible to stabilize exponen-
tially4 RC schemes like in figure 1.2 is present in (Hara et al., 1988). This proof
is based on the fact that in a neutral system in which a repetitive compensator
is present the closed-loop poles will approach asymptotically the imaginary axis,
which implies impossibility of exponentially stabilizing the system.

To summarize it is impossible to achieve perfect tracking in a continuous-time
RC scheme for any periodic reference signal if the plant is strictly proper.

Intuitively the reason for this impossibility is quite clear: to track any periodic
reference signal of fixed period using the same control scheme is requiring too much.
In fact if the plant is strictly proper it will integrate the input at least once. Thus it
is impossible to track periodic signals with arbitrarily high frequency modes (e.g. a
square wave).

This represents of course a big limitation in the use of this technique and in the
next section the two main approaches to overcome this problem in the linear case
are presented.

1.3 Remedies to stabilizability problems for strictly proper
plants in linear RC schemes

The main approaches used to solve the stabilizability problem for strictly proper
controlled plants P(s) aim at creating a trade-off between achieving exponential sta-
bility and capability of tracking periodic signals.

1.3.1 Modified RC

The approach that is discussed here leads to a control scheme called modified RC and
merges from the addition of a low-pass filter Gf (s) in series to the delay, as shown in
figure 1.5. This leads to a modified repetitive compensator Im(s). The main aspects
of this scheme are summarized as follows:

• The modified repetitive compensator Im(s) does not achieve anymore an in-
ternal model for any periodic signal. This happens because, depending on the
bandwidth of the filter, the poles escape away from the imaginary axis on the
complex left hand plane for high frequencies.

• For the same spectral reason that has been described before, it becomes now
possible to exponentially stabilize the system even if the controlled plant P(s)

4Even if the system is linear, in infinite-dimensional systems exponential and asymptotic stability
do not coincide. For the application of internal model arguments exponential stability is necessary.
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FIGURE 1.5: Continuous-time modified RC scheme.

is strictly proper. In particular the stability condition described by equation
(4.9) in the pure RC case (i.e. if Gf (s) = I) becomes

|Gf (jω)(P(jω)− 1)| < 1, ∀ω. (1.2)

• As result this scheme achieves the possibility of exponentially stabilizing RC
schemes with strictly proper plants through a minor modification of the orig-
inal scheme. The price to pay is the impossibility of tracking arbitrarily high
modes in periodic references.

In (Weiss, 1997) it is also highlighted that in continuous-time, without the use of
modified RC, it is impossible achieving robustness with respect to arbitrarily small
time delays at any point in the feedback loop.

From the previous considerations it seems necessary to consider the presence of
the filter in the continuous-time case for periodic output regulation, and a section in
chapter 2 is indeed dedicated to the stability analysis of modified RC scheme carried
on in the time domain5.

Nevertheless it is important to make one more comment which is not completely
understood and that highlights somehow the limits of the modified RC scheme:
adding a low-pass filter in the delay loop limits the class of controllers to the finite-
dimensional case since the steady state control input is generated by the output of
the low-pass filter, which is in fact a finite-dimensional system. Despite of this aspect
the infinite-dimensional nature of the scheme is kept since the delay is still present.
Thus one could ask why not to design directly a finite-dimensional controller, get-
ting rid of the RC structure that contains the time-delay. This point of view was
used in (Langari and Francis, 1994) and is not completely unrelated to the recent
works involving periodic output regulation (Paunonen, 2017) in which RC is im-
plicitly considered. The technique that the two latter references share to study the
periodic output regulation at a finer level is called lifting and in chapter 3 the same
tool is used to provide a result that is not explicitly based on the RC setting.

The latter consideration, together with the fact that the combined choice of the
low-pass filter and the stabilizing compensator in the scheme of figure 1.5 is not
an easy task and lacks of general systematic design procedures, represent the main
difficulty in the use of modified RC.

On the other hand the very simple structure of the scheme was the key for the
development and the fairly wide success of this technique.

5the classical stability analysis of modified RC (Hara et al., 1988), is based on frequency domain
considerations and leads to the condition (4.9)
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FIGURE 1.6: The digital repetitive compensator

+−

FIGURE 1.7: Discrete-time RC scheme.

1.3.2 Digital RC

The other main way that has been developed to overcome stabilizability problems
of RC systems is to perform a discretization of the whole scheme and end up with a
digital RC scheme (Tomizuka, Tsao, and Chew, 1988).

In this case a generic periodic reference signal does not contain an infinite num-
ber of harmonics since the maximum meaningful frequency is naturally upper bounded
by the sampling frequency of the digital system.

Following the same idea of the continuous-time case, any periodic signal of pe-
riod N6 can be generated by an N-step delay with positive feedback loop, suggesting
that the digital version of the repetitive compensator must be like in figure 3.3 where
the complex function z−1 can be interpreted as the one-step delay operator.

This system contains N neutrally stable poles on the unit disc (instead of ∞ on the
imaginary axis in the continuous-time case) whose linear combination can generate
any periodic signal of period N in its discrete Fourier decomposition. This aspects
confirms that the discrete-time repetitive compensator acts as internal model I(z) of
a digital periodic reference.

Without entering too much into detail the reasons why stabilizability problems
of digital RC schemes represented in figure 1.7 can be solved for strictly proper con-
trolled plants P(z) can be seen in the two following equivalent ways:

• The infinite-dimensional nature of the original scheme is lost because of dis-
cretization and stabilizability becomes possible also with strictly proper plants.
In fact if delayed tracking is allowed (at it is always the case since the aim is to
track signals periodically), the non null relative degree of the system does not
represent a problem anymore.

• The frequency interval in which the polar plot has to be evaluated for stability
is bounded (i.e. < ∞), and thus the problem of its convergence to the origin
when ω → ∞ can be avoided in the digital regulator design phase. Mathemat-
ically speaking stability condition (4.9) becomes

|P(ejω)− 1| < 1, ∀ω ∈ [0, π/T]

6with this notation it is meant that the periodic signal has a period of N sampling times.
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where T is the sampling period of the system. This condition can be satisfied
also if P(z) is strictly proper.

Even if the stabilizability problems seem to be solved using this approach, this
solution is unfortunately not very satisfactory in applications that require a certain
degree of smoothness: in fact the key observation is that considering the underlying
digital system, tracking is achievable only at the sample instances. This may cause
(even large) intersample ripples and a complete framework discussing this aspects
and attenuation of high frequency components is still missing.

Even if this research focuses mainly on continuous-time RC, in chapter 4 an
algorithm exploiting a digital RC scheme at a trajectory generation layer for non-
minimum phase system is presented. In chapter 3 a novel interpretation of digital
RC is carried out as particular case of the generic periodic output regulation prob-
lem.

1.4 Nonlinear RC and periodic solutions

All the techniques that have been described so far in this introductory chapter, which
are used to described RC in most of the literature, are based on frequency-domain
tools. Thus only the linear case can be considered.

In order to consider nonlinear RC, i.e. study the periodic output regulation prob-
lem if the system to be controlled is nonlinear, finer mathematical tools are needed.

What is meant by nonlinear RC scheme in this thesis is shown in figure 1.8, i.e.
the same scheme of figure 1.2 with a generic nonlinear controlled plant Φ in lieu of
P(s).

Without considering techniques deeply related to RC like ILC7, it can be stated
that not much effort has been done in dealing with nonlinear RC schemes.

More specifically, in Omata, Hara, and Nakano, 1987 passivity theory is used to
design a nonlinear RC scheme involving trajectory control for industrial manipula-
tors. In Ghosh and Paden, 2000 nonlinear RC schemes are studied by approximating
the compensator I(s) with a finite-dimensional system, and tracking is analyzed for
a particular class of nonlinear systems. In Lin, Chung, and Hung, 1991, small-gain
arguments are used to guarantee stability of linear RC schemes in which a sector
nonlinearity at the input of a linear plant is present. In Owens, Li, and Banks, 2007
and similarly to the approach discussed in chapter 2, the stability analysis is per-
formed by relying on a state-space representation of the plant, with the nonlinear
case briefly addressed as perturbation of the linear one.

7As previously explained the techniques are related but not equivalent: since ILC has fixed initial
iterative state, wider convergence conditions are allowed. On the contrary the design of RC historically
performed in the frequency domain makes the nonlinear study more difficult.

+−

FIGURE 1.8: Continuous-time nonlinear RC scheme.
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FIGURE 1.9: Venn diagram to illustrate qualitatively the inclusive
properties of tracking problems and stability problem.

A nonlinear RC scheme presents both infinite-dimensional and nonlinear parts
and many questions need to be re-investigated to study formally such a system. For
example aspects like existence and regularity (namely well-posedness) of solutions8 as
well as stabilizability must be treated properly and the approach in chapter 2 allows
such a rigorous analysis.

In the remaining part of this section the aim is to focus on one of the biggest issues
that involves nonlinear RC schemes which is often misunderstood. In particular
exponential stability for the closed-loop system is in general not sufficient for perfect
tracking since the IMP does not hold in the nonlinear case. In fact the legitimacy of
invoking the IMP in the linear infinite-dimensional case is due to (Yamamoto, 1993)
but relies completely on the linear framework.

1.4.1 Periodic solutions and perfect tracking

The situation of tracking exogenous signals in servosystems is qualitatively depicted
in figure 1.9, which shows that not every stabilization problem solves completely the
tracking problem.

In the following an useful way that will be used in chapter 2 to determine perfect
periodic tracking in a RC framework for a generic nonlinear controlled system Φ is
described.

Refer to figure 1.8 and suppose the reference r(t) is a generic τ-periodic signal.
Asymptotic perfect periodic tracking means that e(t) = v(t) − v(t − τ) → 0 as t →
∞. This is equivalent to ask that the signal v(t) becomes τ-periodic as t → ∞. Under
this light a more intuitive criterion can be used to determine whether perfect tracking
for periodic reference signals is achieved in a generic nonlinear RC scheme: if the
state solutions are such that at steady state they end up to be periodic of period τ
then the problem is solved.

This way of thinking can be interpreted as the IMP for periodic signals in the lin-
ear case: since exponentially stable linear systems produce asymptotically τ-periodic
solutions if they are excited by a τ-periodic input, solving the stability problem of
the closed-loop system implies also perfect tracking of the RC scheme.

8Such aspects have been often neglected in works related to nonlinear RC systems (e.g. in Owens,
Li, and Banks, 2007) or strong assumptions about regularity of solutions have been done. This is not
surprising since the mathematical tools available at this level are very recent.
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Another interesting consideration involving this point of view is the expression
of the error in the modified RC scheme of figure 1.5. In this case, assuming for
simplicity Gf (s) = 1

1+q̄s , the expression of the error becomes e(t) = v(t) − v(t −
τ) + q̄v̇(t). Now if the closed-loop is exponentially stable the signal v(t) will be τ-
periodic at steady state, implying e(t)− q̄v̇ → 0 as t → ∞. This shows that the exact
internal model is lost by adding a low-pass filter in the repetitive compensator since
a periodic steady state error will be present depending on the design of the filter.

1.5 Contribution of the Thesis

Here the main contribution of this thesis is summarized and the tools that are used
are highlighted.

1. In Chapter 2 a state-space approach using dissipativity tools and infinite di-
mensional port-Hamiltonian systems is performed in order to:

• Analyse RC systems with a novel approach;

• Analyse modified RC system with a novel approach;

• Analyse a class of nonlinear RC systems leading to novel stability condi-
tions.

The analysis considers (nonlinear) RC schemes in their infinite-dimensional
nature and no simplifying assumptions are done. Consequently aspects like
well-posedness and regularity of solutions are consistently treated inside the
framework.

2. In chapter 3 a state-space approach using invariance analysis of autonomous
discrete-time systems is used in order to:

• Describe periodic output regulation in a general way;

• Design a controller that achieves robustly periodic output regulation in
both continuous-time and discrete-dime;

• Handle rigorously a nonlinear case, namely the case in which the system
is a static nonlinearity.

The analysis is performed in a framework that uses the lifting technique and
is not directly based on the RC framework. It will be shown however that RC
turns out to be a particular case merging from the selection of the simplest
controller in this framework.

3. In Chapter 4 a digital scheme is presented that binds B-spline trajectory genera-
tion and digital RC. The scheme works on non-minimum phase linear systems
and experimental results validating the theoretical method are presented.
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Chapter 2

Analysis of Repetitive Control: the
Port-Hamiltonian Approach

This chapter deals with a novel way to treat RC. Topics that come different fields of
mathematics and system theory are consistently used in order to perform stability
analysis of RC schemes.

The new point of view that is used differs from the classical frequency-based
methods introduced in chapter 1 since it takes place in the framework of dissipativity
theory applied to systems in which coupled partial differential equations (PDEs) and
ordinary differential equations (ODEs) are present. The immersion of RC in this field
will allow to derive the classical stability and tracking conditions in time domain
since a state space approach will be used.

Furthermore, as it may happen at any level of human comprehension, a new
perspective can push further the absolute knowledge of a subject. In fact the use of
these tools and recent related results suggests ways to attack the stability analysis of
RC schemes in its nonlinear version, besides of generating an alternative and useful
derivation of the classical results for linear (modified) RC schemes.

2.0.1 Background on port-Hamiltonian Systems

Port-Hamiltonian systems (Maschke and van der Schaft, 1992) have been introduced
to model lumped parameter physical systems in an unified manner (van der Schaft
and Jeltsema, 2014) and their generalization to the infinite-dimensional scenario
led to the definition of distributed port-Hamiltonian systems (van der Schaft and
Maschke, 2002). These turned out to form an effective framework for describing
distributed parameter physical systems as boundary control systems (BCS) (Fattorini,
1968), i.e. abstract systems whose dynamic is written in terms of a partial differential
equation (PDE) with control and observation at the boundary of the spatial domain.

Recently general synthesis methodology of exponentially stabilizing control laws
for the class of linear BCS in port-Hamiltonian form (Le Gorrec, Zwart, and Maschke,
2005; Jacob and Zwart, 2012) have been developed. In particular in (Le Gorrec,
Zwart, and Maschke, 2005), all the admissible inputs defining a well-posed BCS
are presented, together with a second similar parametrization that characterizes the
(boundary) outputs. The distributed port-Hamiltonian system turns out to be dissi-
pative van der Schaft, 2000, with its Hamiltonian as storage function, and quadratic
supply rate.

In sections 2.1 and 2.2 these crucial tools that will be used are presented while in
the rest of the chapter the actual RC analysis is performed.
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2.1 Distributed port-Hamiltonian Systems

In the following the class of distributed port-Hamiltonian systems studied in (Le
Gorrec, Zwart, and Maschke, 2005; Villegas et al., 2009; Jacob and Zwart, 2012;
Ramírez et al., 2014) is considered. These systems belong namely to the class of
linear distributed port-Hamiltonian systems on a 1-D spatial domain and are described by
the following PDE

∂x

∂t
(t, z) = P1

∂

∂z

(
L(z)x(t, z)

)
+ (P0 − G0)L(z)x(t, z). (2.1)

Here x is the state variable and depends both on time t and on the spatial variable
z ∈ [a, b]. The matrices P1, P0, G0 and L(z) have the following properties1:

• P1 = PT
1 and P−1

1 exists;

• P0 = −PT
0 ;

• G0 = GT
0 ;

• L(·) is a bounded and Lipschitz continuous matrix-valued function such that
L(z) = LT(z) ≥ κ I, with κ > 0, for all z ∈ [a, b].

For the sake of clearness, (Lx)(t, z) := L(z)x(t, z).
The state space is X = L2(a, b; Rn), and is endowed with the inner product

⟨x1 | x2⟩L = ⟨x1 | Lx2⟩

and norm ∥x∥2
L = ⟨x | x⟩L, where ⟨· | ·⟩ denotes the natural L2-inner product2. The

selection of this space for the state variable is motivated by the fact that ∥·∥2
L is linked

to the energy function of (2.1)3. Indeed for this class of systems it holds that the
Hamiltonian function H(x), which represents the energy of the system, equals half
of the squared norm of the state, i.e.

H(x) =
1

2
∥x∥2

L . (2.2)

As a consequence, X is also called the space of energy variables, and Lx denotes
the co-energy variables.

The following remark describes the presented distributed port-Hamiltonian sys-
tem from an operator perspective, which will be very useful for further develop-
ments.

Remark 2.1.1. The PDE (2.1) can be also written as ẋ = J x, where J is the linear operator
defined as J x := P1

∂
∂z (Lx) + (P0 − G0)Lx, with domain D(J ) =

{
Lx ∈ H1(a, b; Rn)

}
.

Here H1(a, b; Rn) denotes the Sobolev space of order one.

As consistent extension with respect to lumped PH systems, dPH systems have
peculiar dissipative properties. For this purpose the PDE (2.1) has to be completed

1Refer to Jacob and Zwart, 2012 for a detailed derivation and discussion of these systems.
2As consequence ∥x∥L =

√∫ b
a (x

TL(z)x)dz
3In finite-dimensional physical systems this is always true since all the norms are equivalent in

finite-dimensional complete metric spaces. This means that, e.g. in Rn, the classical 2-norm is always
linked to the energy of the system. On the contrary in infinite-dimensional systems norms are not
equivalent and the concept of energy is different from the concept of squared norm.
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by a set of boundary port variables. More precisely, the boundary port variables
associated to (2.1) are the vectors f∂, e∂ ∈ Rn defined by

(
f∂

e∂

)
=

1√
2

(
P1 −P1

I I

)(
(Lx)(b)
(Lx)(a)

)
(2.3)

which means that they are a linear combination of the restriction of the co-energy
variables on the boundary.

The definition of these variables is important because integration by parts shows
that, considering the Hamiltonian defined in (2.2),

Ḣ(x(t, ·)) = 1

2

d

dt
∥x∥2

L = ⟨J x | x⟩L ≤ eT
∂ (t) f∂(t) (2.4)

The problem of defining the boundary inputs and outputs for (2.1) to have a bound-
ary control system on X in the sense of the semigroup theory (Curtain and Zwart,
1995) has been addressed in (Le Gorrec, Zwart, and Maschke, 2005). This important
result is reported next.

Theorem 2.1.1. Denote by W a n × 2n real matrix, then define B : H1(a, b; Rn) → Rn

and the input u(t) as

u(t) = W

(
f∂(t)
e∂(t)

)
=: Bx(t) (2.5)

If W has full rank and satisfies WΣWT ≥ 0, with

Σ =

(
0 I
I 0

)

then the system (2.1) with input (2.5) is a boundary control system on X. Furthermore, the
operator J̄ x := P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(J̄ ) =

{
Lx ∈ H1(a, b; R

n) |
(

f∂

e∂

)
∈ Ker W

}
=
{
Lx ∈ H1(a, b; R

n) | Bx = 0
}

generates a contraction semigroup4 on X. Moreover, let W̃ be a full rank n× 2n matrix such
that

(
WT W̃T

)
is invertible and let P be given by

P =

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)−1

Define the output as

y(t) = W̃

(
f∂(t)
e∂(t)

)
=: Cx(t) (2.6)

with C : H1(a, b; Rn) → Rn. Then, for u ∈ C2(0, ∞; Rn) and (Lx)(0) ∈ H1(a, b; Rn),
the energy balance equation

1

2

d

dt
∥x(t)∥2

L ≤ 1

2

(
u(t)
y(t)

)T

P

(
u(t)
y(t)

)
(2.7)

is satisfied.

4It is assumed that the reader is familiar with the concept of strongly continuous semigroup T(t)
on a Hilbert space, or C0-semigroup. Every C0-semigroup satisfies ∥T(t)∥ ≤ Meωt for some real ω and
M. A contraction semigroup is a subclass of C0-semigroup such that ∥T(t)∥ ≤ 1
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This theorem is very important because it provides a way to chose the boundary
input (2.5) properly, i.e. without loosing well-posedness of the system. Furthermore
the following corollary can be stated.

Corollary 2.1.1. The BCS of Theorem 2.1.1 is dissipative5 with storage function H(x) =
1
2 ∥x∥2

L, and supply rate

s(u, y) =:
1

2

(
u
y

)T (
U S
ST Y

)

︸ ︷︷ ︸
:=PW ,W̃

(
u
y

)
, (2.8)

where U = UT, S, and Y = YT are n × n real matrices6. This means that for all (Lx)(0) ∈
H1(a, b; Rn) and u ∈ C2(0, ∞; Rn) such that u(0) = Bx(0), we can write that H(x(t))−
H(x(0)) ≤

∫ t
0 s
(
u(τ), y(τ)

)
dτ.

This result shows that dPH systems with boundary inputs chosen as suggested
in Theorem 2.1.1 are always dissipative with respect to quadratic a supply rate7.
This concept is the key element used in the following developments, which have
been treated in the general case only very recently.

2.2 Exponential Stabilisation of Linear Boundary Control Sys-
tem

2.2.1 A general approach

In contrast with the generality of the result described in Theorem 2.1.1, most re-
searches on stabilization techniques for distributed port-Hamiltonian systems (see
e.g. Villegas et al., 2009; Schöberl and Siuka, 2013; Macchelli, 2013; Ramírez et al.,
2014; Macchelli et al., 2017), are focused on a particular input-output mapping: the
BCS has to be in impedance form, i.e. input and output are selected so that the system
is passive8, leading to the power balance

1

2

d

dt
∥x(t)∥2

L ≤ uT(t)y(t).

Then, control design relies on passivity theory, and the most common strategy is to
add dissipation at the boundary, and / or to shape the energy function to shift the
equilibrium, which is the natural extension to dPH systems of energy shaping and
damping injections techniques developed for lumped PH systems.

5Here it assumed that the reader is familiar with the concept of dissipative systems, discussed in
e.g. (van der Schaft, 2000)

6The (U, S, Y) matrices are the same of the (Q, S, R) ones used in classical literature on dissipative
systems, (van der Schaft, 2000).

7In finite-dimensional port-Hamiltonian system the dissipativity property is specialized in passivity,
i.e. it holds Ḣ ≤ uTy. Thus the corollary shows how dPH systems have wider dissipative properties.

8Referring to (2.8) this supply rate is obtained choosing boundary inputs and outputs such that
U = Y = 0 and S = I. This passivity property is peculiar in lumped PH systems for Hamiltonian
functions which are bounded from below.
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Another important input-output mapping is the one that leads to a BCS in scat-
tering form9. In this case the power balance is

1

2

d

dt
∥x(t)∥2

L ≤ 1

2
∥u(t)∥2 − 1

2
∥y(t)∥2 .

In the following a general approach, developed in Macchelli and Califano, 2018,
is presented. The aim of this work is to extend the stability results to general dPH
systems in the form (2.1) that present generic a dissipativity property (2.7), and not
only the impedance passivity case.

At first, it is proved that the closed-loop system resulting from the feedback in-
terconnection of a linear regulator and a BCS in port-Hamiltonian form is again a
BCS in the sense of the semigroup theory Curtain and Zwart, 1995, Definition 3.3.2,
in which the input is the reference signal. This happens if the controller is stable and
dissipative with respect to a class of supply rates that is determined by the input-
output mapping of the infinite-dimensional plant (subsection 2.2.2).

Moreover, the addition of dissipation makes the closed-loop storage function
to decrease exponentially, thus implying exponential stability of the equilibrium.
Thanks to these techniques, exponential stability is then proved for a large class
of systems whose dynamic is described by coupled PDEs and ordinary differen-
tial equations (ODEs) (subsection 2.2.3). This result is an extension of Ramírez et
al., 2014, where exponential stability was proved under the hypothesis that the reg-
ulator is a strictly input passive port-Hamiltonian system, and that the BCS is in
impedance form. However, it is important to underline that such an extension relies
on some technical lemmas presented in Ramírez et al., 2014, and generalized here to
cope with a larger class of BCS in port-Hamiltonian form.

The potentialities of this approach are at first illustrated in case the BCS is in
impedance or in scattering form, (van der Schaft, 2000, Chapter 4.4.3), and sufficient
conditions on the the finite-dimensional controller to have exponential stability in
closed-loop are provided (subsection 2.2.4).

After the presentation of these results, from section 2.3 till the end of the chapter,
the theory will be applied to RC schemes, providing the novel analysis.

2.2.2 Well-posedness of systems with coupled PDEs and ODEs

In Sect. 2.2.3, the design of a control system for the PDE (2.1) that leads to an ex-
ponentially stable closed-loop system will be discussed. However, a preliminary
problem is to understand if the linear system of coupled PDEs and ODEs associated
to the closed-loop dynamics has a unique solution, and if it is a well-defined BCS. In
this respect, let us consider the following control system

{
ẋc(t) = Acxc(t) + Bcuc(t)

yc(t) = Ccxc(t) + Dcuc(t)
(2.9)

where xc ∈ Rnc , uc, yc ∈ Rn, and the matrices Ac, Bc, Cc and DC have the appropriate
dimensions. All the eigenvalues of Ac are non-positive, and the pair (Ac, Bc) is
controllable. System (2.9) is in standard feedback interconnection with the BCS of

9Referring to (2.8) this supply rate is obtained choosing boundary inputs and outputs such that
U = −Y = I and S = 0.
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−

FIGURE 2.1: Standard feedback interconnection (2.10) of a finite di-
mensional controller (2.9) and a BCS defined in Theorem 2.1.1.

Theorem 2.1.1, i.e.

(
uc(t)
yc(t)

)
=

(
0 −I
I 0

)(
u(t)
y(t)

)
+

(
y′(t)

0

)
, (2.10)

where y′ ∈ Rn is the reference signal. The closed-loop system is shown in figure 2.1.

In order to proof that the closed loop system is again a well-posed BCS the main
idea is characterize the controller by means of dissipativity propertied. In particular
the major requirement is that there exists a symmetric, positive definite nc × nc real
matrix Qc such that (2.9) is dissipative with storage function

Ec(xc) =
1

2
xT

c Qcxc (2.11)

and supply rate

sc(uc, yc) =
1

2

(
uc

yc

)T (
Uc Sc

ST
c Yc

)(
uc

yc

)
(2.12)

with Uc = UT
c , and Yc = YT

c . This means that along all system trajectories for all
t ≥ 0, we have that

Ec(xc(t))− Ec(xc(0)) ≤
∫ t

0
sc
(
uc(τ), yc(τ)

)
dτ.

A necessary and sufficient condition for this property to hold is summarised in the
next proposition, which is just a trivial extension of the Kalman-Yakubovich-Popov
(KYP) lemma.

Proposition 2.2.1. The linear system (2.9) is dissipative with storage function (2.11) in
which Qc = QT

c > 0 is a real nc × nc matrix, and supply rate (2.12) if and only if:

Mc −Nc ≤ 0 (2.13)

in which

Mc =

(
Qc Ac + AT

c Qc QcBc

BT
c Qc 0

)
,

Nc =

(
CT

c YcCc CT
c YcDc

DT
c YcCc Uc + DT

c YcDc

)
+

(
0 CT

c Sc

ST
c Cc DT

c Sc + ST
c Dc

)
.

(2.14)
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The system resulting from the interconnection of (2.1) and (2.9) through the set
of relations (2.10) can be written as

{
ξ̇(t) = Jclξ(t) + Bcly

′(t)

Dcy
′(t) = B′ξ(t) :=

(
B + DcC −Cc

)
ξ(t)

(2.15)

where the operators B and C are defined in (2.5) and (2.6),

ξ =

(
x
xc

)
∈ Xcl := X × R

nc (2.16)

is the state variable, Jcl : D(Jcl) ⊂ Xcl → Xcl and Bcl : Rn → Xcl are the linear
operators

Jclξ :=

(
J 0

−BcC Ac

)(
x
xc

)
Bclv :=

(
0

Bcv

)
(2.17)

with D(Jcl) := D(J ) × Rnc , being J the operator introduced in Remark 2.1.1.
Moreover, the state space Xcl is endowed with the inner product

⟨ξ1 | ξ2⟩Xcl
= ⟨x1 | x2⟩L + xT

c,1Qcxc,2. (2.18)

The following proposition provides sufficient conditions for well-posedness of the
closed-loop system and is the main contribution of this subsection.

Proposition 2.2.2. Let us consider the closed-loop system resulting from the feedback inter-
connection (2.10) of (2.1) and (2.9), which results in (2.15). If

(
Y −ST

−S U

)
+

(
Uc Sc

ST
c Yc

)
≤ 0 (2.19)

the operator J̄clξ :=

(
J 0

−BcC Ac

)(
x
xc

)
with domain

D(J̄cl) =

{(
x
xc

)
∈ Xcl | x ∈ D(J ), and B′

(
x
xc

)
= 0

}

(2.20)

and B′ defined in (2.15) generates a contraction semigroup on Xcl. Moreover, (2.15) with
Jcl and Bcl defined by (2.17) is a BCS on Xcl, with y′ ∈ C2(0, ∞; Rn).

Proof. At first, note that the last condition in (2.20) can be equivalently written as

(
f T
∂ eT

∂ xT
c

)T ∈ Ker Wcl (2.21)

with Wcl :=
(
W + DcW̃ −Cc

)
. Since D(J̄cl) is dense in Xcl , and J̄cl is closed, ac-

cording to the Lumer-Phillips theorem (Luo, Guo, and Morgul, 1999, Theorem 2.27),
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the first condition to check in order to prove that J̄cl generates a contraction semi-
group on Xcl is that

〈
J̄clξ | ξ

〉
Xcl

≤ 0 for ξ ∈ D(J̄cl). It is easy to see that

〈
J̄clξ | ξ

〉
Xcl

≤ 1

2

(
f∂

e∂

)T(
W
W̃

)T (
U S
ST Y

)
·

·
(

W
W̃

)(
f∂

e∂

)
+

1

2
xT

c (Qc Ac + AT
c Qc)xc−

− 1

2
xT

c QcBcW̃

(
f∂

e∂

)
− 1

2

(
f∂

e∂

)T

W̃TBT
c Qcxc (2.22)

where (2.7) and (2.8) have been taken into account. From (2.21), we have that W

(
f∂

e∂

)
=

−DcW̃

(
f∂

e∂

)
+ Ccxc, and because of (2.19), after some computations, we get

(
f∂

e∂

)T(
W
W̃

)T (
U S
ST Y

)(
W
W̃

)(
f∂

e∂

)
≤ −

(
f∂

e∂

)T

W̃T
(

Uc + DT
c YcDc + DT

c Sc + ST
c Dc

)
·

· W̃

(
f∂

e∂

)
+ xT

c CT
c (Sc +YcDc) W̃

(
f∂

e∂

)
+

(
f∂

e∂

)T

W̃T
(

DT
c Yc + Sc

)
Ccxc − xT

c CT
c YcCcxc

which implies that (2.22) can be rewritten as

〈
J̄clξ | ξ

〉
Xcl

≤ 1

2

(
xc

uc

)T{
Mc −Nc

}(xc

uc

)

because of (2.13), with Mc and Nc defined in (2.14). This proves that
〈
J̄clξ | ξ

〉
Xcl

≤
0.

The second step consists in verifying that (I − J̄cl) is surjective, i.e. that for all
( f , fc) ∈ X × Rnc there exists (x, xc) ∈ D(J̄cl) such that

(
f
fc

)
=

(
(I − J )x

BcCx + (I − Ac)xc

)
(2.23)

under the constraint (2.20) that now we rewrite as

(B + DcC)x = Ccxc. (2.24)

At first, note that (I − Ac) is invertible because all the eigenvalues of Ac are non-

positive, so from (2.23) we obtain that xc = (I − Ac)
−1( fc − BcCx), which from (2.24)

implies that [B + Hc(1)C] x = Cc(I − Ac)
−1 fc, where Hc(1) = Cc(I − Ac)

−1Bc + Dc.

Now, let us assume that f̃c = Cc(I − Ac)
−1 fc and that x̃ = x− B̃ f̃c, where B̃ is a linear

operator such that [B+ Hc(1)C] B̃ = I. In this respect, the existence of B̃ follows
from the proof of Theorem 2.1.1 (see Le Gorrec, Zwart, and Maschke, 2005 for more
details), and from the fact that W + Hc(1)W̃ is full (row) rank. This latter property is
verified because the matrix

(
WT W̃T

)
is invertible. After these transformations, we

can write that
(I − J )x̃ = f + (I − J )B̃ f̃c,

[B + Hc(1)C] x̃ = 0.
(2.25)

The transfer matrix of the control system (2.9) is given by Hc(s) = Cc(sI − Ac)
−1Bc +
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Dc, where s ∈ C. In Willems, 1972, Remark 9, pg. 383 it is shown that (2.9) satisfies
the conditions of Prop. 2.2.1, i.e. it is dissipative with storage function (2.11) and
supply rate (2.12), if and only if

(
I

Hc(s)

)H (
Uc Sc

ST
c Yc

)(
I

Hc(s)

)
≥ 0 (2.26)

for all s ∈ C such that Re s ≥ 0. Here, ·H denotes the conjugate transpose of a matrix.
By taking s = 1 in (2.26), from (2.19) and with (2.12) in mind, we can write that

(
−HT

c (1) I
)

PW,W̃

(
−Hc(1)

I

)
≤ 0. (2.27)

The operatorJ applied to all the x̃ that satisfy the constraint expressed by the second
relation in (2.25), i.e. [B + Hc(1)C] x̃ = 0, generates a contraction semigroup if and
only if Hc(1) satisfies (2.27). This implies that (I − J ) has an inverse, and then x̃
can be computed from the first relation in (2.25) for all ( f , f̃c) ∈ X × Rnc . Then,

by definition we have x = x̃ + B̃ f̃c, and finally xc = (I − Ac)
−1( fc − BcCx), i.e. we

have computed (x, xc) ∈ D(J̄cl) such that (2.23) holds. To prove that (2.15) is a
boundary control system on Xcl, note that there exists a linear operator B : Rn → Xcl

such that for all v ∈ Rn, we have that Bv ∈ D(Jcl), and
(
B + DcC −Cc

)
Bv ≡

B′Bv = v. This fact follows from the proof of Theorem 2.1.1 in Le Gorrec, Zwart,
and Maschke, 2005 since the matrix Wcl defined in (2.21) is full (row) rank. Similarly
to Curtain and Zwart, 1995, Theorem 3.3.3, define ξ̃ = ξ − BDcy′, which from the
second relation in (2.15) implies that B′ξ̃ = B′ξ − Dcy′ = 0. Moreover, from the

first relation in (2.15), we have that ˙̃ξ = J̄cl ξ̃ + Jcl BDcy′ + Bcly
′ − BDcẏ′. Now, we

have already proved that J̄cl generates a contraction semigroup on Xcl . Since Bcl and
BDc are bounded linear operators, and from Theorem 2.1.1 in Le Gorrec, Zwart, and
Maschke, 2005 it is easy to see that also Jcl BDc is bounded, from Curtain and Zwart,
1995, Theorem 3.1.3 we deduce that the previous differential equation has a unique
classical solution provided that y′ ∈ C2(0, ∞; Rn). This proves that the closed-loop
system (2.15) is a boundary control system in the sense of the semigroup theory,
Curtain and Zwart, 1995, Definition 3.3.2.

Remark 2.2.1. If system (2.1) is in impedance form the control system (2.9) meets the con-
dition of the previous proposition for example if it is passive, i.e. it is dissipative with respect
to the supply rate sc(uc, yc) = yT

c uc. On the other hand, if (2.1) is in scattering form, the
control system (2.9) can be selected such that it is dissipative with respect to the supply

rate sc(uc, yc) = 1
2 γ2 ∥uc∥2 − 1

2 ∥yc∥2, with |γ| ≤ 1. In other words, (2.9) should have a
L2-gain lower than γ, with |γ| ≤ 1 (van der Schaft, 2000).

2.2.3 Exponential stability of systems with coupled PDEs and ODEs

This subsection aims at illustrating how to design the control system (2.9) that makes
the closed-loop system exponentially stable. Let us consider the linear control sys-
tem (2.9) in which Ac has all the eigenvalues with negative real part, and the pair
(Ac, Bc) is controllable. Moreover, let us assume that there exists a storage function
(2.11), with Qc = QT

c > 0, and a supply rate (2.12), with Uc = UT
c and Yc = YT

c . The
main requirement is that

1

2
(Mc −Nc) ≤ −

(
−δx(Qc Ac + AT

c Qc) 0
0 δu I

)
(2.28)
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where δx and δu are two arbitrary small positive constants, and Mc and Nc are de-
fined in (2.14). From a physical point of view, δx is related to the internal damping
in the control system responsible for attenuating the lower frequencies in the plant
dynamics. Differently, δu assures that the higher frequencies are damped.

Remark 2.2.2. Since Ac is exponentially stable, for all Qc = QT
c > 0 there exists Pc =

PT
c ≥ 0 such that Qc Ac + AT

c Qc = −Pc. So, if (2.28) holds, then also (2.13) is satisfied,
which means that (2.9) is dissipative with respect to the storage function Ec(xc) = 1

2 xT
c Qcxc

and supply rate (2.12). Consequently, if the other conditions of Prop. 2.2.2 are met, the
closed-loop system is well posed, and the state trajectories exist. Moreover, with Corol-
lary 2.1.1 in mind, a natural candidate Lyapunov function for the stability analysis is the
“closed-loop energy function”

Ecl(x(t), xc(t)) =
1

2
∥ξ(t)∥2

Xcl
(2.29)

where ξ ∈ Xcl is the state variable introduced in (2.16), and ∥·∥Xcl
is the norm associated

with the inner product ⟨· | ·⟩Xcl
, defined in (2.18).

Since the control system is exponentially stable and, as discussed in Prop. 2.2.2,
the autonomous closed-loop system generates a contraction C0-semigroup, the fol-
lowing lemmas hold true.

Lemma 2.2.1 (Ramírez et al., 2014, Lemmas III.3 and III.4). Let us consider the control
system (2.9) in which Ac is exponentially stable, and denote by Ec(xc) = 1

2 xT
c Qcxc a storage

function, with Qc = QT
c > 0. Then

• There exists positive constants χ1, χ2 and τ0 such that for all τ > τ0

∫ τ

0
Ec dt ≤ −χ1

∫ τ

0
xT

c (Qc Ac + AT
c Qc)xc dt + χ2

∫ τ

0
∥uc∥2 dt. (2.30)

• For every δ1 > 0, there exists δ2 > 0 such that for all τ > 0

∫ τ

0

[
δ1Ec + ∥yc∥2

]
dt ≤ δ2

∫ τ

0

[
Ec + ∥uc∥2

]
dt. (2.31)

Lemma 2.2.2 (Ramírez et al., 2014, Lemma IV.I). Let us consider the closed-loop system
of Prop. 2.2.2 with y′(t) = 0. Then, the “energy function” (2.29) satisfies for τ large enough

Ecl(τ) ≤ c(τ)
∫ τ

0
∥(Lx)(t, z∂)∥2 dt +

2c(τ)
c1

∫ τ

0
Ec(t)dt, (2.32)

where z∂ ∈ {a, b}, c(τ) is a positive constant that only depends on τ, and c1 is a positive
constant.

The conditions for the exponential stability of the closed-loop system are pre-
sented in the next proposition and represent the main contribution of this subsec-
tion.

Proposition 2.2.3. Under the same conditions of Prop. 2.2.2, assume that the control system
(2.9) is such that Ac has all the eigenvalues with negative real part, the pair (Ac, Bc) is
controllable, and (2.28) holds with δx > 0 and δu > 0 sufficiently small, but finite. Then,
the closed-loop system (2.15) with y′(t) = 0 is exponentially stable.
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Proof. Let us consider the candidate Lyapunov function (2.29). As in the proof of
Prop. 2.2.2, the variation of Ecl along system trajectories is

Ėcl ≤
1

2

(
xc

uc

)T{
Mc −Nc

}(xc

uc

)
.

Now, we follow the same steps in the proof of Theorem IV.2 in Ramírez et al., 2014.
The previous inequality implies that

Ėcl ≤ δxxT
c

(
Qc Ac + AT

c Qc

)
xc − ϵ1δu ∥uc∥2 −

− ϵ1δu

(
∥u∥2 + ∥y∥2

)
+ ϵ2δu ∥yc∥2

(2.33)

because of condition (2.28), with ϵ1 and ϵ2 positive and such that ϵ1 + ϵ2 = 1, and be-
cause of yc = u and uc = −y. From (2.3), (2.5), and (2.6), it is easy to see that there ex-

ists ϵ > 0 such that ∥u(t)∥2 + ∥y(t)∥2 ≥ ϵ ∥(Lx)(t, z∂)∥2, for z∂ ∈ {a, b}. Then, (2.33)

becomes Ėcl ≤ δxxT
c

(
Qc Ac + AT

c Qc
)

xc − ϵ1δu ∥uc∥2 − ϵϵ1δu ∥(Lx)(z∂)∥2 + ϵ2δu ∥yc∥2,
relation that can be integrated on the interval [0, τ], with τ > 0 sufficiently large, so
that one obtains

Ecl(τ)− Ecl(0) ≤ δx

∫ τ

0
xT

c

(
Qc Ac + AT

c Qc

)
xc dt + ϵ2δu

∫ τ

0
∥yc∥2 dt−

− δu

∫ τ

0

[
ϵ1 ∥uc∥2 + ϵϵ2 ∥(Lx)(z∂)∥2

]
dt

which from (2.32) in Lemma 2.2.2 implies that

(
1 +

ϵϵ2δu

c(τ)

)
Ecl(τ)− Ecl(0) ≤ δx

∫ τ

0
xT

c (Qc Ac + AT
c Qc)xc dt−

− ϵ1δu

∫ τ

0
∥uc∥2 dt + ϵ2δu

∫ τ

0

[
2ϵ

c1
Ec(t) + ∥yc∥2

]
dt.

From (2.31), if δ1 =
2ϵ
c1

, we can write that

(
1 +

ϵϵ2δu

c(τ)

)
Ecl(τ)− Ecl(0) ≤ δx

∫ τ

0
xT

c (Qc Ac + AT
c Qc)xc dt−

− (ϵ1 − ϵ2δ2)δu

∫ τ

0
∥uc∥2 dt + ϵ2δ2δu

∫ τ

0
Ec dt,

while from (2.30) that

(
1 +

ϵϵ2δu

c(τ)

)
Ecl(τ)− Ecl(0) ≤ (δx − ϵ2δ2δuχ1)

∫ τ

0
xT

c (Qc Ac + AT
c Qc)xc dt−

− [ϵ1 − ϵ2δ2(1 + χ2)]δu

∫ τ

0
∥uc∥2 dt. (2.34)

Since ϵ2 can be arbitrarily small, the right side of (2.34) can be made lower than 0,

which means that
(

1 + ϵϵ2δu
c(τ)

)
Ecl(τ) ≤ Ecl(0). Then, it is immediate that for some τ

sufficiently large we have proved that Ecl(τ) < Ecl(0). This implies that the semi-
group T(t) generated by J̄cl satisfies ∥T(τ)∥Xcl

< 1 for sufficiently large τ, i.e. the
growth bound of the semigroup is strictly negative. This means that there exists pos-
itive scalars M and α such that ∥T(t)∥Xcl

≤ Me−αt for all t ≥ 0, and this completes
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the proof.

2.2.4 Stabilisation of distributed port-Hamiltonian systems in impedance
and scattering form

As discussed in Remark 2.2.1, we start by assuming that (2.1) is in impedance form,

i.e. dissipative with storage function given by the total energy 1
2 ∥x∥2

L, and supply
rate s(u, y) = yTu, where input u(t) and output y(t) are given in (2.5) and (2.6),
respectively, with WΣWT = W̃ΣW̃T = 0 and W̃ΣWT = I. From (2.28) in Prop. 2.2.3,
(2.9) leads to an exponentially stable closed-loop system if there exists Qc = QT

c > 0,
δx > 0 and δu > 0 sufficiently small such that

(
(1 − 2δx)(Qc Ac + AT

c Qc) QcBc

BT
c Qc 0

)
−
(

0 CT
c

Cc Dc + DT
c − 2δu I

)
≤ 0. (2.35)

This implies that Dc + DT
c ≥ 2δu I > 0, i.e. a positive feedthrough term must be

present, and that

Ėc(xc(t)) ≤ yT
c (t)uc(t)− δu ∥uc(t)∥2 , (2.36)

where Ec = 1
2 xT

c Qcxc is the storage function of (2.9). This relation implies that the
control system has to be input strictly passive (van der Schaft, 2000).

Corollary 2.2.1. Under the same general conditions of Prop. 2.2.3, let us consider the BCS
of Theorem 2.1.1 in impedance form, and denote the transfer matrix of (2.9) by Hc(s) =
Cc(sI − Ac)

−1Bc + Dc. Then, the closed-loop system (2.15) is exponentially stable if the
linear system with transfer matrix Hc(s − ϵ) is strictly input passive for some ϵ > 0.

Proof. Since Hc(s − ϵ) is strictly input passive, (2.36) holds and then it is easy to see
that

(
Qc(Ac + ϵI) + (AT

c + ϵI)Qc QcBc

BT
c Qc 0

)
−
(

0 CT
c

Cc Dc + DT
c − δu I

)
≤ 0,

which is equivalent to (2.35) because Qc(Ac + ϵI) + (AT
c + ϵI)Qc = Qc Ac + AT

c Qc +
2ϵQc, and −δx(Qc Ac + AT

c Qc) ≤ ϵQc for δx > 0 since Ac is exponentially stable.

Analogous considerations can be drawn if (2.1) is in scattering form, i.e. when
input and output are selected so that the BCS is dissipative with storage function
1
2 ∥x∥2

L and supply rate s(u, y) = 1
2 ∥u∥2 − 1

2 ∥y∥2. As reported in Remark 2.2.1, this
is possible once W and W̃ in (2.5) and (2.6) are such that WΣWT = −W̃ΣW̃T = I
and W̃ΣWT = 0. From (2.28) in Prop. 2.2.3, the linear regulator (2.9) exponentially
stabilizes the boundary control system (2.1) if there exists Qc = QT

c > 0, and δx > 0
and δu > 0 sufficiently small such that

(
(1 − 2δx)(Qc Ac + AT

c Qc) QcBc

BT
c Qc 0

)
+

(
CT

c Cc CT
c Dc

DT
c Cc DT

c Dc − (γ2 − 2δu)I

)
≤ 0 (2.37)

for some γ such that |γ| ≤ 1 (see also Remark 2.2.1). The LMI (2.37) implies that
DT

c Dc − (γ2 − 2δu)I ≤ 0, i.e. that DT
c Dc − I < 0, which means that the feedthrough

gain has to be lower than 1 or, equivalently, that the following dissipation inequality
with |γ| < 1 holds true:

Ėc(xc(t)) ≤
1

2
γ2 ∥uc(t)∥2 − 1

2
∥yc(t)∥2 . (2.38)
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Corollary 2.2.2. Under the same general conditions of Prop. 2.2.3, let us consider the BCS
of Theorem 2.1.1, which is assumed in scattering form. Moreover, let us denote by Hc(s) =
Cc(sI − Ac)

−1Bc + Dc the transfer matrix of the control system (2.9). Then, the closed-
loop system (2.15) is exponentially stable if, for some ϵ > 0, the linear system with transfer
matrix Hc(s − ϵ) has L2-gain γ < 1 or, equivalently, if (2.38) holds true.

Proof. The result can be proved in the same way as Corollary 2.2.1.

2.3 Stability Analysis of RC Systems: the port-Hamiltonian
Approach

In this section a novel stability analysis will be applied on RC schemes. Since such
schemes consist of coupled PDEs and ODEs, the idea is to rely on the previous re-
sults and on the properties of dissipative systems to perform an analysis in time-
domain using a state-space approach, considering the infinite-dimensional nature of
the system. As result a simpler and intuitive characterization of the controlled plants
(that in Chapter 1 were referred to as P(s)) for which RC laws can be successfully
applied is carried out.

The first step is to interpret the repetitive compensator of Figure 1.1 as a BCS
in the sense of Theorem 2.1.1. Then the exponential stability result of Prop. 2.2.3
will be exploited to determine the conditions on the controlled plant to have a stable
closed-loop system.

Proposition 2.3.1. The repetitive compensator of Fig. 2.2 admits a port-Hamiltonian repre-
sentation (2.1) with z ∈ [0, τ], P1 = −I, P0 = G0 = 0, and L(z) = I. If

W =
√

2
(

I 0
)

W̃ =

√
2

2

(
−I I

)
(2.39)

the repetitive compensator is a BCS in the sense of Theorem 2.1.1 with input-output map
defined as in (2.5) and (2.6), and the following energy-balance relation holds true:

1

2

d

dt
∥x(t)∥2

2 =
1

2

(
u(t)
y(t)

)T (
I I
I 0

)(
u(t)
y(t)

)
. (2.40)

Proof. The PDE (2.1) takes now the form

∂x

∂t
(t, z) = −∂x

∂z
(t, z) (2.41)

and, since the spatial domain is [0, τ], it is easy to see that x(t, τ) = x(t − τ, 0),
which means that x(t, τ) is the delayed copy of x(t, 0), for all t ≥ τ. With Fig. 2.2 in
mind, we can write that y(t) = x(t, τ) and that u(t) + y(t) = x(t, 0), which implies
that u(t) = x(t, 0) − x(t, τ). Since (2.41) is in the form (2.1), from (2.3) we have that

+

FIGURE 2.2: The repetitive compensator with I/O signals.
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f∂ = 1√
2
[−x(τ) + x(0)] and e∂ = 1√

2
[x(τ) + x(0)], so u(t) and y(t) are obtained from

(2.5) and (2.6) if the matrices W and W̃ are selected as in (2.39). Note that WΣWT = 0,
so (2.41) with input u(t) is a BCS in the sense of Theorem 2.1.1. Finally, we have that
1
2

d
dt ∥x(t)∥2

2 = − 1
2 ∥x(t, τ)∥2 + 1

2 ∥x(t, 0)∥2, which leads to (2.40) due to the definition
of u(t) and y(t).

The result reported in Prop. 2.3.1 allows to rely on the stability tools discussed in
the previous section to determine under which conditions on the controlled plant the
closed-loop system characterizing classical RC schemes is exponentially stable. In
fact the RC scheme in Fig. 1.2 can be interpreted as merging from the standard feed-
back interconnection of the repetitive compensator as BCS and a finite-dimensional
controlled plant described in the following.

Let us assume that the plant is the linear system

{
˙̄x(t) = Āx̄(t) + B̄ū(t)

ȳ(t) = C̄x̄(t) + D̄ū(t)
(2.42)

where x̄ ∈ Rn̄, ū ∈ Rn and ȳ ∈ Rn are the state variable, input and output, respec-
tively. The matrices Ā, B̄, C̄ and D̄ have the appropriate dimensions. To perform
the stability analysis of the repetitive control scheme, we note that for the closed-
loop system the results of Prop. 2.2.2 are applicable. From (2.19) and (2.40) exis-
tence of solutions is guaranteed if in (2.42) Ā has no positive eigenvalues, the pair
(Ā, B̄) is controllable, and if (2.42) is dissipative with respect to the storage function
Ē(x̄) = 1

2 x̄TQ̄x̄, with Q̄ = Q̄T > 0, and supply rate

s̄(ū, ȳ) =
1

2

(
ū
ȳ

)T (
0 I
I −σI

)(
ū
ȳ

)
, (2.43)

with σ ≥ 1. Prop. 2.2.3 is, then, instrumental to characterize the class of linear sys-
tems (2.42) for which the repetitive control scheme is exponentially stable.

Proposition 2.3.2. The repetitive control scheme of Fig. 1.2 is well-posed and exponentially
stable if (2.42) is such that Ā is Hurwitz, the pair (Ā, B̄) is controllable, and

(
Q̄Ā + ĀTQ̄ Q̄B̄

B̄TQ̄ 0

)
−
(

−σC̄TC̄ C̄T (I − σD̄)(
I − σD̄T

)
C̄ D̄T + D̄ − σD̄TD̄

)
≤

≤ −2

(
−δx(Q̄Ā + ĀTQ̄) 0

0 δu I

)
(2.44)

holds for a Q̄ = Q̄T > 0, σ ≥ 1, δx > 0 and δu > 0 sufficiently small.

Proof. The result follows from Prop. 2.2.3, in which the supply rate of the finite di-
mensional system is (2.43).

The previous proposition is consistent with the classical stability conditions of
repetitive control. In fact, a necessary condition for (2.44) to hold is that D̄T + D̄ −
σD̄TD̄ ≥ δu I, for all σ ≥ 1, and δu > 0 arbitrarily small. If for simplicity D̄ = γI, we
have that σγ2 − 2γ < 0, i.e. that 0 < γ < 2

σ . So, it is necessary that (2.42) is bi-proper,
and that the feedthrough gain γ is positive and lower than 2, which corresponds to
σ = 1. Moreover, from Prop. 2.2.2 and (2.43), since σ ≥ 1, it can be deduced that the
closed-loop system is described by a contraction C0-semigroup, if (2.42) is ν-output
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strictly passive (van der Schaft, 2000), with ν ≥ 1
2

10. To have exponential stability,
(2.44) forces the system (2.42) to have a non-null feed-through term and internal
dissipation. Along the same line of Corollaries 2.2.1 and 2.2.2, it is easy to see that
the following corollary of Prop. 2.3.2 holds true.

Corollary 2.3.1. Under the same conditions of Prop. 2.3.2, let us denote by

H̄(s) = C̄(sI − Ā)−1
B̄ + D̄

the transfer matrix of the plant (2.42). Then, the repetitive control scheme of Fig. 1.2 is
exponentially stable if, for some ϵ > 0, the linear system with transfer matrix H̄(s − ϵ) is
ν-output strictly passive, with ν > 1

2 .

Remark 2.3.1. It is worth to highlight that differently from the usual framework in which
exponential stabilization of BCS is carried on, a rule inversion between controller and plant
has been implicitly taken place in the latter analysis. In fact in RC schemes the infinite-
dimensional BCS in port-Hamiltonian form (2.1) is indeed the controller, while the finite-
dimensional plant (2.42), which is classically interpreted as the stabilizing controller for the
BCS, represents the class of systems for which RC laws can be successfully applied.

2.4 Extension to Modified RC Systems

In this section the proposed methodology is extended to the stability analysis of
modified RC schemes (MRC), presented in subsection 1.3.1 and shown in Fig. 2.3

Once again the goal is to exploit different stabilization results developed for BCS
in port-Hamiltonian form in the sense of Theorem 2.1.1, and analyse their relation
with MRC schemes to provide alternative (with respect to (1.2)) and possibly simpler
stability conditions in the time domain. The first step discussed below consists in the
formulation of the pure delay e−sτ as a BCS in port-Hamiltonian form.

Proposition 2.4.1. The pure delay of τ units of time admits a distributed port-Hamiltonian
representation (2.1) if

P1 = −I P0 = G0 = 0 L(z) = I (2.45)

with z ∈ [0, τ]. Moreover, with Theorem 2.1.1 in mind, if the matrices that define the input
and the output (2.5) and (2.6), respectively, are chosen as

W =

√
2

2

(
I I

)
W̃ =

√
2

2

(
−I I

)
(2.46)

10Notice that in the LTI SISO case, this condition can be graphically interpreted as the stability region
present in Fig. 1.4 deducted in frequency domain by e.g. Hara et al., 1988

+−

FIGURE 2.3: Modified Repetitive Control scheme.
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the pure time delay is a BCS in the sense of the semigroup theory, and the following energy-
balance relation

1

2

d

dt
∥x(t)∥2

2 =
1

2
uT(t)u(t)− 1

2
yT(t)y(t) (2.47)

holds true.

Proof. The PDE (2.1) with the assumptions (2.45) is

∂x

∂t
(t, z) = −∂x

∂z
(t, z) (2.48)

and, if the spatial domain is [0, τ], it is easy to see that x(t, τ) = x(t − τ, 0), which
means that x(t, τ) is the delayed copy of x(t, 0), for all t ≥ τ. With the classical
input / output description of a time delay block in mind, we can write that y(t) =
x(t, τ) and that u(t) = x(t, 0). Since (2.48) is in the form (2.1), from (2.3) we have
that (

f∂

e∂

)
=

1√
2

(
−x(τ) + x(0)
x(τ) + x(0)

)

so u(t) and y(t) are obtained from (2.5) and (2.6) if the matrices W and W̃ are selected
as in (2.46). Note that WΣWT = I, so (2.48) with input u(t) is a boundary control
system in the sense of Theorem 2.1.1. Furthermore it represents an exponentially
stable BCS, and it is easy to check that its growth bound is −∞ (Jacob and Zwart,
2012). Finally, we have that

1

2

d

dt
∥x(t)∥2

2 = −1

2
∥x(t, τ)∥2 +

1

2
∥x(t, 0)∥2 (2.49)

which leads to the energy-balance relation (2.47) due to the definition of u(t) and
y(t).

2.4.1 Well-Posedness Analysis

Let us consider the MRC scheme reported in Fig. 2.3. Here, Gf (s) is an exponentially
stable low pass filter with minimal realization

{
ẋ f (t) = A f x f (t) + Bf u f (t)

y f (t) = Cf x f (t) + D f u f (t)
(2.50)

in which x f ∈ R f is the state variable, and the matrices A f , Bf , Cf and D f have
the appropriate dimensions. Differently, the dynamical system P(s) is the controlled
plant, which is supposed to be exponentially stable and with minimal realization

{
ẋp(t) = Apxp(t) + Bpup(t)

yp(t) = Cpxp(t) + D f up(t)
(2.51)

in which xp ∈ Rp is the state variable, and the matrices Ap, Bp, Cp and Dp have the
appropriate dimensions.

To frame the study of the properties of the MRC scheme within the standard
theory of stabilization of BCS in port-Hamiltonian form, see e.g. (Villegas et al., 2009;
Ramírez et al., 2014; Macchelli et al., 2017), an equivalent formulation of the block
diagram of Fig. 2.3 is derived, and then shown in Fig. 2.4. With simple calculations,
it is possible to check that Ḡ(s) = Gf (s) [P(s)− I], and for such system we assume
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r ( t)

ȳ( t)

−
G f (s)

Ḡ (s)

u( t) y( t)ȳr ( t)

FIGURE 2.4: Equivalent formulation of the scheme of Fig. 2.3.

ȳ(t)

ȳr(t)
−

˙̄x = Āx̄ + B̄ū

ȳ = C̄x̄ + D̄ū

ẋ = J x

u
y

=
W
W̃

f∂

e∂

u(t)

ū(t)

y(t)

FIGURE 2.5: Port-Hamiltonian interpretation of MRC systems as
boundary stabilization problem for the class of PDE (2.1).

that its minimal state-space realization is

{
˙̄x(t) = Āx̄(t) + B̄ū(t)

ȳ(t) = C̄x̄(t) + D̄ū(t)
(2.52)

where x̄ = (x f , xp) ∈ Rn̄, with n̄ = f + p, and

Ā =

(
A f 0

BpCf Ap

)
B̄ =

(
Bf

BpD f

)

C̄ =
(
(Dp − I)Cf Cp

)
D̄ = (Dp − I)D f

(2.53)

Since Gf (s) is an exponentially stable finite dimensional linear system, well-
posedness and stability for the dynamical system of Fig. 2.4 can be studied by look-
ing at the properties of the feedback loop that involves the pure delay and system
Ḡ(s). For this system, we have that

u(t) = −ȳ(t) + ȳr(t) ū(t) = y(t) (2.54)

and it is easy to see that it is in fact a particular case of the general situation de-
picted in Fig. 2.5, where a BCS in port-Hamiltonian form in interconnected to a finite
dimensional system. In case of the MRC scheme, the BCS is the pure delay, while
the finite dimensional system is Ḡ(S), which depends on both the filter and plant
dynamics. Since from (2.47) in Prop. 2.4.1 we see that the pure delay is dissipative
with respect to a specific supply rate that correspond to a BCS in the sense of Theo-
rem 2.1.1 in scattering form, in the remaining part of the paper we restrict ourself to
the case in which (2.1) is endowed with an input / output mapping defined by (2.5)
and (2.6) with

WΣWT = −W̃ΣW̃T = I WΣW̃T = 0 (2.55)
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Consequently, the energy balance relation (2.7) becomes

1

2

d

dt
∥x(t)∥2

L ≤ 1

2
uT(t)u(t)− 1

2
yT(t)y(t)

which is in fact in the same for as (2.47).
The system of Fig. 2.5 can be compactly written as

{
ζ̇(t) = Jclζ(t)

ȳr(t) =
(
B + D̄C C̄

)
ζ(t) =: B′ζ(t)

(2.56)

where ζ = (x, x̄) ∈ Z := X × Rn̄ is the state variable, and Jcl : D(Jcl) ⊂ Z → Z is
the linear operator

Jclζ =:

(
J 0
B̄C Ā

)(
x
x̄

)
(2.57)

with J introduced in Remark 2.1.1, and domain

D(Jcl) = D(J )× R
n̄ (2.58)

Moreover, Z is endowed with the inner product

⟨ζ1 | ζ2⟩Z = ⟨x1 | x2⟩L + x̄1Q̄x̄2

where

Q̄ =

(
Q f 0
0 Qp

)
(2.59)

with Q f = QT
f > 0 and Qp = QT

p > 0. Some fundamental properties associated to

the system of coupled PDEs and ODEs that describes the closed-loop dynamics are
presented in the next propositions.

Proposition 2.4.2. Let us consider the closed-loop system (2.57) resulting from the inter-
connection (2.54) of the BCS of Theorem 2.1.1 in scattering form, i.e. input and output are
defined as in (2.5) and (2.6) with W and W̃ so that (2.55) holds, and the linear system (2.52).
If (

Q̄Ā + ĀTQ̄ + C̄TC̄ Q̄B̄ + C̄TD̄
B̄TQ̄ + D̄TC̄ D̄TD̄ − γ2 I

)
≤ 0 (2.60)

holds for some Q̄ = Q̄T > 0 and 0 < γ ≤ 1, then (2.56) with Jcl defined in (2.57) and
domain (2.58) is a BCS. Moreover, the operator J̄cl defined in the same way as in (2.57), but
with domain

D(J̄cl) =
{

ζ ∈ Z | x ∈ D(J ), and B′ζ = 0
}

(2.61)

and with B′ defined as in (2.56) generates a contraction semigroup.

Proof. The result follows applying Prop. 2.2.2 with

(
Y −ST

−S U

)
=

(
−I 0
0 I

)

Remark 2.4.1. It is easy to check that (2.60) holds if and only if the input / output map of
(2.52) has finite L2-gain, lower than γ, i.e. if and only if

ṠḠ(x̄) ≤ 1

2
γ2 ∥ū∥2 − 1

2
∥ȳ∥2 (2.62)
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along system trajectories, and where SḠ(x̄) = 1
2 x̄TQ̄x̄ is a storage function for Ḡ(s). More-

over, because of the fact that Gf (s) is an exponentially stable, finite dimensional, linear sys-
tem, if the closed-loop system of Fig. 2.5 satisfies the requirements of Prop. 2.4.2, then such
system is a BCS, and this implies that the complete system reported in Fig. 2.4 is a BCS. As
a consequence, existence of trajectories when the reference period input is smooth enough is
guaranteed also for the MRC scheme.

2.4.2 Stability Analysis

In the previous section, well-posedness of the closed-loop system (2.56) reported in
Fig. 2.5 when the BCS is in scattering form has been addressed in Prop. 2.4.2. In the
next proposition, instead, the exponential stability of equilibria is investigated.

Proposition 2.4.3. Under the same conditions of Prop. 2.4.2, assume that there exists Q̄ =
Q̄T > 0, δ > 0 sufficiently small, and 0 < γ < 1 such that

(
(1 − δ)

(
Q̄Ā + ĀTQ̄

)
+ C̄TC̄ Q̄B̄ + C̄TD̄

B̄TQ̄ + D̄TC̄ D̄TD̄ − γ2 I

)
≤ 0 (2.63)

If Ā is Hurwitz, then the closed-loop system (2.56) with ȳr(t) = 0 is exponentially stable.

Proof. At first, if Ā is Hurwitz, for all Q̄ = Q̄T > 0 there exists P̄ = P̄T > 0 such that

Q̄Ā + ĀTQ̄ = −P̄ (2.64)

Now, a candidate Lyapunov function to study the stability of (2.56) is given by the
sum of the Hamiltonian of (2.1) with the storage function of (2.52), i.e. by

Ecl(x(t), x̄(t)) =
1

2
∥x(t)∥2

L +
1

2
x̄T(t)Q̄x̄(t)

From (2.47), the variation of Ecl along system trajectories, whose existence is guar-
anteed by Prop. 2.4.2, is

Ėcl ≤ x̄TQ̄(Āx̄ + B̄ū) +
1

2
∥u∥2 − 1

2
∥y∥2

that can be rewritten as

Ėcl ≤
1

2

(
x̄
ū

)T (
Q̄Ā + ĀTQ̄ + C̄TC̄ Q̄B̄ + C̄TD̄

B̄TQ̄ + D̄TC̄ D̄TD̄ − γ2 I

)(
x̄
ū

)

since (2.54) holds true. Thanks to (2.63), the following upper-bound on the variation
of the total energy is obtained:

Ėcl ≤
1

2

(
x̄
ū

)T (
δ
(
Q̄Ā + ĀTQ̄

)
0

0 (γ2 − 1)I

)(
x̄
ū

)

and this relation can be compactly rewritten as

Ėcl ≤ ρx̄T
(

Q̄Ā + ĀTQ̄
)

x̄ − σ ∥ū∥2 ≤ ρx̄T
(

Q̄Ā + ĀTQ̄
)

x̄ − σϵ1 ∥ū∥2 −

− σϵ2

(
∥u∥2 + ∥y∥2

)
+ σϵ2 ∥ȳ∥2

(2.65)
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since from (2.54) we have that ū(t) = y(t) and u(t) = −ȳ(t) under the assumption
that ȳr(t) = 0, and where ϵ1 + ϵ2 = 1, ρ = δ

2 > 0, and σ = 1
2(1 − γ2) > 0, since

0 < γ < 1. Note that (2.3), (2.5) and (2.6) define a linear and invertible relation
between u and y, and the restriction of the co-energy variables at the boundary of
the spatial domain, i.e. with (Lx)(a) and (Lx)(b). This means that there exists ϵ > 0

such that ∥u(t)∥2 + ∥y(t)∥2 ≥ ϵ ∥(Lx)(t, z∂)∥2, for z∂ = a or z∂ = b. With this in
mind, relation (2.65) becomes

Ėcl ≤ ρx̄T
(

Q̄Ā + ĀTQ̄
)

x̄ − σϵ1 ∥ū∥2 − σϵϵ2 ∥(Lx)(·, z∂)∥2 + σϵ2 ∥ȳ∥2 (2.66)

Integrating (2.66) on the interval [0, κ], with κ > 0 sufficiently large, one obtains

Ecl(κ)− Ecl(0) =
∫ κ

0
ρx̄T

(
Q̄Ā + ĀTQ̄

)
x̄ dt−

−
∫ κ

0

[
σϵ1 ∥ū∥2 + σϵϵ2 ∥(Lx)(t, z∂)∥2

]
dt + σϵ2

∫ κ

0
∥ȳ∥2 dt

Since Ap and A f are Hurwitz, so is Ā because of (2.53). Consequently Q̄ can always
be selected so that (2.64) holds. Then, the remaining part of the proof follows exactly
the same steps as in Prop. 2.2.3. To conclude, it is possible to show that the semi-
group T(t) generated by Jcl satisfies ∥T(κ)∥Z < 1 for sufficiently large κ, and this
implies that the growth bound of the semigroup is strictly negative. As discussed
e.g. in (Jacob and Zwart, 2012), this means that there exists positive scalars M and α
such that ∥T(t)∥Z ≤ Me−αt for all t ≥ 0.

The class of systems for which the MRC scheme is exponentially stable is char-
acterized in the next corollary.

Corollary 2.4.1. The MRC scheme of Fig. 2.3 is exponentially stable if for some Q̄ = Q̄T >

0 defined in (2.59), δ > 0, 0 < γ < 1, the filter (2.50) and the controlled plant (2.51) are
such that A f and Ap are Hurwitz, and the following LMI holds true:

(
A S
ST D

)
≤ 0 (2.67)

where

A = (1 − δ)

(
Q f A f + AT

f Q f CT
f BpQp

QpBpCf Qp Ap + AT
pQp

)

+

(
CT

f DT
u DuCf CT

f DT
u Cp

CT
p DuCf CT

pCp

)

S =

(
Q f Bf + CT

f DT
u DuD f

QpBpD f + CT
p DuD f

)

D = DT
f DT

u DuD f − γ2 I

(2.68)

with Du = Dp − I

Proof. It is easy to see that (2.67) can be obtained by substituting (2.53) in (2.63).

In the next remarks, the general condition (2.67) is applied to two specific cases
of interest. The first one is the standard RC scheme, while the second one deals with
the situation in which both the filter and the controlled plant are strictly proper.
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Remark 2.4.2. In standard RC schemes, the filter is not present, i.e. A f = 0, B f = 0,
C f = 0, and D f = I in (2.50). In this case, condition (2.67) reduces to

(
Arc cSrc

ST
rc Drc

)
≤ 0 (2.69)

where
Arc = (1 − δ)

(
Qp Ap + AT

pQp

)
+ CT

pCp

Src = QpBp + CT
p(Dp − I)

Drc = DT
p Dp − DT

p − Dp + (1 − γ2)I

which can be fulfilled, for example, if (2.51) is α-output strictly passive with α > 1
2 , (Cal-

ifano, Macchelli, and Melchiorri, 2017; Macchelli and Califano, 2018). In any case the
feedthrough term Dp has to be different from zero, since γ < 1 and Drc cannot be nega-
tive: this is a necessary condition for (2.69) to hold. This is consistent with classical sta-
bility results of RC, as discussed e.g. in (Hara et al., 1988; Biagiotti, Califano, and Mel-
chiorri, 2016)). Differently, if the low-pass filter is present, it is clear from (2.68) that there
is the chance to exponentially stabilize the system also if Dp = 0. In this case, in fact,
D = DT

f D f − γ2 I can be made negative if |D f | < 1.

Remark 2.4.3. An interesting case to investigate is when the filter and the plant are strictly
proper systems: this is realistically what happens in continuous time applications. Then, we
have that D f = 0 and Dp = 0, i.e. that Du = −I. In this case, (2.67) becomes

(
Asp Ssp

ST
sp Dsp

)
≤ 0 (2.70)

where

Asp = (1 − δ)

(
Q f A f + AT

f Q f CT
f BpQp

QpBpCf QpAp + AT
pQp

)

+

(
CT

f C f −CT
f Cp

−CT
pCf CT

pCp

)

Ssp =

(
Q f Bf

0

)

Dsp = −γ2 I

A necessary condition that depends on the filter only and is necessary to satisfy so that (2.70)
holds true is the following:

(
Q f A f + AT

f Q f + CT
f C f Q f Bf

BT
f Q f −γ2 I

)

≤ 0 (2.71)

Such conditions implies that the filter must have L2-gain less than γ, being S f (x f ) =
1
2 xT

f Q f x f the storage function of the filter. The same relation describes the necessity of hav-

ing a loop gain smaller than 1 in the delay subsystem. Indeed, it represents the intrinsic
trade-off of continuous time repetitive control schemes: as discussed in (Weiss, 1997), it is
impossible to track any periodic signal by relying on an exact internal model, and at the same
time achieve exponential stability / robustness with respect to time delays at any point in the
feedback loop.
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+− Φe−sT

C(s)
r(t) yc(t)

FIGURE 2.6: Continuous-time nonlinear RC scheme.

2.5 Extension to the Nonlinear Case

In this section the analysis is extended to the nonlinear case, i.e. to the RC scheme
shown in Fig. 2.6. The proposed methodology, developed in time-domain using a
state-space approach is thus amenable to be used in a nonlinear framework. With
respect to the linear case some very recent results regarding stabilization of BCS
through nonlinear boundary controllers developed in Ramírez, Zwart, and Le Gor-
rec, 2017 are consistently exploited.

Differently from what has been usually done in nonlinear RC, the proposed
methodology does not rely on a finite-dimensional approximation of the repetitive
compensator, nor on a linearisation of a nonlinear plant, or even on a nonlinear
perturbation of a linear one. More specifically, in Ghosh and Paden, 2000 nonlin-
ear RC schemes are studied by approximating the compensator C(s) with a finite-
dimensional system, and tracking is analysed for a particular class of nonlinear sys-
tems. In Lin, Chung, and Hung, 1991, small-gain arguments are used to guarantee
stability of linear RC schemes in which a sector nonlinearity at the input of a linear
plant is present. In Owens, Li, and Banks, 2007 and similarly to the approach dis-
cussed in this paper, the stability analysis is performed by relying on a state-space
representation of the plant, with the nonlinear case briefly addressed as perturbation
of the linear one. Note that well-posedness of the closed-loop system, i.e. existence
and properties of solutions, is never addressed. When e.g. in Owens, Li, and Banks,
2007 the stability analysis in presence of nonlinear perturbations is carried on by
differentiating a Lyapunov functional along solutions, it is implicitly assumed that
such solutions in closed-loop exist, which is not correct in an infinite-dimensional
framework.

2.5.1 Interconnection between a BCS in scattering form and a nonlinear
system

2.5.2 Well-posedness analysis

To determine the class of nonlinear systems Φ for which the RC scheme of Fig. 2.6
is well-posed and stable, a preliminary step consists in studying the properties of
the closed-loop system obtained from the feedback interconnection of a BCS in the
sense of Theorem 2.1.1 and in scattering form (see e.g. Prop. 2.4.1), with a nonlinear
system, denoted by Σ. The general framework is illustrated in Fig. 2.7. Note that

u(t) = −yc(t) + r(t) uc(t) = y(t) (2.72)

and that the closed-loop system is described by coupled PDEs and ODEs. With
Ramírez et al., 2014; Ramírez, Zwart, and Le Gorrec, 2017; Califano, Macchelli, and
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u(t) y(t)r(t)
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f∂

e∂
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FIGURE 2.7: Feedback interconnection between a BCS in scattering

form and the nonlinear system Σ.

Melchiorri, 2017 in mind, the problem of finding conditions on Σ to have a well-
posed and exponentially stable system is in fact equivalent to the problem of finding
the class of nonlinear control systems Σ able to stabilise the port-Hamiltonian system
(2.1) in scattering form.

Let us consider the nonlinear system

Σ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̇1(t) = K2v2(t)

v̇2(t) = − ∂P

∂v1
(v1(t))− R(v2(t))K2v2(t) + Bcuc(t)

yc(t) = −D−TBT
c K2v2(t) + Duc(t)

(2.73)

where v1, v2 ∈ Rnc , P : Rnc → R+ is a Fréchet differentiable function, Bc an nc × n
real matrix, R(v2) a locally Lipschitz-continuous matrix-valued function taking val-
ues in Rnc×nc , D a non-singular n × n matrix, K2 = KT

2 > 0 a nc × nc real matrix.
Furthermore, P(v1) > P(0) = 0 for all v1 ̸= 0, P(v1) → ∞ if |v1| → ∞, i.e. P(v1) is
radially unbounded, and ∂P

∂v1
(v1) is locally Lipschitz-continuous.

Proposition 2.5.1. Assume that in (2.73)

|D| ≤ 1 (2.74)

R(v2) ≥
1

2
BcD−1D−TBT

c , ∀v2 ∈ R
nc (2.75)

and define Θ(v2) = K2
[
R(v2)− 1

2 BcD−1D−TBT
c

]
K2, ∆ = 1

2

(
I − DTD

)
, and Q(v1, v2) =

P(v1) +
1
2 vT

2 K2v2. Then, the variation of Q(v1, v2), i.e. of the “energy” along the sys-
tem trajectories is

Q̇ = −vT
2 Θ(v2)v2 − uT

c ∆uc +
1

2
uT

c uc −
1

2
yT

c yc, (2.76)

where Θ(v2) ≥ 0 and ∆ ≥ 0 since (2.74) and (2.75) hold.

Proof. This result follows by computing Q̇ along solutions of (2.73), which exist at
least locally because the functions describing Σ are locally Lipschitz continuous.

Remark 2.5.1. Conditions (2.74) and (2.75) make the system (2.73) dissipative with storage
function Q(v) and supply rate s(uc, yc) = 1

2 uT
c uc − 1

2 yT
c yc, i.e. Q̇ ≤ s(uc, yc). In the same

way as in Prop. 2.4.1, we can say that such system is in scattering form, which, from a
dissipativity theory point of view, means that the input-output mapping of (2.73) has finite
L2-gain, lower than 1.
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For the closed-loop system sketched in Fig. 2.7 the storage function is

Etot(x̃) =
1

2
∥x∥2

L + Q(v1, v2), (2.77)

where x̃ = (x, v1, v2) is the state variable, and the dynamics is described by the
following semi-linear differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̃x(t) = Ã′ x̃(t) + B̃ f (x̃(t))

r(t) = Wcc

⎛

⎝
f∂(t)
e∂(t)
v2(t)

⎞

⎠ (2.78)

with

Ã′ x̃ =

⎛

⎜⎜⎝

J x
K2v2

−v1 + BcW̃

(
f∂

e∂

)

⎞

⎟⎟⎠ , D(Ã′) = D(J )× R
nc

f (x̃) = v1 −
∂P

∂v1
(v1)− R(v2)K2v2,

B̃ =
(
0 0 I

)T
and Wcc =

(
W + DW̃ −D−TBT

c K2
)
.

When r(t) = 0, the linear operator is denoted by Ã, formally defined as Ã′, but
with domain D(Ã) = {Lx ∈ H1(a, b; Rn), v1, v2 ∈ Rnc | ( f∂, e∂, v2) ∈ Ker Wcc}.
The new state space is X̃ = X × Rnc × Rnc , endowed with the with inner product

⟨x̃1 | x̃2⟩X̃ = ⟨x1 | Lx2⟩+ vT
1,1v1,2 + vT

2,1K2v2,2 and norm ∥x̃∥2 = ⟨x̃ | x̃⟩X̃ . It is possible

to prove that the linear operator Ã is the generator of a contraction semigroup, and
that its resolvent is compact, see Ramírez et al., 2014.

The first question that could arise is whether the closed-loop system (2.78) is
well-posed, i.e. if at least local solutions exist for any initial condition. Due to the
particular choice made for Σ in (2.73), it turns out that solutions exist globally.

Proposition 2.5.2. Let us consider the nonlinear system (2.73), and assume that (2.74)
and (2.75) are satisfied. Then, the autonomous closed-loop system (2.78) is well-posed and,
in particular, for any initial condition, it possesses a unique global mild solution which is
uniformly bounded.

Proof. Since ∂P
∂v1

(v1) and R(v2) are locally Lipschitz continuous, so is f (x̃) in (2.78);

moreover, B̃ is a bounded linear operator. This implies, see e.g. Luo, Guo, and
Morgul, 1999, that for any initial condition the closed-loop system possesses a unique
mild solution on some time interval [0, tmax), which is classical if the initial con-
dition belongs to the domain of Ã. Furthermore, if tmax < +∞, then necessarily
limt→tmax ∥x̃(t)∥ = +∞. In fact, by taking the time derivative along classical solu-
tions of the total energy (2.77), we obtain that

Ėtot ≤
1

2
uTu − 1

2
yTy − vT

2 Θ(v2)v2 − uT
c ∆uc +

1

2
uT

c uc −
1

2
yT

c yc,

where (2.76) has been taken into account, and it has been assumed that the BCS
defined in Theorem 2.1.1 is in scattering form, i.e. the balance relation (2.47) in
Prop. 2.4.1 holds. Thanks to (2.72) and after integration, this inequality becomes

Etot(t) ≤ Etot(0)−
∫ t

0

[
vT

2 Θ(v2)v2 + uT
c ∆uc

]
dτ (2.79)
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Since Ã generates a contraction semigroup, its domain is dense in X̃ and solutions
depends continuously on the initial conditions. This means that (2.79) is true for
every initial condition. Due to the fact that Θ(v2) ≥ 0 and ∆ ≥ 0, the previous
inequality shows that Etot(t) is uniformly bounded, and this means that so are ∥x∥L,
P(v1(t)) and 1

2 vT
2 (t)K2v2(t). Now boundedness of |v2(t)| is a consequence of the

positive definiteness of K2; boundedness of |v1(t)| follows from the assumption of
radial unboundedness of P(v1(t)), which in fact remains bounded and forces |v1(t)|
to remain bounded as well. The conclusion is that tmax = +∞, and thus global
existence of solution is proved.

2.5.3 Stability analysis with application to RC

The aim is now to study the exponential stability of the closed-loop system (2.78)
so to characterize the class of nonlinear systems Φ that results into an exponentially
stable RC scheme. The stability analysis is based on Ramírez, Zwart, and Le Gorrec,
2017, where exponential stability conditions for a similar closed-loop system have
been addressed in case the BCS of Theorem 2.1.1 is passive, i.e. input and output are

selected so that the balance relation (2.7) becomes 1
2

d
dt ∥x∥2

L ≤ yTu.

Proposition 2.5.3. Let us consider the system (2.73), and assume that (2.75) holds. Fur-
thermore, suppose that

1. There exist σ1, σ2 > 0 such that for all v1 ∈ Rnc we have that vT
1

∂P
∂v1

(v1) ≥ σ1P(v1) ≥
σ2|v1|2;

2. The input and output for the BCS of Theorem 2.1.1 are so that |u(t)|2 + |y(t)|2 ≥
ϵ|(Lx)(b)|2 for some ϵ > 0;

3. n ≥ nc, and Bc is full rank;

4. |D| < 1.

Then, the closed-loop system (2.78) with r(t) = 0 is globally exponentially stable.

Proof. Note at first that (2.78) has the same structure of the closed-loop system de-
scribed in Ramírez, Zwart, and Le Gorrec, 2017. Conditions 1) and 2) are in fact
Assumptions 12 and 14 in Ramírez, Zwart, and Le Gorrec, 2017, respectively, and
condition 3) combined with (2.75) makes Assumption 13 in Ramírez, Zwart, and Le
Gorrec, 2017 automatically satisfied. Note that Assumption 15 in Ramírez, Zwart,
and Le Gorrec, 2017 is replaced here by ∆ > 0, and this requirement is structurally
true for the class of systems (2.73) provided that condition 4) holds. Thus, Theo-
rem 20 in Ramírez, Zwart, and Le Gorrec, 2017 holds, and (2.78) is globally exponen-
tially stable.

Remark 2.5.2. The major requirement to have exponential stability when the BCS of The-
orem 2.1.1 is passive, see e.g. Ramírez et al., 2014; Ramírez, Zwart, and Le Gorrec, 2017,
is the presence of a non-null feedthrough term in the controller, responsible for damping
the high-frequency terms in the infinite-dimensional system. It this case, since systems in
scattering form are considered, such requirement is transformed into a small gain condition,
namely |D| < 1.

Now the tools to apply the analysis to RC are present.
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FIGURE 2.8: Equivalent representation of the RC scheme of Fig. 2.6.

Proposition 2.5.4. Define the system Φ by adding a unitary contribution to the feedthrough
term of Σ defined in (2.73):

Φ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̇1(t) = K2v2(t)

v̇2(t) = − ∂P

∂v1
(v1(t))− R(v2(t))K2v2(t) + Bcuc(t)

yc(t) = −D−TBT
c K2v2(t) + (D + I)uc(t)

(2.80)

Then, for the class of systems Φ, the nonlinear RC scheme of Fig. 2.6 is well-posed if (2.74)
and (2.75) hold. Moreover, such closed-loop system is exponentially stable if conditions 1-4)
in Prop. 2.5.3 are satisfied.

Proof. As discussed in Califano, Macchelli, and Melchiorri, 2017, the repetitive com-
pensator C(s) is a BCS in port-Hamiltonian form, but it is not in scattering form. To
apply the results presented in the previous section, let us refer to the block diagram
of Fig. 2.8 that is equivalent to the RC scheme of Fig. 2.7 once the positive feedback
loops (dashed lines) around the delay e−sT and system Σ are removed. Since as dis-
cussed in Prop. 2.4.1, the delay is a BCS in scattering form, the properties of the RC
scheme can be studied by relying on the closed-loop system that is obtained from
the feedback interconnection of Σ with the delay equation and, as a consequence, on
the results presented in Propositions 2.5.2 and 2.5.3.

Remark 2.5.3. Thanks to Prop. 2.5.4, the nonlinear systems for which a RC scheme is well-
posed and exponentially stable are characterized. This result is consistent with the stability
conditions for RC schemes in the linear case. In fact, (2.80) must have a non-null feedthrough
term to get an exponentially stable closed-loop system since |D| < 1. A finite-dimensional
approximation of the repetitive compensator would relax this requirement, but in any case
it would be impossible to track any periodic signal. So, it is convenient to keep the infinite-
dimensional nature of the repetitive compensator, which does not pose any implementative
issues, since it is just a time delay surrounded by a positive feedback loop. To be able to
stabilize strictly proper plants, the solution consists in adding a low-pass filter in series to
the delay. This leads to a modified RC scheme Hara et al., 1988.

2.6 Asymptotic tracking in RC systems

2.6.1 Linear Case

Asymptotic tracking in the RC scheme of Fig. 1.2 is achieved if, for any periodic ref-
erence signal r(t) of period T, the error e(t) = r(t) − y(t) vanishes asymptotically,
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FIGURE 2.9: Example of perfect tracking tracking provided by expo-
nentially stable RC scheme.

i.e. limt→∞ e(t) = 0. In the linear case, this property has been assumed to be sat-
isfied once the closed-loop system is stable, Hara et al., 1988. In fact, according to
internal model-based arguments that “classically” state that if the model of the ex-
ogenous signal generator is properly included in the loop, C(s) in this case, and if
the closed-loop system is exponentially stable, then asymptotic tracking of the ex-
ogenous signals is assured.

In subsection 1.4.1 the problem of tracking in RC schemes has been intuitively
treated providing a new insight on the IMP when periodic signals are involved.
Using that reasoning the following two facts in the linear case are clear without
using internal model based arguments:

• In pure RC schemes exponential stability of the autonomous closed loop sys-
tem implies also perfect tracking for any periodic signal. As simulative exam-
ple in Fig. 2.9, a simulation results is reported in which the plant is

P(s) =
1 + 0.1s

1 + 0.35s

It is easy to see that with this choice the condition for exponential stability
(2.44) is satisfied.

• In modified RC exponential stability of the autonomous closed loop system
does not imply perfect tracking for any periodic signal, and in particular a
periodic steady state error depending on the design of the filter and the har-
monic content of the reference signal will be present. As simulative example
In Fig. 2.10, the simulation results for a case in which both the plant and the
filter are strictly proper is reported. In particular, we have that

Gf (s) =
0.998

(1 + 0.01s)
P(s) =

1

(1 + 0.05s)
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FIGURE 2.10: Example of tracking provided by exponentially stable
MRC scheme.

Note that indeed a periodic steady-state error is present: the amplitude of the
error depends on the reference signal to be tracked and on the bandwidth of
the filter.

2.6.2 Nonlinear Case

The nonlinear case is more subtle since internal model-based arguments cannot be
invoked to state that perfect tracking is assured once the closed-loop system is ex-
ponentially stable. In this section, asymptotic tracking of RC schemes applied to the
class of nonlinear systems characterized in Prop. 2.5.4 is proved.

Definition 2.6.1. A signal s(t) : R → Rn is asymptotically T-periodic if limt→∞ |s(t) −
s(t + nT)| = 0, ∀n ∈ N.

Proposition 2.6.1. Refer the RC scheme of Fig. 2.6, and consider the formulation of the
delay as a BCS in port-Hamiltonian form of Prop. 2.4.1. Perfect tracking of periodic reference
signals r(t) of period T is achieved if and only if the state of the delay equation in the closed-
loop system is such that for every z ∈ [0, T], x(t, z) is asymptotically T-periodic.

Proof. The results follows once the RC scheme in Fig. 2.6 is considered. Asymptotic
tracking is achieved if, at steady state, e(t) = v(t) − v(t − T) = 0, being v(t) the
input of the delay, and this is possible if and only if v(t) is an asymptotic T-periodic
signal, which implies that x(t, z) is asymptotically T-periodic for almost every z ∈
[0, T]11.

Now, the state of the delay system in Fig. 2.6 is asymptotically T-periodic in the
sense of Prop. 2.6.1 if and only if the state of the delay system in Fig. 2.8, in which the
(dashed) positive feedback loops are removed, is asymptotically T-periodic. Such
closed-loop system can be described by (2.78). For this system, a local asymptotic
tracking result is given, under the following assumption.

11The technical "almost every" condition is chosen because the aim is to zero the error in an L-2 sense,
and not pointwise.
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Assumption 2.6.1. For system (2.78), there exist R0 ⊂ Rn, and X̃0 ⊂ X̃ such that for all
the initial conditions x̃(0) ∈ X̃0, and all the reference signals r(t) ∈ R0 we have that

∥x̃(t)∥X̃ ≤ χ
(
∥x̃(0)∥X̃

)
+ γ (|r|∞) (2.81)

for all t ∈ R+, and for some class-K functions χ and γ.

Before stating the result that assures that local asymptotic tracking can be ob-
tained in a nonlinear RC scheme under the conditions of Prop. 2.5.4, some pre-
liminary results are presented. In what follows, for any signal s(t), let ∆ns(t) =
s(t)− s(t + nT), with T > 0 and n ∈ N.

Proposition 2.6.2. Consider a system in the form

ζ̇(t) = f (ζ(t)) + bu(t) (2.82)

with ζ ∈ Rnζ , u ∈ Rnu, and f : Rnζ → Rnζ a smooth function. If (2.82) is 0-locally expo-
nentially stable, then there exist ρ, ε > 0 any solution ζ(t) to (2.82) that fulfills |ζ(0)| ≤ ρ
and |u|∞ ≤ ε also satisfies

lim sup
t→∞

|∆nζ(t)| ≤ α lim sup
t→∞

|∆nu(t)| (2.83)

for some α > 0. Thus, in particular, if u(t) is asymptotically T-periodic, so is ζ(t).

Proof. A preliminary result is stated in the next lemma and its proof is based on
standard ISS considerations.

Lemma 2.6.1. Consider a system in the form (2.82), and assume that it is 0-locally expo-
nentially stable. Then, for each µ ≥ 0, there exist ζ̄, ū > 0 such that all the solutions of
(2.82) such that |ζ(0)| ≤ ζ̄ and |u(t)| ≤ ū, for all t ≥ 0, satisfies |ζ(t)| ≤ µ for all t ≥ 0.

We are now ready to present the proof of Prop. 2.6.2. For (2.82), define f̃ (ζ) =

f (ζ) − Aζ, where A = ∂ f
∂ζ (0). Then, lim|ζ|→0

| f̃ (ζ)|
|ζ| = 0. Denote by P = PT > 0

the unique solution to the Lyapunov equation ATP + PA = −2I, and define the

function V(ζ) = ζTPζ. Let f̃ ′(ζ) := ∂ f̃
∂ζ (ζ), since f̃ ′(0) = 0 and f̃ ′(·) is continuous,

then limζ→0 | f̃ ′(ζ)| = 0. Hence, for any ϵ > 0, there exists δ(ϵ) > 0 such that |ζ| ≤
δ(ϵ) implies | f̃ ′(ζ)| ≤ ϵ. Moreover, since f̃ ′(ζ) is the (unique) linear map such that

lim|h|→0
| f̃ (ζ+h)− f̃ (ζ)− f̃ ′(h)|

|h| = 0, with h ∈ Rnζ , then there exists a function ρζ : Rnζ →

Rnζ satisfying lim|h|→0
|ρζ(h)|
|h| = 0 and such that f̃ (ζ + h) − f̃ (ζ) = f̃ ′(ζ)h + ρζ(h).

This implies that, for all ϵ > 0 there exists σ(ϵ) > 0 such that |ρζ(h)| ≤ ϵ|h| for all
|h| ≤ σ(ϵ). Now, let γ(ϵ) = min

{
δ(ϵ/2), 1

2 σ(ϵ/2)
}

. Then, for all ζ1, ζ2 ∈ Rnζ such
that |ζ1| ≤ γ(ϵ) and |ζ2| ≤ γ(ϵ), we have that |ζ2| ≤ δ(ϵ/2), and |ζ1 − ζ2| ≤ σ(ϵ/2),
and consequently

| f̃ (ζ1)− f̃ (ζ2)| ≤ | f̃ ′(ζ2)||ζ1 − ζ2|+ |ρζ(ζ1 − ζ2)| ≤ ϵ|ζ1 − ζ2| (2.84)

Given µ(ϵ) = 1
2 γ (ϵ), ϵ = 1

2|P| , and ζ̄ and ū obtained from Lemma 2.6.1 with µ =

µ(ϵ), let us consider any input u(t) such that |u|∞ ≤ ū, and the corresponding solu-
tion ζ(t) so that |ζ(0)| ≤ ζ̄. For n ∈ N, let ζn(t) = ζ(t + nT) and un(t) = u(t + nT).
Then, ζ̇(t + nT) = Aζ(t + nT) + f̃ (ζ(t + nT)) + bu(t + nT), which implies that



42 Chapter 2. Analysis of Repetitive Control: the Port-Hamiltonian Approach

Un(t) = V(ζ(t)− ζn(t)) is such that

U̇n = 2(ζ − ζn)
TP
[
A(ζ − ζn) + f̃ (ζ)− f̃ (ζn) + b(u − un)

]
≤

≤ −2|ζ − ζn|2 + 2|P||ζ − ζn|| f̃ (ζ)− f̃ (ζn)|+ 2|P||b||ζ − ζn||u − un|

In view of Lemma 2.6.1, it is possible to check that for all t ≥ 0 we have that |ζ(t) −
ζn(t)| ≤ 2µ(ϵ), and from (2.84) that | f̃ (ζ(t)) − f̃ (ζn(t))| ≤ 1

2|P| |ζ(t) − ζn(t)|, which

implies that U̇ ≤ −|ζ − ζn|2 + 4µ(ϵ)|P||b| · |u − un|. Such inequality implies (2.83),
and if |u(t)− un(t)| = |u(t)− u(t+ nT)| → 0 then we have also that |ζ(t)− ζn(t)| =
|ζ(t) − ζ(t + nT)| → 0. The claim follows once ρ = ζ̄ and ε = ū.

The next proposition summarizes the main contribution of this section and pro-
vides sufficient conditions for perfect asymptotic tracking for the studied class of
nonlinear RC schemes.

Proposition 2.6.3. Let us consider (2.78) under Assumption 2.6.1, and suppose that the
conditions for exponential stability in Prop. 2.5.4 are satisfied. Then, there exist R ⊂ Rn,
X̃ ⊂ X̃, and ℓ > 0 such that, if D, Bc and K2 in (2.73) fulfill |D−TBT

c K2| ≤ ℓ, then for
any solution x̃(t) to (2.78) such that x̃(0) ∈ X̃ which corresponds to a T-periodic reference
signal r(t) such that r(t) ∈ R for all t ≥ 0, the state evolution is asymptotically T-periodic.
Thus, asymptotic perfect tracking of the corresponding RC scheme is achieved.

Proof. Because of Prop. 2.6.1, it is sufficient to show the existence of R, X̃ , and ℓ

such that the trajectories x̃(t) of (2.78) are asymptotically T-periodic. Now, denote
by v = (v1, v2) the state of (2.73), system that is 0-locally exponentially stable, and
then apply Prop. 2.6.2 with (ζ, u) ≡ (v, uc). This yields the existence of ρ, ε, α > 0
such that

lim sup
t→∞

|∆nv(t)| ≤ α lim sup
t→∞

|∆nuc(t)| (2.85)

for all the solutions that satisfy |v(0)| ≤ ρ and |uc(t)|∞ ≤ ε, for all t ≥ 0. Let us
now consider the closed-loop system (2.78), and with d = |D| < 1 pick δ such that
d < δ < 1. Moreover, define ℓ = 1

α (δ − d), and denote by R0 and X̃0 the sets for
which Assumption 2.6.1 holds. Let for convenience L = |D−TBT

c K2|, and define the
following sets

X̃ =

{
(x, v) ∈ X̃0 | ∥x∥∞ ≤ ε, |v| ≤ ρ, ∥(x, v)∥X̃ ≤ χ−1

(
(1 − d)

ε

2L

)}

R =

{
r ∈ R0 | |r| ≤ (Lγ + I)−1

[
(1 − d)

ε

2L

] }

where Lγ + I denotes the map (Lγ + I)(s) = Lγ(s) + s, with s ∈ R and positive.
Let us select a T-periodic reference signal r(t) such that r(t) ∈ R, and an initial
condition x̃(0) ∈ X̃. This latter hypothesis implies that |v(0)| ≤ ρ, and then that
(2.85) holds, provided that |uc(t)| ≤ ε.

In this respect, with the formulation of the delay as a BCS given in Prop. 2.4.1 in
mind, and with reference to Figures 2.7 and 2.8, suppose that |x(t, T)| ≤ ε for all t ∈
[nT, (n + 1)T], and for some n ∈ N. Then, for all t ∈ [nT, (n + 1)T], uc(t) = x(t, T)
fulfills |uc(t)| ≤ ε. Moreover, in view of (2.73) and (2.81), for all t ∈ [nT, (n + 1)T]
we have that

|yc(t)− r(t)| ≤ L|v(t)|+ d|uc(t)|+ |r(t)| ≤ Lχ
(
∥x̃(0)∥X̃

)
+ Lγ (|r|∞) + dε + |r|∞

≤ (1 − d)ε + dε = ε
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FIGURE 2.11: System (2.86) with the input / output Cayley transfor-
mation

Note that x(t, 0) = r(t) − yc(t), which implies that |x(t, 0)| ≤ ε for all t ∈ [nT, (n +
1)T], and then that |x(t, T)| ≤ ε for all t ∈ [(n + 1)T, (n + 2)T]. Since by definition of
X̃ we have that |x(t, T)| ≤ ε for all t ∈ [0, T], we claim by induction that |x(t, T)| ≤ ε
for all t ≥ 0. As a consequence, we have also that |uc(t)| = |x(t, T)| ≤ ε for all t ≥ 0,
and then (2.85) holds.

Since r(t) is T-periodic, then |∆nr(t)| = 0 and, in view of (2.85), we have that

lim sup
t→∞

|∆nuc(t)| ≤ lim sup
t→∞

|∆nyc(t)| ≤ L lim sup
t→∞

|∆nv(t)|+ d lim sup
t→∞

|∆nuc(t)|

≤ (αL + d) lim sup
t→∞

|∆nuc(t)|

If we suppose that L ≤ ℓ, the above relation yields

lim sup
t→∞

|∆nuc(t)| ≤ δ lim sup
t→∞

|∆nuc(t)|,

which implies that lim supt→∞ |∆nuc(t)| = 0 since d < δ < 1. This fact proves that
uc(t) is asymptotically T-periodic, which in view of (2.85) implies that so are also
v(t) and, thus, x(t, z) for all z ∈ [0, T]. Then, the asymptotic tracking for the RC
scheme is an immediate consequence of Prop. 2.6.1.

To illustrate the validity of the approach, in Fig. 2.12 it is shown how a RC scheme
is able to let a system Φ in the form (2.80) to track a reference signal and reject an
additive disturbance on the output, both periodic of period T = 1 s. The plant is ob-
tained by starting from a 2nd-order passive system Π that models e.g. a mechanical
actuator with nonlinear damping:

Π :

⎧
⎪⎨

⎪⎩

v̇1(t) = v2(t)

v̇2(t) = −v1(t)− d
(
v2(t)

)
+ up(t)

yp(t) = v2(t) + Sup(t)

(2.86)

Then, a Cayley transformation on the input / output mapping has been applied to
get a system in scattering form and with the addition of an unitary feedthrough
term (see Fig. 2.11). For reasonable values of the parameters, namely the nonlinear
dissipation d(v2) and the feedthrough term S in (2.86), the transformed system fits
in the class (2.80).
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FIGURE 2.12: Asymptotic tracking and disturbance rejection of the
RC system in which Φ is the plant depicted in Fig. 2.11. In (2.86),
we have selected S = 1.5 and d(v2) = 5v3

2: with these choices the
transformed system Φ fits in (2.80).
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Chapter 3

Periodic Regulation and Invariance
Analysis of Autonomous Systems

In this chapter an alternative approach to study the periodic output regulation prob-
lem is proposed. The aim is to provide sufficient conditions for perfect tracking with-
out using internal-model based arguments. The idea is to represent a system fed by a
periodic reference as an autonomous discrete-time system with infinite-dimensional
input and output space. The main tool that is used is the lifting technique over a cy-
cle of period τ of the continuous time systems, see Yamamoto, 1990; Bamieh and
Pearson, 1992

3.1 Problem Statement and General Solution

Let us consider the following finite-dimensional LTI continuous-time system

Σ :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3.1)

with initial condition x(0) = x0. The system is defined on a finite-dimensional space
X = Rn, i.e. x ∈ Rn. The input u(·) and output y(·) are supposed to take values in
the same finite-dimensional space of dimension p, i.e. u(·), y(·) ∈ Rp. The system
matrices A, B, C and D have appropriate dimensions.

The output y(t) has to track a periodic reference signal of period τ, described by
the periodic repetition of r ∈ U = L2(0, τ; Rp). This periodic reference signal can be
generated by the discrete-time exosystems

Υ :
{

v+ = v (3.2)

where v ∈ L2(0, τ; Rp) and v(0) = r. Here the notation (·)+ referred to a discrete-
time system means the signal at the next time step.

In order to tackle the periodic output regulation task a discrete-time controller in
the following form is considered

Γ :

{
z+ = Iz +He

u = Kz
(3.3)

where z ∈ L2(0, τ; Rp), z(0) = z0, e(·) = v(·)− y(·) ∈ Rp and

I ,H,K ∈ L(L2(0, τ; R
p), L2(0, τ; R

p))
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FIGURE 3.1: A graphical representation of the autonomous closed-
loop system.

. The autonomous closed-loop system that merges from the interconnection is shown
in Figure 3.1.

Using the lifting technique over the period τ we can represent the system Σ as the
LTI discrete-time system

Σl :

{
x+ = Ax + Bu

y = Cx + Du
(3.4)

where x(k) = x(kτ), uk = u(kτ + (·)) and yk = y(kτ + (·)). Notice that x ∈ Rn,
u, y ∈ U and (A, B, C, D) are such that A ∈ Rn×n, B ∈ L(L2(0, τ; Rp), Rn), C ∈
L(Rn, L2(0, τ; Rp)), D ∈ L(L2(0, τ; Rp), L2(0, τ; Rp)) defined as follows:

A = eAτ

Bu =
∫ τ

0
eA(τ−s)Bu(s)ds

(Cx)(·) = CeA(·)x

(Du)(·) = C
∫ (·)

0
eA((·)−s)Bu(s)ds + Du(·)

(3.5)

Remark 3.1.1. Both the original system (3.1) and the lifted system (3.4) have a finite-
dimensional state space, i.e. x, x ∈ Rn. The price to pay to deal with a discrete-time system
is to end up with infinite-dimensional input and output spaces, making the system operators
B, C and D general linear operators, and not matrices.

The lifted closed-loop system can be written as the following autonomous LTI
discrete-time system

⎛

⎝
v+

x+

z+

⎞

⎠ =

⎛

⎝
I 0 0
0 A BK
H −HC (I −HDK)

⎞

⎠

⎛

⎝
v
x
z

⎞

⎠ (3.6)

where an element of the state space is (vT xT zT)
T ∈ U ×Rn ×U which is an Hilbert

space.
The aim is to regulate to zero the following error signal

e =
(

I −C −DK
)
⎛

⎝
v
x
z

⎞

⎠ (3.7)

which represents, as an L2-element, the tracking error over a period.
The problem of achieving perfect periodic tracking can be equivalently reformu-

lated by the following problem.
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+

FIGURE 3.2: Continuous time representation of the controller (3.3).
Note that for I = H = K = I the classical internal model based

controller present in RC schemes merges.

Problem 3.1.1. Given a τ-periodic reference signal as the periodic repetition of r ∈ L2(0, τ; Rp)
assign v(0) = r. Choose the controller parameters I ,H,K such that the system (3.6) admits

a fixed point (v(0)T xss
T zss

T)
T
∈ U ×Rn ×U which is attractive ∀z0 ∈ U and ∀x0 ∈ Rn

and such that

ess =
(

I −C −DK
)
⎛

⎝
v(0)
xss

zss

⎞

⎠ = 0

Remark 3.1.2. Notice that the controller (3.3) in the case in which I = H = K = I is
equivalent to the continuous-time repetitive compensator, which is the infinite-dimensional
controller present in repetitive control schemes Hara et al., 1988 (see figure 3.2). In fact with
this choice of parameters, system (3.3) is the lifted representation of a pure time delay of τ
seconds surrounded by a positive feedback loop and fed by the error signal.

3.1.1 Invariance Analysis for a class of marginally stable linear systems

Here a mathematical result dealing with invariance analysis of autonomous linear
systems is presented and then specialized to give sufficient conditions to solve prob-
lem 3.1.1.

Proposition 3.1.1. Consider the discrete-time autonomous marginally stable linear system

(
v+
x+

)
=

(
I 0
Θ F

)(
v
x

)
(3.8)

with v ∈ L2(0, τ; Rp) and initial condition v(0). Furthermore x ∈ X, being X a
Hilbert space and Θ ∈ L(L2(0, τ; Rp), X) and F ∈ L(X) bounded linear operators. If
∀λ ∈ σ(F), |λ| < 1, then the system converges to an invariant region of the state space for
every initial condition x(0).

Proof. Since the space V1 = span

(
0
I

)
is invariant for (3.8), without loss of generality

we can look at another invariant subspace in the form V2 = span

(
I

Π

)
where Π ∈

L(L2(0, τ; Rp), X). Thus on the invariant the operator relation x+ = x = Πv =
Θv + Fx = (Θ + FΠ)v must hold. This means that the equation Π = Θ + FΠ

must admit a unique solution Π. This is assured if (I − F)−1 ∈ L(X). Furthermore,
defining the vector x̃ = Πv − x, its dynamics can be written as

x̃+ = Πv − x+ = (Π − Θ)v − Fx = F(Πv − x) = Fx̃

which shows that if the spectral radius of F is less than 1, i.e. ∀λ ∈ σ(F), |λ| < 1, the
invariant is globally attractive.
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3.1.2 Perfect Tracking Conditions (general case)

Consider the system (3.6) with the error equation, i.e.

⎛

⎝
v+

x+

z+

⎞

⎠ =

⎛

⎝
I 0 0
0 A BK
H −HC (I −HDK)

⎞

⎠

⎛

⎝
v
x
z

⎞

⎠

e =
(

I −C −DK
)
⎛

⎝
v
x
z

⎞

⎠

(3.9)

The following theorem characterizes conditions for perfect tracking for periodic
output regulation.

Theorem 3.1.1. Problem 3.1.1 is solved for system (3.9) if the following hold:

• KerH = 0

• I = I

• ∀λ ∈ σ

(
A BK

−HC (I −HDK)

)
, |λ| < 1

Proof. Existence and global attractivity of the invariant region characterizing the
fixed point of (3.6) is guaranteed by Proposition 3.1.1 with

F =

(
A BK

−HC (I −HDK)

)
Θ =

(
0
H

)
.

Furthermore if we look at the steady state map Π =

(
Πx

Πz

)
then

Πz = H−HCΠx + (I −HDK)Πz = H(I − CΠx − DKΠz) + IΠz

Since at steady state the error e ranges on the space Πe = I − CΠx − DKΠz, the
choice I = I, together with the fact that KerH = 0, forces Πe = 0, i.e. perfect
asymptotic tracking is achieved for any periodic reference of period τ.

Remark 3.1.3. On the invariant I − CΠx − DKΠz = 0 and Πx = (I − A)−1BKΠz. By
substitution this implies

I −
[
C(I − A)−1B + D

]
KΠz = 0 (3.10)

which means that with the set of assumptions satisfied, the tracking error converging to zero
implies that at steady state KΠz is the right inverse of the transfer function of the lifted plant
at the unitary frequency. By defining the operator P(1) ∈ L(L2(0, τ; Rp), L2(0, τ; Rp)) as

P(1)u(·) =
[
C(I − A)−1B + D

]
u(·) =

= CeA(·)(I − eAτ)−1
∫ τ

0
eA(τ−s)Bu(s)ds + C

∫ (·)

0
eA((·)−s)Bu(s)ds + Du(·)

it can be concluded that P(1) must be invertible to achieve perfect tracking. Now it is easy to
see that the operator is invertible only if the original system (3.1) has a non null feedthrough
term, i.e. D ̸= 0. Since this operator is not invertible for D = 0 the general periodic output
regulation problem can not be solved for strictly proper systems. This is true because P(1)
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is not surjective if D = 0, since ∀u ∈ L2(0, τ; Rp), P(1)u(·) ∈ C(0, τ; Rp), which is only
continuously embedded in L2(0, τ; Rp).

Remark 3.1.4. The above result does not involve internal model based considerations but
can be post interpreted under this light. In fact the choice I = I makes the controller able to
generate any periodic reference of period τ autonomously, by storing the base function to be
repeated in the initial state of the controller (3.3). Furthermore the condition

∀λ ∈ σ

(
A BK

−HC (I −HDK)

)
, |λ| < 1 (3.11)

is exactly the condition for exponential stability of the autonomous (v = 0) closed loop
system.

The impossibility to track any periodic signal for strictly proper systems is some-
how intuitive since the reference trajectory can present an unbounded harmonic con-
tent that will be smoothened to some extend without an algebraic relation between
input and output. In the following perfect tracking conditions described in Theorem
3.1.1 will be specialized to specific subclasses of the reference signal by changing the
state space of the exosystem (3.2).

3.2 Solution of Problem 3.1.1 in the Digital Case

In this section the the case in which the system Σ is embedded in a digital closed-
loop system is considered. The periodic reference signal to be tracked is of period
τ = qT where T is the sampling period of the digital system and q ∈ N. The output
of Σ is sampled and hold at the sampling frequency of the system in such a way
to feed the discrete time controller with a piecewise constant error signal over one
sampling period. The idea is to transform the state space of system (3.2) in such a

way to end up with a generic state element of (3.6) (va
T xT za

T)
T ∈ Rqp × Rn × Rqp,

i.e. U = Rqp. This is possible because over one period the reference signal r and the
state of the controller z is piecewise constant over a time period T, as shown in the
following proposition.

Proposition 3.2.1. Defining

va(k) = (v1(k)
T v2(k)

T · · · vq(k)
T)

T
= (v(kτ + T)T v(kτ + 2T)T · · · v(kτ + qT)T)

T

and

za(k) = (z1(k)
T z2(k)

T · · · zq(k)
T)

T
= (z(kτ + T)T z(kτ + 2T)T · · · z(kτ + qT)T)

T

it yields va(k), za(k) ∈ Rqp. Now system (3.6) can be expressed over the finite-dimensional
state space Rqp × Rn × Rqp as follows

⎛

⎝
v+a
x+

z+a

⎞

⎠ =

⎛

⎝
I 0 0
0 A BaK
H −HCa (I −HDaK)

⎞

⎠

⎛

⎝
va

x
za

⎞

⎠ (3.12)
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where Ba ∈ Rn×(qp), Ca ∈ R(qp)×n, Da ∈ R(qp)×(qp) defined as follows:

Ba =

(∫ T

0
eA(τ−s)Bds

∫ 2T

T
eA(τ−s)Bds · · ·

∫ τ

((q−1)T)
eA(τ−s)Bds

)

Ca =

⎛

⎜⎜⎝

CeAT

CeA2T

· · ·
CeAτ

⎞

⎟⎟⎠

Da = blockdiag

{

C
∫ T

0
eA(T−s)Bds + D, C

∫ 2T

0
eA(2T−s)Bds + D, · · ·

· · · , C
∫ τ

0
eA(τ−s)Bds + D

}

where blockdiag{·} returns the block-diagonal matrix of its arguments.

Proof. The second row of (3.6) becomes

x+ = Ax +
∫ τ

0
eA(τ−s)BKz(s)ds = Ax +

q

∑
i=1

∫ iT

(i−1)T
eA(τ−s)Kz(s)ds =

=Ax +
q

∑
i=1

[(∫ iT

(i−1)T
eA(τ−s)ds

)
Kzi

]
= Ax + BaKza

The third row of (3.12) follows from the fact that ∀i ∈ 1, ..., q

z+i = Hvi −HCeAiT + Izi −H
[

C
∫ iT

0
eA(iT−s)Bds + D

]
Kzi

Notice that in (3.12) a slight abuse of notation is used since the operators

I, I ,H,K ∈ R
(qp)×(qp)

are expressed with the same name as in (3.6). This because it is clear from the context
that now they represent simply gain matrices.

3.2.1 Invariance Analysis for a class of marginally stable linear systems
(finite-dimensional case)

It is possible to specialize consistently the result of proposition 3.1.1 to deal with the
finite-dimensional case.

Proposition 3.2.2. Consider the discrete-time autonomous marginally stable linear system

(
v+
x+

)
=

(
I 0
Θ F

)(
v
x

)
(3.13)

with v and x finite-dimensional vectors and Θ and F matrices of appropriate dimensions.
Consider initial condition v(0). If F is Schur (i.e. all its eigenvalues have modulus less
than 1), then the system converges to an invariant region of the state space for every initial
condition x(0).
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Proof. The proofs follows exactly like in proposition (3.1.1) with the steady state map
Π that now is simply a matrix. As consequence the spectral condition turns into an
eigenvalue condition.

3.2.2 Perfect Tracking Conditions

Let us define an output ea ∈ Rqp associated to system (3.12) which contains the
tracking error at the sampling instances, i.e. the overall system becomes

⎛

⎝
v+a
x+

z+a

⎞

⎠ =

⎛

⎝
I 0 0
0 A BaK
H −HCa (I −HDaK)

⎞

⎠

⎛

⎝
va

x
za

⎞

⎠

ea =
(

I −Ca −DaK
)
⎛

⎝
va

x
za

⎞

⎠

(3.14)

The following theorem characterizes conditions for perfect tracking for periodic
output regulation in the digital case.

Theorem 3.2.1. Problem 3.1.1 is solved for system (3.14), i.e. perfect asymptotic tracking
is achieved for any periodic digital reference signal of period τ = qT if the following hold:

• KerH = 0

• I = I

•
(

A BaK
−HCa (I −HDaK)

)
is Schur

Proof. Existence and global attractivity of the invariant region characterizing the
fixed point of (3.12) is guaranteed by Proposition 3.2.2 with

F =

(
A BaK

−HCa (I −HDaK)

)
Θ =

(
0
H

)
.

Furthermore if we look at the steady state matrix Π =

(
Πx

Πz

)
then

Πz = H−HCaΠx + (I −HDaK)Πz = H(I − CaΠx − DaKΠz) + IΠz.

Since at steady state the error ea ranges on the space Πe = I − CaΠx − DaKΠz, the
choice I = I, together with the fact that KerH = 0, forces Πe = 0, i.e. perfect
asymptotic tracking is achieved at the sampling instances.

Remark 3.2.1. Similarly as before I −CaΠx − DaKΠz = 0 with Πx = (I − A)−1BaKΠz

implies

I −
[

Ca(I − A)−1Ba + Da

]
KΠz = 0

which means that with the set of assumptions satisfied, the tracking error converging to
zero implies that KΠz is the right inverse of the transfer function of the lifted plant at the
unitary frequency. This implies that the transfer matrix Pa(1) ∈ Rqp×qp defined as Pa(1) =
Ca(I − A)−1Ba + Da must be invertible if the set of assumptions are valid. Differently from
the general case this is possible also if for the original system Σ the feedthrough term is null,
i.e. D = 0. Thus it is possible to achieve digital periodic output regulation for strictly proper
plants.
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+

FIGURE 3.3: Discrete-time representation of the controller (3.3) for
I = H = K = I. It coincides with the digital version of the repetitive
compensator present in RC schemes. Here z−1 represents the one-

step delay operator.

Remark 3.2.2. Similarly as in the continuous-time case, the result can be post-interpreted
from an internal model perspective. In fact given the definition of za and va, with the choice
I = I the controller achieves an internal model for any discrete time periodic signal of
period τ = qT. The simplest implementation of this controller (with H = K = I) is shown
in Figure 3.3 and represents the controller of digital repetitive control schemes. The classical
interpretation states that the tracking problem coincides then with a stabilization problem,

represented by the matrix

(
A BaK

−HCa (I −HDaK)

)
to be Schur.

3.3 Static nonlinear plant

Let us go beyond the linear case and consider as plant Σ a static nonlinearity f (·),
i.e. pointwise y = f (u). In order to consider the lifted nonlinear plant over a period
τ we introduce the operator Λ f by (Λ f (u))(·) = f (u(·)) for u ∈ D(Λ f ) = {u ∈
L2(0, τ; Rp)}. With this notation the lifted static nonlinearity can be expressed by
the operator Λ f which is in general not bounded (i.e. does not map necessarily

L2(0, τ; Rp) in L2(0, τ; Rp) ). The dynamic equations for the closed loop systems
become

(
v+

z+

)
=

(
v

Hv + (I −HΛ fK)z

)
(3.15)

Proposition 3.3.1. If the map z → (I −HΛ fK)z is a contraction in L2(0, τ; Rp) then
system (3.15) has a globally attractive fixed point. If in addition I = I and H is an injective
map then the tracking error vanishes (in an L2-sense) at steady state.

Proof. Existence of a globally attractive fixed point for system (3.15) follows from
the Banach fixed point theorem if the map z → Hv + (I −HΛ fK)z is a contraction

in L2(0, τ; Rp), and equivalently if the map z → (I −HΛ fK)z is a contraction in

L2(0, τ; Rp). Notice that the last requirement is exactly exponential stability of the
autonomous (v = 0) closed-loop system. In this case and considering I = I, the
fixed point, i.e. the steady state solution for (3.15) is (v, z̄), with z̄ ∈ L2(0, τ; Rp) such
that HΛ fKz̄ = Hv. The steady state error is e = v − Λ fKz̄ which is equal to 0 if H
is injective.

Remark 3.3.1. Well-posedness for the closed-loop nonlinear system is in general not assured
for any static nonlinearity f (·) because the operator Λ f could map L2 functions outside
the space. This is however implicitly solved by the requirement that the map z → (I −
HΛ fK)z is a contraction in L2(0, τ; Rp). In fact since I ,K and H are bounded operators,
the functions f (·) which makes the operator Λ f unbounded (i.e. functions f (·) that are not
globally Lipschitz continuous) are automatically excluded.
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Remark 3.3.2. In the case of pure repetitive control, i.e. I = K = H = I the condition
on the static nonlinearity f (·) is to be globally Lipschitz continuous with Lipschitz constant
L < 2
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Chapter 4

Repetitive B-Spline Trajectory
Generation for Nonminimum
Phase Systems

In this chapter a novel repetitive control scheme is presented and discussed, based
on the so called B-spline filters. This type of dynamic filters are able to provide a B-
spline trajectory if they are fed with the sequence of proper control points that define
the trajectory itself. Therefore, they are ideal tools for generating online the reference
signal with the prescribed level of smoothness for driving dynamic systems, e.g.
with a feedforward compensator.

In particular, the so-called Continuous Zero Phase Error Tracking Controller (in
brief CZPETC) can be used for tracking control of non-minimum phase systems but
because of its open-loop nature cannot guarantee robustness with respect to mod-
eling errors and exogenous disturbances. For this reason, CZPETC and trajectory
generator have been embedded in a repetitive control scheme that allows to nullify
interpolation errors even in non-ideal conditions, provided that the desired reference
trajectory and the disturbances are periodic.

Asymptotic stability of the overall control scheme has been proven mathemat-
ically by the authors in Biagiotti, Califano, and Melchiorri, 2016. Here we extend
those results since here an experimental set-up for a non-minimum phase system is
presented. Different models of the same physical system are identified and the pro-
posed model-based control scheme is implemented. Experimental results have been
reported in order to show the validity of the proposed method and the importance
of an accurate modeling step.

4.1 Motivation

Quite often, in industrial applications, the given tasks present a cyclic or repetitive
nature; this means that, from a control perspective, the plant is required to track a
periodic exogenous signal whose cycle time is supposed to be known in advance.

In a realistic scenario a complex reference signal is generated by means of tools
such as Spline, Bezier, Nurbs curves and other similar functions (Biagiotti and Mel-
chiorri, 2008). Therefore, it may be of interest to investigate how the use of this kind
of curves, together with the cyclic nature of the task, can be exploited to improve the
tracking accuracy.

Because of the cyclic nature of the task, a Repetitive Control (RC) approach repre-
sents a quite standard and effective solution to achieve asymptotic perfect tracking,
being able to cancel tracking errors over repetitions by learning from previous itera-
tions.
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Here the modification of the control input is implemented at a level of trajec-
tory generation. The idea of modifying a B-spline reference trajectory by applying
a repetitive control scheme on the corresponding control points was proposed in
Biagiotti, Moriello, and Melchiorri, 2015. Thanks to the possibility of generating B-
spline trajectories by means of dynamic filters (Biagiotti and Melchiorri, 2010), the
trajectory planner has been inserted in an external feedback control loop that modi-
fies in real-time the control points of the B-spline curve so that the interpolation error
at the desired via-points converges to zero.

This technique offers great advantages in real applications in terms of low com-
plexity and ease of parameters tuning, without the need of a deep knowledge of the
plant model. Moreover, it can be applied to all those systems, like servo-motors or
robotic manipulators, that equipped with an (unmodifiable) off-the-shelf controller,
only admit an external reference signal.

On the other hand, the proposed control scheme relies on the hypothesis that the
plant P(s), already controlled, is characterized by an acceptable tracking capability
within a certain frequency range, i.e.

P(jω) ≈ 1, ω < ωm

where ωm denotes the maximum frequency of the reference input. From a practical
point of view this represents mainly a phase constraint since it is necessary that the
controlled plant

|∠P(jω)| < π

2
, ω < ωm. (4.1)

Inspired by this necessity, a novel repetitive control scheme has been presented,
in which the real-time modification of the control points defining the reference B-
spline trajectory is combined with a feedforward compensation that, by widening
the bandwidth of the plant, allows to remove the hypothesis on its dynamic be-
haviour. In particular, in order to deal also with non-minimum phase plants, a tech-
nique that generalizes the standard inversion-based feedforward control has been
considered, i.e. the Zero Phase Error Tracking Controller (ZPETC) introduced in
Tomizuka, 1987. Since this model-based controller is in general non-causal, track-
ing solutions for non-minimum phase systems require precognition of the reference
signal to maintain bounded internal signals Rigney, Pao, and Lawrence, 2009. The
most common way to overcome this difficulty is to design the controller in a discrete
time framework, and anticipate the input signal to realize the necessary control ac-
tion (see e.g. Adnan et al., 2012; Ismail et al., 2012; Tian et al., 2014; Ghazali et al.,
2015). For example in Rodriguez, Pons, and Ceres, 2000 a repetitive control scheme
was designed for ultrasonic motors with the use of a ZPET controller, exploiting the
discrete time periodic reference trajectory to achieve precognition of the signal. It
is worth to noticing that the combination of RC and ZPETC has been proposed by
Tomizuka himself in Tomizuka, Tsao, and Chew, 1988, but again only in the discrete-
time domain. Moreover, even if the RC scheme is defined plug-in since it does not
require modification of the original feedback controller of the plant (Tomizuka, Tsao,
and Chew, 1988; Kim and Tsao, 2002), it is based on the assumption that the con-
trol signal is accessible and therefore the RC contribution can be simply added to
the original control. The solution that is proposed in the following is based on a
continuous time version of the ZPET controller (called CZPETC) Park, Chang, and
Lee, 2003, whose implementation has been made possible by the B-spline generator
that, along with the reference trajectory profile, generates online its time derivatives.
The major advantage of this approach in practical applications is the possibility to
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FIGURE 4.1: Standard cascade control structure with feedforward for
electrical motor drives Leonhard, 2001.

design a true plug-in RC scheme for systems that, besides the reference trajectory,
require a feedforward term. A notable example in the industrial field is represented
by the control of electrical motors, that, in order to obtain high dynamics, is based
on velocity/acceleration feedforward compensations besides the standard cascade
control structure, see Fig. 4.1.

Because of the introduction of the CZPETC the control scheme strongly depends
on the knowledge of the plant model. For this reason, it is of great interest to in-
vestigate how the accuracy of the model influences the performance of the overall
algorithm.

Accordingly, the theoretical results reported in the conference paper Biagiotti,
Califano, and Melchiorri, 2016 are extended in this chapter with a number of exper-
imental results, that clearly show the improvement in the B-spline based RC due
to the introduction of the CZPETC. For the sake of completeness, a non-minimum
phase mechanical system obtained with variable stiffness actuators has been consid-
ered as benchmark.
In the following an overview of the main elements that are used in the final control
scheme is given.

4.2 Overview of the Used Techniques

The proposed control scheme descends from the integration of three different differ-
ent technologies, that are briefly summarized in this section.

4.2.1 The Continuous Zero Phase Error Tracking Controller

The CZPETC is a feedforward compensator representing an extension of the com-
plete dynamic inversion for systems characterized by unstable zeros. A generic sta-
ble SISO LTI system G(s) can be decomposed as

G(s) =
Ns(s)Nu(s)

D(s)
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FIGURE 4.2: Block-scheme representation of feedforward control
based on B-spline trajectory and CZPETC (d = |ρ|) for the plant G(s).

where D(s), Ns(s) and Nu(s) denote respectively the factors corresponding to the n
poles, the ms stable zeroes and mu unstable zeroes of the plant. The CZPET controller
assumes the form

R(s) =
D(s)Nu(−s)

Ns(s)[Nu(0)]2
. (4.2)

In this manner. if mu ̸= 0, the cascade R(s)G(s) becomes

R(s)G(s) =
Nu(−s)Nu(s)

[Nu(0)]2
. (4.3)

This means that the residual dynamics of R(s)G(s) is represented by pairs of zeros
±zi, i = 1, . . . , mu. Obviously, if mu = 0, i.e. the system is minimum phase, R(s) is
a standard feedforward controller that completely cancels the dynamics of the plant
(R(s) = G−1(s)) and R(s)G(s) = I.
Since unstable zeros cannot be canceled or modified either with a feedforward reg-
ulator, for clear stability reasons, or with a feedback controller, the use of CZPETC
represents a solution in those applications where phase shift is very critical, like e.g.
(4.1). In fact, the function R(s)G(s) in (4.3) is characterized by the following proper-
ties.

1. |R(jω)G(jω)| ≈ 1 for ω < ω⋆, being ω⋆ the break frequency corresponding to
the smallest unstable zero. The asymptotic slope of the Bode plot for magni-
tude is +2mu × 20 db/decade.

2. ∠R(jω)G(jω) = 0 rad, ∀ω, since, for any unstable zero, the cascade R(s)G(s)
contains also its opposite, and therefore their phase contributions compensate
each other.

The major drawback of CZPETC, and in general of inversion-based feedforward ap-
proaches, concerns the practical implementation of the controller, which is generally
non-causal. In fact, if γ is the (nonnegative) relative degree of the plant G(s), the
relative degree of R(s) is ρ = ms − (n + mu) = −γ − 2mu which is strictly negative,
unless γ = mu = 0. A way to cope with this problem is based on the precognition of
the reference signal. By diving numerator and denominator, R(s) can be rewritten as

R(s) =
|ρ|

∑
i=0

αis
i + W(s)
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where W(s) is a strictly proper transfer function. Consequently, the control action of
the ZPETC will result

U(s) =
|ρ|

∑
i=0

αis
iYr(s) + W(s)Yr(s) (4.4)

where Yr(s) denote the Laplace transform of the reference input, and in time domain

u(t) =
|ρ|

∑
i=0

αi
diyr(t)

dti
+L−1{W(s)Yr(s)}. (4.5)

Therefore, in order to compute the control signal u(t) the knowledge of yr(t) and its
first |ρ| derivatives is necessary. Obviously, in order to guarantee the feasibility of
u(t), the |ρ| derivatives must be limited and consequently yr(t) ∈ C|ρ|−1.

4.2.2 Set-point generation via B-spline filters and integration with the
CZPETC

In many practical applications, smooth reference signals are defined using spline
functions interpolating a set of desired via-points q⋆k , i = 0, . . . , n − 1. In the follow-
ing uniform B-spline curves are considered, i.e. splines in the so-called B-form and
characterized by an equally-spaced distribution of the knots, and defined by

qu(t) =
n−1

∑
k=0

pk Bd(t − kT), 0 ≤ t ≤ (n − 1)T (4.6)

where T is the constant distance between knots Biagiotti and Melchiorri, 2008. A
novel way to generate spline curves was developed by the authors in (Biagiotti and
Melchiorri, 2010), where it is proven that a uniform B-spline trajectory of degree d
can be generated by means of a chain of d dynamic filters defined as

M(s) =
1 − e−sT

Ts

fed by the staircase signal p(t) obtained by maintaining the value of each control
point pk defining the curve for the entire period kT ≤ t < (k + 1)T, by means of a
zero-order hold H0(s) applied to the sequence of impulses pk of period T. The degree
d of the spline and therefore the number of filters composing the B-spline generator
determines the smoothness of the output trajectory. In fact the resulting spline is a
function of class Cd−1. A fundamental property of the filter for B-spline generation,
is the possibility to compute online the profiles of all the time derivatives of the
trajectory up to the order d, as shown in Fig. 4.2. For this reason the implementation
of (4.5) by means of the B-spline generator of Fig. 4.2 is straightforward provided
that the order of the B-spline meets the condition

d ≥ |ρ| = γ + 2mu (4.7)

In order to guarantee a good tracking of the B-spline function defined by the control
points pk it is necessary that the frequency spectrum of the trajectory is included in
the bandwidth of P(s). Since, the B-spline is obtained by applying a train of impulses
to the cascade of filters

H0(s)Md(s), (4.8)
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FIGURE 4.3: Frequency spectrum of the cubic (d = 3) and quintic
(d = 5) B-spline filter as a function of a normalized frequency ω/ω0

with ω0 = 2π
T .
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FIGURE 4.4: Discrete-time repetitive control.

its spectrum can be deduced by considering the frequency response of (4.8), i.e.

Bd(jω) =

(
sin
(

ωT
2

)

ωT
2

)d+1

e−jω (d+1)
2 T.

The B-spline filter/signal is characterized by a pure delay of (d+1)T
2 seconds, while

the magnitude decreases as 1/ωd+1. By looking at the frequency spectra of cubic and
quintic B-splines that are shown in Fig. 4.3, it can be seen that spectral components
for ω ≥ ω0 = 2π

T can be neglected, in particular for higher values of d. This means
that good tracking performances can be achieved if ω⋆ > ω0, where ω⋆ denotes the
break frequency of the smallest unstable zero of the CZPET controlled plant P(s).
Finally, is worth noticing that the slope of |Bd(jω)| for ω → ∞ is −(d + 1) × 20
db/decade. As a consequence, being d ≥ 2mu (see property 1 in subsection 4.2.1)
the cascade of the trajectory generator and P(s) will have a negative slope for high
frequency values and will be always limited in magnitude.

4.2.3 Discrete-time Repetitive Control

Discrete-time repetitive control is a technique used to achieve output regulation for
discrete-time periodic signals of known and fixed period, whose efficiency is based
on the internal model principle. The basic scheme of RC in the discrete-time domain is
shown in Fig. 4.4. It is composed by:

• a linear time invariant controlled plant P(z);
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FIGURE 4.5: Discrete-time repetitive control scheme based on dy-
namic B-spline filter.

• an internal model based controller C(z), that guarantees asymptotically zero
tracking error of any digital periodic reference signal of period n, i.e. yr(k +
nT) = yr(k). Here T is the sampling time of the digital system1.

The marginally stable system C(z) contains the poles on the unit circle repre-
senting the modes whose linear combination is able to generate any digital periodic
signal of period n. Thus, using internal-model based arguments, the main issue of
this control approach consists in the choice of P(z) that assures the stability of the
closed-loop system. Stability condition for the RC scheme can be easily derived by
means of e.g. classical Nyquist analysis and it results to be

|P(ejωT)− 1| < 1, ∀ω ∈ [0, π/T]. (4.9)

Once this condition is satisfied, asymptotic perfect tracking for any reference signal
of period n is achieved. Notice that, how explained in Chapter 1, differently with
respect to continuous-time RC schemes also plants P(z) that are not strictly proper
are suitable to be stabilized in the closed-loop system. This follows because in the
digital framework a periodic reference signal contains a finite number of harmonics,
making the internal model based controller C(z) finite-dimensional.

4.3 The B-spline CZPET Repetitive Controller

In order to eliminate the tracking error due to the open-loop structure of CZPETC,
the overall system shown in Fig. 4.2, including a block for the computation of the
control points from the desired via-points, has been embedded in the RC scheme, as
shown in Fig. 4.5. Notice that the digital subsystem is characterized by the sampling
time T, which is equal to the temporal distance among the desired via-points. In
the following, a stability analysis of this scheme is performed. Perfect asymptotic
tracking for periodic signals follows then by the properties of discrete-time RC.
The scheme is completely equivalent to the basic structure reported in Fig. 4.4, if one
assumes that

P(z) = Kp · H(z) · zm · HMRG(z) (4.10)

where
HMRG(z) = Z{H0(s)Md(s)RZPET(s)G(s)}

1Notice that the same notation is used for the distance between knots in (4.6). This is consistent
with the overall control scheme that is designed in this work.
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denotes the z-transform of the continuous time system composed by B-spline gener-
ator, CZPET controller and plant, Kp is a proportional gain and, finally,

H(z) =
r

∑
n=−r

h(n) z−n (4.11)

is a FIR filter that approximates the relationship between the via-points q⋆k and the
control points pk (details about this filter can be found in Biagiotti and Melchiorri,
2013 and Biagiotti, Moriello, and Melchiorri, 2015). Note that H(z), characterized by
h(n) = h(−n), has a frequency response H(ejωT) which is a positive real function of
ω and whose argument is therefore null in the overall frequency range.
The RC scheme guarantees asymptotically a perfect interpolation of the via-points if
P(z) complies with (4.9). In particular, this condition can be met only if

∠P(ejωT) <
π

2
rad, ω ≤ π

T
(4.12)

and this explains the role of the CZPET controller. The property 2 reported in Sec.
4.2.1, and the frequency response of the trajectory generator along with the zero-
order hold guarantee

∠H0(jω)Md(jω)RZPET(jω)G(jω) = −mωT.

Therefore, as already mentioned in Sec. 4.2.2 the continuous system is characterized
by a pure delay of m = d+1

2 sample periods T caused by the trajectory generator,
while the phase contribution of RZPET(jω)G(jω) is null. The corresponding discrete-
time system HMRG(z) will have the same pure delay, and can be written as

HMRG(z) = z−mL(z) (4.13)

where L(z) is a zero-phase filter. In Fig. 4.6 the typical frequency response of the
system HMRG(z) obtained by discretization, with sampling frequency ω0 = 2π/T,
is shown and compared with the original system.
By substituting (4.13) in (4.10) the expression

P(z) = Kp · H(z) · L(z)

is obtained. Therefore, also P(z) is a zero-phase filter. Moreover, since

0 < |H(ejωT)| · |L(ejωT)| < ∞, ω ≤ π

T

by acting on Kp is always possible to impose |P(ejωT)| ∈]0, 2[, i.e. inside the stability
region. In many circumstances, e.g. when ω⋆ > ω0, |H(ejωT)| · |L(ejωT)| ≈ 1 in the
overall frequency range and consequently Kp = 1. Note that if the plant is mini-
mum phase and therefore its dynamics is fully cancelled by the CZPET controller
|H(ejωT)| · |L(ejωT)| = 1 in the overall frequency range.

Note that in (4.10) a time-anticipation zm appears, but this is only due to analysis
purposes and in the original scheme of Fig. 4.5 no anticipations are present. More-
over, the zero-phase filter H(z), which is non-causal, in this scheme is delayed by r
samples in order to make it feasible.
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FIGURE 4.6: Frequency response of a discrete-time system HMRG(z)
obtained by sampling (with period T) the continuous-time system
H0(s)Md(s)RZPET(s)G(s) with d = 3 and G(s) with an unstable zero.

4.4 Experimental evaluation

One of the goals of this work is to answer to a simple but fundamental question
arising when a new control algorithm is proposed, i.e. “What modeling information
is needed to design and tune the controller?” (Bernstein, 1999). For this reason, an
extensive experimental activity, based on a nonminimum phase system, has been
performed.

4.4.1 System description and modelling

As shown in Fig. 4.7, the experimental setup is basically a two-dof robotic manipu-
lator with elastic joints built with QBMove - Maker Pro Variable Stiffness Actuators
(VSA) by QBRobotics (QBMove - maker pro datasheet). These actuators implement the
concept of variable stiffness servo-motors, i.e. motor units that allow the user to
command both the position and the stiffness of the output shaft with external sig-
nals. For this reason, these actuators are very suitable for rapid prototyping robotic
systems with variable stiffness joints (Catalano et al., 2011).
QBMove VSAs are provided with an easy to use Matlab/Simulink toolbox that can
runs without particular restriction even on standard operating system and commu-
nicates with the actuators via USB. In the experiments reported in this section Matlab
was running with a fixed step size Ts = 2 ms. For this reason, the B-spline trajectory
generator (and the CZPETC) has been discretized as in Biagiotti, Moriello, and Mel-
chiorri, 2015.
Obviously, the system of Fig. 4.7 can be modelled as a standard manipulator with
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FIGURE 4.7: Two-link robotic arm with elastic joints based on QB-
Move - Maker Pro VSAs.

the elastic joints commanded in position, i.e.

M(θ)θ̈ + C(θ, θ̇) θ̇ + g(θ) + K (θ − θm) + B (θ̇ − θ̇m) = 0

where M(θ), and C(θ, θ̇) are the inertia and centrifugal/Coriolis forces matrices,
g(θ) represents the gravity term, K = diag{ki}, B = diag{bi}, i = 1, 2 are the
matrices of the transmission stiffness and viscous friction, θ and θm denote the vector
of the joint positions at the link side and at the motor side, respectively. Because of
the planar structure of the device, which is disposed in the horizontal plane, g(θ) =
0. Moreover, it is imposed that the second joint behaves passively, by assuming that
θm,2 ≡ 0. In this manner, the system emulates the dynamics of a planar flexible link
in which the driven torque is τ = k1(θ1 − θm,1), see Fig. 4.8(a).

As a matter of fact, the simplest lumped-parameters model of a flexible link, that
takes into account only the first elastic mode, is the two-link system with an elastic
hinge shown in Fig. 4.8(b). By assuming the tip angular position seen from the base
as output variable, i.e. y = θ1 +

θ2
2 , it has proved in Luca, Lanari, and Ulivi, 1991

that the model of this system is non-minimum phase, characterized by order four
and relative degree two. Therefore, by considering an additional pole, which takes
into account the dynamics of the actuator at the base joint, it is reasonable to assume
that the systems can be modeled by an LTI system with 5 poles and 2 zeroes.

Concerning the non-minimum phase nature of the system, its zero dynamics
associated with any reasonable definition of an output is unstable regardless the
accuracy of the model, whether it is chosen to be nonlinear or linear, infinite or finite-
dimensional, with any number of elastic modes (Luca, Lanari, and Ulivi, 1991).

4.4.2 Experimental results

These manipulators present small and light actuators and are amenable to be com-
posed in a modular way. The possibility of setting their stiffness via software allows
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FIGURE 4.8: One-link flexible arm (a) and equivalent model with the
deformation concentrated in an elastic hinge (b).

to reproduce the system of Fig 4.8(b) with its non-minimum phase behaviour. In
particular the experiments have been computed by setting a high stiffness value
for the first actuator (13 Nm/rad) and a low stiffness value for the second one (0.5
Nm/rad). Since the manipulators are controlled in position, the input has been cho-

sen to be the reference position of the first actuator θ
re f
1 and the output the tip angular

position y = θ1 +
θ2
2 . The reference of the second actuator θ

re f
2 is kept constant to zero

for the whole duration of the experiment, in order to reproduce the behaviour of a
low-stiffness unactuated linear spring. The control scheme shown in Fig. 4.5 has
been implemented in Matlab/Simulink. The ZPET controller has been designed on
the basis of the the transfer function identified through the identification toolbox of
Matlab by using the step response of the system as input data and other exciting dy-
namics that have been implemented as validation data. The performed identification
confirmed the non-minimum phase nature of the system. In particular three differ-
ent transfer function models have been identified for the controlled system which
differ from the number of poles and zeroes that the user can select as input of the
identification procedure. In particular

• G5p2z(s) =
−19836(s−18.7)(s+5.6)

(s+51.38)(s2+1.96s+37.8)(s2+10.3s+1083)

• G3p2z(s) =
−17.6(s−6.9)(s+2.5)

(s+16.75)(s2+1.68s+17.8)

• G2p1z(s) =
12.1(s+3.1)

(s2+1.81s+37.6)

are the transfer functions with respectively 5 poles and 2 zeroes, 3 poles and 2 zeroes
and 2 poles and 1 zero.. Notice that the non-minimum phase nature of the system
has been captured by the models G5p2z(s) and G3p2z(s) but not by G2p1z(s). This fact
is helpful to highlight the effectiveness of the proposed method. In particular four
sets of experiments have been performed: three with the model-based technique
based on the ZPET compensator (using as models the three identified transfer func-
tions) described in this paper, and one without ZPETC, reproducing basically the
control scheme described in Biagiotti, Moriello, and Melchiorri, 2015. Every experi-
ment starts with four open loop cycles (highlighted in grey in the plots) and then the
loop is closed and repetitive control starts to act modifying the control points of the
reference B-spline. The following considerations can be carried out:
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Model
T[s]

1 0.5 0.4 0.3 0.2

NO ZPETC S U ⋆ ⋆ ⋆

G2p1z(s) S S U ⋆ ⋆

G3p2z(s) S S S S U
G5p2z(s) S S S S U

TABLE 4.1: Stability Analysis of Experiments with Kp = 1

• The experiments performed without ZPETC, i.e. relying on the decentralized
internal controller of the system only, show a stable behaviour for slow ref-
erence trajectories (T = 1 s) (Fig. 4.9(a)) because the internal controller man-
ages to accomplish the RC stability condition for the range of frequencies in-
volved in this case (e.g. the non-minimum phase dynamics are negligible at
this speed). Nevertheless as soon as the reference trajectory becomes faster
(T = 0.5 s) (Fig. 4.9(a)) the overall system becomes unstable, showing the lim-
its of the model-free approach described in Biagiotti, Moriello, and Melchiorri,
2015 when non-rigid industrial manipulators are controlled.

• The experiments performed with the ZPETC show a better behaviour with
respect to the model-free case that improves more if a better model is used
for the ZPETC implementation. In this respect see Fig. 4.10,4.13 and 4.16 for
the stable cases. The improvement with respect to the model-free approach
is evident and Tab. 4.1 (’S’ stands for stable and ’U’ for unstable) confirms
the effectiveness of the proposed method showing that the more the model is
precise the better become the chances to stabilize the system. It is evident that
the non-minimum phase models give better results aiming at stabilizing the
control scheme, with Kp = 1, till the case T = 0.3 s. Fig. 4.12 and 4.15 together
with Tab. 4.2 (’MS’ stands for marginally stable, i.e. when empirically the error
did neither converge nor diverge) show the stabilized cases when T = 0.2 s by
reducing the gain Kp and highlight the fact that the model G5p2z(s) is more
reliable for high frequencies than G3p2z(s).

• Fig. 4.11, 4.14 and 4.17 show a detail of the first and last cycle of one of the
stable cases specified in the caption. It can be noticed that the interpolation
error goes actually to zero through the modification of the reference B-spline
trajectory that is performed by the RC scheme cycle after cycle. Furthermore
a comment can be done for what concerns the intersample ripple of the error,
which is considered to be an open question in discrete time RC schemes. It
turns out that a better model (compare e.g. Fig. 4.11 and 4.17) improves the
tracking performance of the system also in between the sampling instances
since the continuous time ZPETC implementation aims at compensating the
internal dynamics in a more reliable way.
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Model
Kp 1 0.5 0.1

G3p2z(s) U U MS
G5p2z(s) U MS S

TABLE 4.2: Stability Analysis of Experiments with T = 0.2
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FIGURE 4.9: Output and tracking error without ZPETC, Kp = 1
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FIGURE 4.10: Tracking error with ZPETC implemented on the basis
of the G5p2z(s) model, Kp = 1



4.4. Experimental evaluation 69

(a) - First Cycle

0 1 2 3 4 5

-20

0

20

-100

-50

0

50

100

O
u

tp
u

t
[d

eg
]

q⋆

qmod

y

E
rr

o
r
[d

eg
]

Time [s]

(b) - Last Cycle

0 1 2 3 4 5

-20

0

20

-100

-50

0

50

100

O
u

tp
u

t
[d

eg
]

q⋆

y

qmod

E
rr

o
r
[d

eg
]

Time [s]

FIGURE 4.11: Time detail of the first and last cycle of experiment
corresponding to Fig. 4.10(b)
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FIGURE 4.12: Output and tracking error with ZPETC implemented
on the basis of the G5p2z(s) model, T = 0.2
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FIGURE 4.13: Tracking error with ZPETC implemented on the basis
of the G3p2z(s) model, Kp = 1
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FIGURE 4.14: Time detail of the first and last cycle of experiment
corresponding to Fig. 4.13(b)
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FIGURE 4.15: Output and tracking error with ZPETC implemented
on the basis of the G3p2z(s) model, T = 0.2
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FIGURE 4.16: Tracking error with ZPETC implemented on the basis
of the G2p1z(s) model, Kp = 1
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FIGURE 4.17: Time detail of the first and last cycle of experiment
corresponding to Fig. 4.16(b)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis periodic output regulation has been treated in different fashions based
on repetitive control (RC), a technique developed for achieving this issue in a general
setting, i.e. for accomplishing the task if a generic periodic reference with known
time period has to be tracked.

The novelty of the presented work consists in the mathematical tools that have
been used to study aspects of the problem like well-posedness, stabilizability and
tracking. In particular a time-domain approach has been adopted, getting rid of the
classical frequency domain analysis that was performed in this framework. The used
techniques range from infinite-dimensional port-Hamiltonian systems (Chapter 2)
to invariance analysis of autonomous discrete-time systems (Chapter 3) and provide
a new insight to study the problem in the linear case. Furthermore the proposed
approaches represent starting points for attacking the nonlinear problem, that has
also been solved in particular situations.

Since from a control theoretic point of view RC systems are in general infinite-
dimensional and possibly nonlinear, finer mathematical tools with respect to the
classical used ones are necessary to study existence and regularity of solutions (well-
posedness) in RC schemes. This represents a crucial aspect to use Lyapunov-like
arguments to study stability of such systems. This has been done in Chapter 2, where
the port-Hamiltonian approach has also been extended to modified RC systems and
to a particular class of nonlinear RC systems. Asymptotic tracking in this setting is
proven in a way that does not rely on internal-model as principle to be invoked, but
using constructive arguments which are amenable to be extended in the nonlinear
case.

In Chapter 3 a more general way to study periodic output regulation is proposed,
where the analysis exploits the lifting technique for LTI systems and for static non-
linearities. Continuous-time RC turns out to be a particular case of this analysis that
is extended also to the digital framework.

Chapter 4 deals with a specific discrete-time RC schemes which combines dif-
ferent techniques to accomplish perfect tracking of possibly nonminimum phase.
Experimental results performed on a QB-move manipulator are presented to show
the validity of the proposed scheme, whose stability properties are proven mathe-
matically.
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5.2 Future Work

The outcomes of this works presented in this thesis open the possibility to several
future developments. The port-Hamiltonian approach together with novel stabi-
lization techniques for distributed parameter systems could lead to wider classes of
nonlinear systems for which RC laws can be successfully applied. Furthermore it
has been noticed that different parametrizations of the repetitive compensator that
fit in the port-Hamiltonian form extend the classes of systems that result in a stable
closed-loop RC scheme.

The main limitation of periodic output regulation in a general framework is the
fact that using an infinite-dimensional controller it is impossible to stabilize the sys-
tem unless the controlled plant is biproper. To face this problem MRC systems have
been studied using a port-Hamiltonian approach and further results could be ob-
tained by developing the theory in Chapter 3, considering e.g. finite-dimensional
exosystems and consequently finite-dimensional controllers, i.e. limiting the class of
the periodic references to be tracked. This could lead to the design of controllers that
aim at achieving robustly output regulation for strictly proper plants in meaningful
circumstances.

The nonlinear case is mainly unsolved and represents a big challenge for future
research.
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