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MIMO Linear Equalization With an H Criterion
Babak Hassibi, Alper T. Erdogan, and Thomas Kailath

Abstract—In this paper, we study the problem of linearly equal-
izing the multiple-input multiple-output (MIMO) communications
channels from an point of view. estimation theory has
been recently introduced as a method for designing filters that
have acceptable performance in the face of model uncertainty
and lack of statistical information on the exogenous signals. In
this paper, we obtain a closed-form solution to the square MIMO
linear equalization problem and parameterize all possible

-optimal equalizers. In particular, we show that, for minimum
phase channels, a scaled version of the zero-forcing equalizer is

-optimal. The results also indicate an interesting dichotomy
between minimum phase and nonminimum phase channels: for
minimum phase channels the best causal equalizer performs as
well as the best noncausal equalizer, whereas for nonminimum
phase channels, causal equalizers cannot reduce the estimation
error bounds from their a priori values. Our analysis also suggests
certain remedies in the nonminimum phase case, namely, allowing
for finite delay, oversampling, or using multiple sensors. For
example, we show that equalization of nonminimum phase
channels requires a time delay of at least units, where is the
number of nonminimum phase zeros of the channel.

Index Terms— estimation, linear equalization, minimum
phase channels, multiple-input multiple-output (MIMO) equal-
ization, risk sensitive estimation, robustness.

I. INTRODUCTION

I N THE area of equalization of communication channels,
various criteria and the corresponding algorithms have been

proposed to recover transmitted data from their filtered and
noise corrupted versions. Each method has its own advantages
and disadvantages in terms of performance and complexity [1].
There has been some recent work addressing the robustness
issue in equalization [7], [8], [12], [13].

Equalization is closely related to estimation theory since the
equalization problem can be considered as a special case of an
estimation problem. Recently, in estimation theory, a (so-called)

approach has been proposed and extensively studied (see,
e.g., [2]–[6] and the references therein) with the belief that the
resulting estimators will be more robust with respect to
model uncertainties and lack of statistical knowledge of the ex-
ogenous signals. Due to its aforementioned properties, the
approach has also been proposed as an alternative method for
channel equalization [7], [12], [13]. Further study of this ap-
proach for the multiple-input multiple-output (MIMO) linear
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Fig. 1. The linear equalization problem.

equalization problem is the main focus of this paper. As we shall
shortly see, the results obtained in this attempt provide us with
a new and different perspective for the understanding and anal-
ysis of the equalization problem, as well as for estimation
itself.

The remainder of this paper is organized as follows.
In Section II, we introduce the MIMO linear equalization
problem. Section III introduces the framework for robust
estimation and shows how the estimation problem can be
solved via a certain J-spectral factorization. The description
of the equalization problem and the smoothing solution
are provided in Section IV. Section V contains the main results
of this paper. The MIMO equalization problem is solved
for the square case and all solutions are parameterized. The
derivation hinges on the explicit J—spectral factorization of
Section V-A1 and shows that the solution depends on whether
the channel is minimum phase or not. It is also shown that, for
minimum phase channels, appropriately scaled zero-forcing
equalizers are -optimal. Moreover, the relative merits of
various -optimal equalizers are discussed. Section V-B
deals with the nonsquare case and Section VI studies some
remedies for nonminimum phase channels. In particular, it is
shown that successful equalization of nonminimum phase chan-
nels requires a time delay greater than or equal to the number
of nonminimum phase zeros. In Section VII, we provide a
comparative simulation example for MIMO linear equalization.
This paper concludes in Section VIII.

II. LINEAR EQUALIZATION PROBLEM

The linear equalization problem that will be studied in this
paper is depicted in Fig. 1. In this framework is an un-
known sequence (the transmitted sequence), is an unknown
additive disturbance sequence, is a known observations se-
quence, and is a known linear time-invariant (LTI) com-
munications channel. The goal is to design the LTI system
(the so-called equalizer) so as to estimate the unknown trans-
mitted sequence from the known observations sequence

, where the estimated sequence is denoted by .
We shall assume that the transmitted vectors are arbitrary

vectors in . The unknown additive disturbance is typ-
ically composed of three components: i) measurement noise,
ii) interference from other signals, and iii) modeling errors, due
to imperfect knowledge of the true channel. We shall therefore,
for the most part, not make any statistical assumptions on the
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Fig. 2. A general estimation problem.

disturbance sequence and will simply consider it as an un-
known sequence of elements in . The observations will
therefore also be a sequence of elements in . The dimensions
of and determine the input/output dimensions of the
channel . The channel is assumed to be causal and stable,
which means that it is a matrix function in with Laurent
series expansion

(1)

that is analytic on and outside the unit circle, , where
denotes the impulse response of . The channel

is often assumed to be rational (of McMillan degree, say,
), or in fact finite impulse response (FIR) of length, say, .

However, almost all our results extend to the nonrational case,
and we shall therefore not make this restriction. The equalizer

is assumed to be linear time-invariant since the channel is
so, and since . Although we shall assume that is
stable, we shall not always assume that it is causal.

III. ESTIMATION

A general estimation problem is shown in Fig. 2, where
is an unknown input sequence, is an unknown

additive disturbance sequence, is a known mea-
surement sequence, and and are known causal and
stable linear time-invariant systems. The goal is to construct
the linear time-invariant (called the estimator) to estimate
the unobservable desired sequence from the obser-
vations . The estimates are denoted by . Clearly, the
equalization problem is a special case of this formulation with

. The behavior of any estimator can be cap-
tured by the induced transfer matrix, say, , that maps the
unknown disturbances and to the estimation errors

(2)

Using Fig. 2, we readily see

(3)

The problem can be formulated as follows.
Problem 1: (Optimal Estimation Problem): Find a

causal estimator that satisfies

(4)

Moreover, find the resulting .

The approaches to solve problem can be found in various ref-
erences, e.g., see [17], [2], and [4] or references therein. Our
approach in this paper would be through use of the solution to
the suboptimal problem as outlined by the following the-
orem [17].

Theorem 1: (Solution to Suboptimal Problem): A
that achieves

(5)

exists if, and only if, the Popov function

(6)

admits a canonical J-spectral factorization of the form

(7)

with and causal and causally invert-

ible, and strictly causal. If this is the case, then all pos-
sible estimators of level are given by

(8)

where is any causal and strictly contractive operator, i.e.,
is causal and is such that , for all
. An important special choice is which leads to

the so-called central filter

(9)

IV. EQUALIZATION

The equalization problem is a special case of the general es-
timation problem of Section III corresponding to .
Thus in the approach to equalization, the goal is to mini-
mize .

We should also mention that it is possible to slightly gen-
eralize the estimation problem of Section III by introducing
certain weighting matrices. In this case, we are interested
in minimizing the norm of the transfer operator from

to , which is seen to be

(10)

for some weighting matrices and . Defining
and , we

see that we can rewrite
. Thus there is no loss of generality in assuming

and , and we shall do so throughout.
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The inequality is quite clear, since noncausal
equalizers have access to more information than causal ones
and cannot therefore have worse performance. The second in-
equality follows from the fact that if we perform no equaliza-
tion, i.e., , then we have

(11)

Thus is the worst case energy gain obtained from doing
no equalization. Therefore, how much the optimal values of
and can be reduced from unity shows how successful we
are in the equalization problem.

A. Noncausal Case

For the case where is not constrained to be causal we
have the following theorem [17].

Theorem 2: (Linear Smoothing Equalization): The solution
to the problem

(12)

is given by
, where represents the equalization

delay.
Moreover, one noncausal solution is given by the noncausal

minimum mean squared error (MMSE) equalizer

(13)

which has the property that for all

(14)

Remarks:

• Focusing on the scalar case is instructive. In this case, we
have

(15)

• In other words, is achieved at those frequencies for
which takes its smallest value.

• Consider now the general case where is a
transfer matrix. If (so that there are more signals
to estimate than to observe), we have

(16)

since will be rank deficient. More im-
portantly, in the case of a square channel , if
the channel has a unit circle zero, then (since

will be rank deficient at the frequency
where the zero occurs).

• Recall from our earlier discussions that implies
that we have no improvement over not equalizing at all

. This is quite clear when we have a unit
circle zero, corresponding to frequency , say. In this
case the output of the channel cannot contain sinusoids of
frequency , and hence if is precisely such a sinu-
soid, then we cannot estimate it since we cannot observe
it at the output of .

V. CAUSAL EQUALIZATION

Our main results are concerned with the case where the equal-
izer is restricted to being causal.

A. The Square Case

In this section, we shall assume that , i.e., that the
number of input and observations signals coincide. We shall
presently show that, in this case, we can find an explicit ex-
pression for the factorization (7) of Theorem 1. This is what al-
lows us to, contrary to general estimation problems, obtain
a closed-form solution to the causal equalization problem.

1) -Spectral Factorization in the Square Case: Note that in
the equalization problem the transfer matrix whose -spectral
factorization we are seeking is given by

(17)

[We have taken in (17).] Since we know is
achievable, let us consider (17) for a given . Once

is strictly less than one, we may perform the following block
upper diagonal lower factorization:

(18)

Now since , we have

where in the fourth step we have used our assumption that
, so that is full rank for all . The last inequality im-

plies that we can introduce the canonical spectral factorization

(19)

with monic and causal and causally invert-
ible, and . With this definition we can write the factor-
ization (18) as
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Note that the above factorization is a -spectral factorization
since the spectral factor

(20)

is causal, and causally invertible, since

(21)

is causal. However, it is not quite the desired factorization of
Theorem 1 since the block (1, 2) entry is not strictly
causal. To transform into a transfer matrix such that the
(1, 2) entry is strictly causal, we must premultiply by an
appropriate constant1 -unitary matrix . In fact, we need only
concentrate on . Thus, we must have

(22)

Since is -unitary, we have

(23)

Comparing the (1, 1) block entries in the above equality, we have

(24)

which implies that and that
can be made strictly causal only if

(25)

Comparing the (2,1) block entries of (23) yields ,
so that . Finally, comparing the (2,2) block entries
yields

(26)

or

so that . We should also
remark that (25) guarantees so that C

1The J-unitary matrix must be constant so as not to destroy the causal and
causal invertibility property of P (z).

is well defined. Indeed, two different block lower diagonal upper
and block upper diagonal lower factorizations of the matrix

show that the matrices

are congruent and therefore must have the same inertia. Since
and , we con-

clude that has positive eigenvalues and negative eigen-
values. Moreover, since , we conclude that

, which is the desired result.
Having found the elements , we can now find the

desired -unitary matrix

and thereby the desired canonical factor

(27)

The results of this section are summarized in the following
lemma.

Lemma 1— -Spectral Factorization: Suppose the
causal matrix function has full rank
on , and let be such that

(28)

Then a factorization of the form

(29)

with causal and causally invertible, and

strictly causal, exists if, and only if

(30)

where is found from the canonical spectral factorization

(31)
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with monic and causal and causally invertible. If this is
the case, then we have (32) as shown at the bottom of the page,
where and are found from the factorizations

(33)

From the above lemma, and using Theorem 1, it follows that
a level- equalizer exists if, and only if, (30) is satisfied
and

is causal.

(34)

Thus our problem is reduced to checking (30) and (34). This
may appear as a difficult task; however, we shall show in the
following sections that the satisfaction of these conditions is
strictly dependent upon whether is minimum phase or not.

2) The Minimum Phase Case: Let us first assume that the
causal matrix function is minimum phase, i.e.,

that its inverse is causal. Then we have the following
result.

Lemma 2: Consider the setting of Lemma 1 and suppose that
is minimum phase. Then for all satisfying (28) we have

(35)

Proof: Note that from (31)

Thus

Now the transfer matrix is causal
(since and are causal) and monic (since

, and we may write

Therefore

The next result establishes the causal invertibility of .
Lemma 3: Consider the setting of Lemma 1 and suppose

that is minimum phase. Then for all satisfying (28) the
transfer matrix

(36)

is causal.
Proof: Let us first write

where we have used the fact that is invertible since is
minimum phase (if is singular, then will have a zero at

). Now since is causal, will be causal
if is causal. We shall
presently show this by appealing to Lemma 7 in the Appendix
and showing that

(37)

is a strict contraction. Indeed

where in the second step we used so that
and where in the last step we used

(36).
The above lemmas show that, in the minimum phase case,

whenever a -spectral factorization exists, then can be
made strictly causal and can be made causally invertible.
This essentially means that in the minimum phase case, we have

.
3) The Nonminimum Phase Case: We now assume that the

causal matrix function is nonminimum phase, i.e.,
that its inverse is noncausal. Here we have the following
result.

Lemma 4: Consider the setting of Lemma 1 and suppose that
is nonminimum phase, and that

(38)

Then the transfer matrix

(39)

is noncausal.

(32)
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Proof: First note that we may write

Now when (38) holds, using an argument similar to the one pre-
sented in the proof of Lemma 3, one can show that the causal
transfer matrix

(40)

is a strict expansion, i.e., . Note, more-
over, that since is noncausal and

the transfer matrix is noncausal as well. (Otherwise,
the noncausal would be the product of causal transfer
matrices.) Lemma 8 now implies that, since is a causal
expansion and is noncausal, the transfer matrix

must be noncausal. This in turn implies that is
noncausal, since

cannot be the product of causal transfer matrices.
Recall that for a level- equalizer, with , to exist

we require both (30) and (34). What we have just shown is that,
when is nonminimum phase, even if (30) is satisfied (34)
is not. This essentially means that in the nonminimum phase
case, we have

(41)

since is always achievable by .
4) Main Result: We are now in a position to the state the

main result of this paper.
Theorem 3 ( Equalization in the Square Case): Consider

the causal transfer matrix
and suppose that we want to solve the problem

1) If is minimum phase, i.e., if is analytic on
, then the minimax energy gain is given by

(42)

Moreover, for any , all causal equalizers that guar-
antee are given by

(43)

where the are given as shown in (44) at the bottom of
the page, with the monic and minimum phase transfer matrix

and the matrix found from the canonical spectral
factorization

(45)

where the matrices are found from the factorizations

(46)

and where is any causal contraction, i.e., is analytic
on and

(47)

2) If is nonminimum phase, i.e., if is not an-
alytic on , then the minimax energy gain is given by

(48)

Remarks:

i) Note that when is minimum phase,
This implies that for minimum phase channels, causal
equalizers perform as well as noncausal ones, and that
(from an point of view) there is no gain in knowing
future values of the observations signal .

ii) Recall from Theorem 2 that the central noncausal equal-
izer at least outperforms all other equalizers (causal or
noncausal) at all frequencies. Theorem 3 therefore states
that if is minimum phase, then the central non-
causal equalizer cannot outperform the best causal equal-
izer in terms of its worst case performance (which occurs
at certain frequencies).

iii) However, if is nonminimum phase, then
Thus causal equalization of nonminimum phase channels
is not possible, since is the same bound obtained
by not equalizing at all .

iv) Suppose now that is rational. Then if all the zeros of
lie strictly inside the unit circle, causal equalizers

perform as good as noncausal ones. As soon as a zero
lies on the unit circle then equalization is not possible

since the channel cannot pass certain
frequencies. However, as soon as a zero crosses the unit
circle, noncausal equalizers can now perform whereas
causal ones cannot. There is therefore a clear transition
occurring at the unit circle and a strict dichotomy be-
tween minimum phase and nonminimum phase channels
as far as causal equalization is concerned.

v) Some understanding of the result of Theorem 3 for non-
minimum phase channels can be obtained by considering
the simple (perhaps the simplest) nonminimum phase
channel (a pure delay). In this case it is
quite clear that causal equalization is not possible, since
at time the equalizer has access only to noisy observa-
tions of and has no knowledge of in order
to be able to estimate it.

vi) A similar behavior to Theorem 3 can be observed had
we studied the equalization problem from an point

(44)
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of view, though the result is not as pronounced. In the
scalar case (which for simplicity we shall only consider),
the norm of the -optimal causal equalizer is given
by

(49)

where is found from the spectral factorization

(50)

with monic and minimum phase. It is now easy
to show that for all channels and that
have the same spectrum (i.e.,

, so that noncausal equalizers have
the same performance, is largest for the minimum
phase channel. Thus is smallest for the minimum
phase channel, which means that the corresponding
equalizer has the best performance. (In fact, it can
also be shown that increases as the number of non-
minimum phase zeros increases.)

5) Special Cases: Theorem 3 gives a full parameterization
of all possible level equalizers in terms of a causal strict
contraction . The most natural choice is , which
corresponds to the central equalizer

(51)

As mentioned earlier, the central equalizer has various other de-
sirable optimality properties, such as being risk-sensitive op-
timal [10] and being the maximum entropy solution [9], [11].
We shall not go into the details here and shall just mention that
the risk-sensitive optimality property of minimizing

(52)

may be useful for digital communications since exponentially
larger penalties are being applied to larger estimation errors,
which is typically where detection errors (detecting a zero as
a one, say) occur. This observation is studied in more detail in
[12] with mixed results.

A less obvious, but nonetheless intriguing, choice is

(53)

a constant matrix. Indeed is a strict contraction since we
have the equation at the bottom of the page so that

With this choice of , (43) shows that we obtain

(54)

i.e., one optimal equalizer is simply a scaled version of
the inverse of the channel. In other words, suitably scaling the
zero-forcing equalizer is -optimal.

Lemma 5 (Zero-Forcing Equalizer): For any such that

(55)

[(55) implies that is minimum phase] the equalizer
achieves

(56)

Proof: We have already presented a proof in the arguments
leading to the statement of the lemma. A more direct proof is
also possible. Note that with , we have

Therefore

where in the second step we have used
, so that
.

Note that if there were no additive disturbance present
, the inverse of the channel would perfectly

reconstruct the input signal. The scaling factor 1 , though,
is crucial here—if has zeros close to the unit circle the
frequency response of will be very large at certain fre-
quencies, resulting in large amplification of the noise at those
frequencies. However, in this case will be close to one,
and thus the factor 1 prohibits such large amplifications.

Nonetheless, even though it is -optimal, scaling and in-
verting the plant is not a very satisfactory solution since it has
poor average performance and leads to flat error spectra.
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To illustrate this fact, and to compare the various equalizers
considered so far, let us consider the problem of equalizing a
scalar minimum phase channel . In Fig. 3, we have plotted
the error spectra , corresponding to the noncausal

(smoothing or noncausal central ) optimal equalizer, the
causal -optimal equalizer, the causal central -optimal
equalizer, and the causal -optimal (scaled) zero-forcing
equalizer, for a minimum phase channel. Reviewing this figure
should allow the reader to gain some perspective and “feel” for
the relative performances of these different equalizers.

As can be seen, the - and -optimal noncausal equal-
izer outperforms all other equalizers at all frequencies. Its error
spectrum thus serves as a lower bound for the error spectra of
all other equalizers. The -optimal equalizer has the best av-
erage performance (under the appropriate stochastic assump-
tions), and hence has the smallest area under the spectrum curve,
among all causal equalizers. The (central) -optimal and the
zero-forcing -optimal equalizers have the best worst case
performance, and hence their spectra has the smallest peak, over
all causal equalizers. Since the channel is minimum phase, these
peaks coincide with the peak of the noncausal -optimal
equalizer.

These figures also indicate the tradeoffs between and
equalizers. Although -optimal equalizers have the smallest
area under the spectrum curve, they tend to have large peaks
that correspond to nonrobust behavior at certain frequencies.
On the other hand, although the -optimal estimators are ro-
bust, and have the smallest possible peaks, they have larger areas
under their spectrum curve and may have poor average perfor-
mance. This is particularly true of the scaled zero-forcing equal-
izer, which has a very “flat” spectrum. However, the central
equalizer has a reasonably low error spectrum connected with its
risk-sensitive optimality.

B. The Nonsquare Case

So far we have only considered the case of a square channel
. When , we have the following result.

Theorem 4 (Causal Equalizer for Nonsquare Plant):
Consider the causal transfer matrix

, where , and where we want to solve the
problem

i) Suppose . Then if has no zeros on or outside
the unit circle

(57)

Otherwise .
ii) Suppose . Then

(58)

Proof: To prove part i), let us first assume that has
no zeros on . Since , this means that has

Fig. 3. Inversion of the noisy channel H(z) = 1 + :1z + 1:12z +
:044z + :33z � :11z � :12z .

a causal left inverse, i.e., there exists an transfer matrix
, analytic on , such that

Since is analytic on , for any ,
we can write

Now let us choose our equalizer as .
For this choice we have

Thus

so that .
Let us now assume that has zeros on . We shall

assume that there exists a causal such that
and shall obtain a contradiction. Thus assume that there exists a

, analytic on , such that

Since is analytic on , the maximum-modulus
principle implies that

(59)
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But assume that has a zero in , i.e., has
rank less than for some such that . Let be a
corresponding right null vector of , i.e., .
Then we have , so that unity is an
eigenvalue of , and hence

which clearly contradicts (59).
Finally, to prove ii), we note that when , the number of

signals to estimated is greater than the number of observations,
and so there is no hope in estimating them. clearly
gives .

Remark: Note that when will generically have
no zeros because it will generically have full rank for all . To
be more explicit, suppose that and , so that

(60)

Now will have a zero outside the unit circle if, and only if,
and share some nonminimum phase zero. But of

course any two arbitrary rational functions will generically not
have common zeros.

We should also mention that, when has no zeros in
, finding an explicit expression for does not appear to be

simple. The construction presented in the proof of Theorem 4
suggests the following upper bound:

(61)

Various other statements can also be made. Here is an ex-
ample. Suppose that , where both and

are scalar and minimum phase. Then the best causal
equalizer performs better than the best noncausal equalizers ap-
plied to and separately, but not as good as the best
noncausal equalizer applied to and together. In
other words

(62)

VI. SOME REMEDIES FOR NONMINIMUM PHASE CHANNELS

In Section V-A4, we noted that, in the square case ,
causal equalization of nonminimum phase channels is not pos-
sible (from the point of view). Since nonminimum phase
channels do occur in practice, it is important to have a means
of circumventing this drawback. In this section, we shall look at
three remedies for the nonminimum phase case: using multiple
sensors, oversampling, or allowing for finite delay, as suggested
by the framework of this paper.

A. Using Multiple Sensors

By adding multiple sensors, we increase the number of ob-
servation signals without changing the number of input signals.

Thus, we transform a square problem with to a nonsquare
problem with . This means that our original problem that
had , when is nonminimum phase, is transformed
to one for which is generically strictly less than one.

Take, for example, the scalar case and suppose that
is nonminimum phase. Then if we add a second sensor, corre-
sponding to a scalar channel with transfer function , our
channel will become

Thus, even though is nonminimum phase, and ,
too, may very well be nonminimum phase, it is still possible
to causally equalize the aggregate channel as long as
and share no nonminimum phase zeros. This, of course,
generically holds.

We should also mention that the property of noncommon
zeros is similar to the requirement that arises in the blind equal-
ization of vector channels using second-order statistics (see,
e.g., [14]).

B. Oversampling

Oversampling is also currently used as a method for the
blind equalization of nonminimum phase channels using
second-order statistics (see, e.g., [15]), and can also be used
for causal equalization. The idea is to sample the output of
the communications channel at a rate higher than the rate of
the input signal. This then leads us to a situation where we
have more observation signals than input signals, which can
be suitably transformed to an MIMO channel scenario with

that was considered in Section VI-A. Indeed if we have
a nonminimum phase scalar channel with transfer function

, and oversample at a rate of output samples per each
input transmitted, the resulting MIMO channel becomes

(63)

Thus the condition for causal equalization is that the
transfer functions share no common
nonminimum phase zero.

C. Finite Delay

Another obvious remedy for the equalization of nonminimum
phase channels is to allow for some finite delay, . In other
words, we are interested in estimating using the observations

. Such a problem corresponds to the general
estimation problem of Section III with (since we
can also think of it as estimating using the observations

).
It is quite clear that allowing for infinite delay takes us back

to the situation of a noncausal equalizer. The natural question to
ask therefore is: what is the amount of finite delay
that we should incur so that:

i)
ii)
The answer to the first question would tell how much delay

we need in order to be successful in causal equalization, and the
answer to the second question would tell us how much delay we
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need to in order obtain the same performance as the noncausal
equalizer.

Unfortunately, we do not yet know an explicit factorization
for the transfer matrix

(64)

for arbitrary and general nonminimum phase channels.
Therefore we do not yet have explicit expressions for in
this case and have no answer for question ii), raised above, of
when . However, we do have the answer to question
i), of when .

Lemma 6 (Delay Required for ): Consider the
causal rational transfer matrix and

suppose that has no unit circle zeros (i.e., ( is full
rank for all ). We are interested in the following problem:

(65)

Let denote the number of nonminimum phase (i.e., on or out-
side the unit circle) zeros of (counting multiplicities).
Then we have the following result.

i) If , then

ii) If , then

Proof: The proof to the above theorem is based on the
operator theoretic techniques outlined in [16]. A proof for the
more general is given in [16]. However, we will provide the
proof specifically for the delay case, i.e., following
the same methodology.

We first define the Toeplitz operators for , the
delay operator, and for the channel as

(66)
. . .
. . . (67)

respectively. We know that

delay (68)

Here , if and only if

for all

for all

for all

Therefore, we can write

delay (69)

Therefore we can write

delay

for some

As a result, if, and only if, there exists an
which is in the null space of and which has

. Now suppose that has distinct non-
minimum phase zeros at . Since the nullspace vectors
of has the form

(70)

we can write this condition to be equivalent to finding
such that

(71)

where is the all-zero vector with dimension . An equiv-
alent condition can be written as finding such that

...
...

...
...

...
(72)

Since is a matrix with dimensions , its nullspace is
nonempty and therefore if and only if .

The above lemma has an interesting interpretation. In order
to get an improvement over not equalizing at all , the
delay should be chosen greater than the number of nonmin-
imum phase zeros of the channel. Thus the fundamental limita-
tion in causal equalization is the number of zeros outside of the
unit circle.

VII. EXAMPLE

In this section, we provide an example simulation, where
is a five-tap 5 4 channel with randomly gener-

ated (Gaussian) entries. All four users use four quaternary
phase-shift keying constellation. We simulated average bit
error rate (BER) performance for the average case with white
disturbances and the worst case with the disturbances at the
frequency where maximum error gain occurs. Both equalizers
are implemented as recursive Kalman filters ( or ) [17]
where equalization delay is set as . Fig. 4 shows BER
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Fig. 4. Average and worst case BER performances of MMSE and the central
H equalizers.

rate curves (averaged over all users). According to this figure,
although the risk sensitive equalizer has a slightly worse
average performance than the MMSE equalizer, its worst case
performance is much closer to its average performance in
comparison to the MMSE equalizer.

VIII. CONCLUSION

In this paper, we studied the criterion as an alternative
method for the equalization of communication channels. Cur-
rent equalization methods and algorithms are mainly concerned
with average behavior (e.g., MSE or BER) under the condi-
tions of perfect models and known statistical distributions.
theory, on the other hand, is concerned with the worst case be-
havior and the question of robustness with respect to model un-
certainty and lack of statistical information.

We obtained a closed-form solution to the equalization
problem and parameterized all possible -optimal equalizers
for the square causal case. More importantly, not only did we
obtain a solution to the problem, but we learned a lot about the
equalization problem itself. In particular, we discovered an in-
teresting dichotomy between minimum phase and nonminimum
phase channels. In the minimum phase case causal equalizers
perform as well as noncausal ones, whereas in the nonminimum
phase case, causal equalizers cannot reduce the worst case es-
timation error bounds from their a priori values. Moreover, we
showed that, for minimum phase channels, a scaled version of
the zero-forcing equalizer is -optimal. We also studied the
use of adding more sensors, oversampling, and allowing for fi-
nite delay, as remedies for the nonminimum phase case. We also
learned that the fundamental limit in causally equalizing a non-
minimum phase channel is related to its number of nonminimum
phase zeros.

The results presented in this paper also have ramifications in
other areas. They essentially deal with the problem of “robustly”
inverting a linear time-invariant system (as in filter banks) and
so have implications to the important tracking problem of con-

trol theory. They also have various implications to more general
control and estimation problems and, especially, to the questions
of worst case controllability and estimability (essentially what
systems are easy, or difficult, to control and estimate) [16].

Finally, we may mention some possible directions for future
work. The first has to do with the extension of our explicit
derivations for square case for more general case with non-
square channel and arbitrary equalization delay. In connection
with this, the question of how much delay is required to ob-
tain the same performance as the noncausal solution is to
be addressed. Another has to do with incorporating “structural”
modeling errors for the channel in the equalizer solution. Per-
haps the most important direction relies on the following obser-
vation: As we saw for -optimal zero-forcing equalization,
having a good (indeed optimal) worst case performance alone
is not sufficient for having acceptable performance in real ap-
plications. Since the criterion provides a family of filters
that achieve the same worst case performance, it is an impor-
tant design problem to choose a filter among this family that has
good performance with respect to other relevant criteria. This
question was partially addressed (through the study of mixed

and risk sensitive criteria) for FIR equalizers in [18]
and for filter banks in [19].

APPENDIX

Some important lemmas follow.
Lemma 7: Suppose the transfer matrix is causal

and strictly contractive, i.e.,

i) is analytic on ;
ii) for .

Then the transfer matrix is causal.
Proof: Since is a contraction, this implies that

. Moreover, since is analytic on
, due to the maximum modulus principle, it achieves its

maximum on the boundary. Thus

(A.1)

This means that we can expand the inverse in to
write

(A.2)

where the infinite series converges absolutely for since
is a strict contraction in this region. Thus,

is the sum of absolutely converging analytic functions on
, and hence itself is an analytic function on . Thus,

is causal.
Lemma 8: Suppose that the transfer matrix is a

causal strict expansion, i.e., that:

i) is analytic on ;
ii) for .

Then we have

noncausal noncausal
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Proof: We shall prove the lemma by contradiction, i.e., we
shall assume that is causal and prove that
is causal. First note that implies

We thus have

is causal

In other words, is causal and positive real. Lemma 9 there-
fore implies that is causal. But since

we conclude that is causal.
Lemma 9: Suppose that the transfer matrix is

causal and positive real, i.e.,

i) is analytic on ;
ii) for .

Then is causal.
Proof: Since is analytic on , then is

bounded for all and, in particular

Moreover, since is positive real, there exists some
such that

Therefore the causal transfer matrix is a strict con-
traction since

Therefore, using Lemma 7, is causal since
.
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