2,109 research outputs found

    Extensionality of simply typed logic programs

    Get PDF
    We set up a framework for the study of extensionality in the context of higher-order logic programming. For simply typed logic programs we propose a novel declarative semantics, consisting of a model class with a semi-computable initial model, and a notion of extensionality. We show that the initial model of a simply typed logic program, in case the program is extensional, collapses into a simple, set-theoretic representation. Given the undecidability of extensionality in general, we develop a decidable, syntactic criterion which is sufficient for extensionality. Some typical examples of higher-order logic programs are shown to be extensional

    Cut-Simulation and Impredicativity

    Full text link
    We investigate cut-elimination and cut-simulation in impredicative (higher-order) logics. We illustrate that adding simple axioms such as Leibniz equations to a calculus for an impredicative logic -- in our case a sequent calculus for classical type theory -- is like adding cut. The phenomenon equally applies to prominent axioms like Boolean- and functional extensionality, induction, choice, and description. This calls for the development of calculi where these principles are built-in instead of being treated axiomatically.Comment: 21 page

    On the strength of dependent products in the type theory of Martin-L\"of

    Full text link
    One may formulate the dependent product types of Martin-L\"of type theory either in terms of abstraction and application operators like those for the lambda-calculus; or in terms of introduction and elimination rules like those for the other constructors of type theory. It is known that the latter rules are at least as strong as the former: we show that they are in fact strictly stronger. We also show, in the presence of the identity types, that the elimination rule for dependent products--which is a "higher-order" inference rule in the sense of Schroeder-Heister--can be reformulated in a first-order manner. Finally, we consider the principle of function extensionality in type theory, which asserts that two elements of a dependent product type which are pointwise propositionally equal, are themselves propositionally equal. We demonstrate that the usual formulation of this principle fails to verify a number of very natural propositional equalities; and suggest an alternative formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio

    Intensional Models for the Theory of Types

    Get PDF
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to applications. Firstly, it is argued that, since ITL is truly intensional, it can be used to model ascriptions of propositional attitude without predicting logical omniscience. In order to illustrate this a small fragment of English is defined and provided with an ITL semantics. Secondly, it is shown that ITL models contain certain objects that can be identified with possible worlds. Essential elements of modal logic become available within classical type theory once the axiom of Extensionality is given up.Comment: 25 page

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:FEf : \mathcal{F} \to \mathcal{E}, where H=fΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    First Class Call Stacks: Exploring Head Reduction

    Get PDF
    Weak-head normalization is inconsistent with functional extensionality in the call-by-name λ\lambda-calculus. We explore this problem from a new angle via the conflict between extensionality and effects. Leveraging ideas from work on the λ\lambda-calculus with control, we derive and justify alternative operational semantics and a sequence of abstract machines for performing head reduction. Head reduction avoids the problems with weak-head reduction and extensionality, while our operational semantics and associated abstract machines show us how to retain weak-head reduction's ease of implementation.Comment: In Proceedings WoC 2015, arXiv:1606.0583

    Relational parametricity for higher kinds

    Get PDF
    Reynolds’ notion of relational parametricity has been extremely influential and well studied for polymorphic programming languages and type theories based on System F. The extension of relational parametricity to higher kinded polymorphism, which allows quantification over type operators as well as types, has not received as much attention. We present a model of relational parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and show how it forms an instance of a general class of models defined by Hasegawa. We investigate some of the consequences of our model and show that it supports the definition of inductive types, indexed by an arbitrary kind, and with reasoning principles provided by initiality

    Guarded Cubical Type Theory: Path Equality for Guarded Recursion

    Get PDF
    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\"of type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.Comment: 17 pages, to be published in proceedings of CSL 201

    Step-Indexed Logical Relations for Probability (long version)

    Full text link
    It is well-known that constructing models of higher-order probabilistic programming languages is challenging. We show how to construct step-indexed logical relations for a probabilistic extension of a higher-order programming language with impredicative polymorphism and recursive types. We show that the resulting logical relation is sound and complete with respect to the contextual preorder and, moreover, that it is convenient for reasoning about concrete program equivalences. Finally, we extend the language with dynamically allocated first-order references and show how to extend the logical relation to this language. We show that the resulting relation remains useful for reasoning about examples involving both state and probabilistic choice.Comment: Extended version with appendix of a FoSSaCS'15 pape

    Encoding TLA+ set theory into many-sorted first-order logic

    Get PDF
    We present an encoding of Zermelo-Fraenkel set theory into many-sorted first-order logic, the input language of state-of-the-art SMT solvers. This translation is the main component of a back-end prover based on SMT solvers in the TLA+ Proof System
    corecore