70,508 research outputs found

    A mechanistic model of connector hubs, modularity, and cognition

    Full text link
    The human brain network is modular--comprised of communities of tightly interconnected nodes. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for cognitive performance--individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbors to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance

    Design of a Hybrid Modular Switch

    Full text link
    Network Function Virtualization (NFV) shed new light for the design, deployment, and management of cloud networks. Many network functions such as firewalls, load balancers, and intrusion detection systems can be virtualized by servers. However, network operators often have to sacrifice programmability in order to achieve high throughput, especially at networks' edge where complex network functions are required. Here, we design, implement, and evaluate Hybrid Modular Switch (HyMoS). The hybrid hardware/software switch is designed to meet requirements for modern-day NFV applications in providing high-throughput, with a high degree of programmability. HyMoS utilizes P4-compatible Network Interface Cards (NICs), PCI Express interface and CPU to act as line cards, switch fabric, and fabric controller respectively. In our implementation of HyMos, PCI Express interface is turned into a non-blocking switch fabric with a throughput of hundreds of Gigabits per second. Compared to existing NFV infrastructure, HyMoS offers modularity in hardware and software as well as a higher degree of programmability by supporting a superset of P4 language

    Static and dynamic measures of human brain connectivity predict complementary aspects of human cognitive performance

    Get PDF
    In cognitive network neuroscience, the connectivity and community structure of the brain network is related to cognition. Much of this research has focused on two measures of connectivity - modularity and flexibility - which frequently have been examined in isolation. By using resting state fMRI data from 52 young adults, we investigate the relationship between modularity, flexibility and performance on cognitive tasks. We show that flexibility and modularity are highly negatively correlated. However, we also demonstrate that flexibility and modularity make unique contributions to explain task performance, with modularity predicting performance for simple tasks and flexibility predicting performance on complex tasks that require cognitive control and executive functioning. The theory and results presented here allow for stronger links between measures of brain network connectivity and cognitive processes.Comment: 37 pages; 7 figure

    Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

    Full text link
    This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs

    A new hierarchical clustering algorithm to identify non-overlapping like-minded communities

    Full text link
    A network has a non-overlapping community structure if the nodes of the network can be partitioned into disjoint sets such that each node in a set is densely connected to other nodes inside the set and sparsely connected to the nodes out- side it. There are many metrics to validate the efficacy of such a structure, such as clustering coefficient, betweenness, centrality, modularity and like-mindedness. Many methods have been proposed to optimize some of these metrics, but none of these works well on the recently introduced metric like-mindedness. To solve this problem, we propose a be- havioral property based algorithm to identify communities that optimize the like-mindedness metric and compare its performance on this metric with other behavioral data based methodologies as well as community detection methods that rely only on structural data. We execute these algorithms on real-life datasets of Filmtipset and Twitter and show that our algorithm performs better than the existing algorithms with respect to the like-mindedness metric

    Kantian fractionalization predicts the conflict propensity of the international system

    Get PDF
    The study of complex social and political phenomena with the perspective and methods of network science has proven fruitful in a variety of areas, including applications in political science and more narrowly the field of international relations. We propose a new line of research in the study of international conflict by showing that the multiplex fractionalization of the international system (which we label Kantian fractionalization) is a powerful predictor of the propensity for violent interstate conflict, a key indicator of the system's stability. In so doing, we also demonstrate the first use of multislice modularity for community detection in a multiplex network application. Even after controlling for established system-level conflict indicators, we find that Kantian fractionalization contributes more to model fit for violent interstate conflict than previously established measures. Moreover, evaluating the influence of each of the constituent networks shows that joint democracy plays little, if any, role in predicting system stability, thus challenging a major empirical finding of the international relations literature. Lastly, a series of Granger causal tests shows that the temporal variability of Kantian fractionalization is consistent with a causal relationship with the prevalence of conflict in the international system. This causal relationship has real-world policy implications as changes in Kantian fractionalization could serve as an early warning sign of international instability.Comment: 17 pages + 17 pages designed as supplementary online materia
    • …
    corecore