1,830 research outputs found

    Type Targeted Testing

    Full text link
    We present a new technique called type targeted testing, which translates precise refinement types into comprehensive test-suites. The key insight behind our approach is that through the lens of SMT solvers, refinement types can also be viewed as a high-level, declarative, test generation technique, wherein types are converted to SMT queries whose models can be decoded into concrete program inputs. Our approach enables the systematic and exhaustive testing of implementations from high-level declarative specifications, and furthermore, provides a gradual path from testing to full verification. We have implemented our approach as a Haskell testing tool called TARGET, and present an evaluation that shows how TARGET can be used to test a wide variety of properties and how it compares against state-of-the-art testing approaches

    Diagrammatic Languages and Formal Verification : A Tool-Based Approach

    Get PDF
    The importance of software correctness has been accentuated as a growing number of safety-critical systems have been developed relying on software operating these systems. One of the more prominent methods targeting the construction of a correct program is formal verification. Formal verification identifies a correct program as a program that satisfies its specification and is free of defects. While in theory formal verification guarantees a correct implementation with respect to the specification, applying formal verification techniques in practice has shown to be difficult and expensive. In response to these challenges, various support methods and tools have been suggested for all phases from program specification to proving the derived verification conditions. This thesis concerns practical verification methods applied to diagrammatic modeling languages. While diagrammatic languages are widely used in communicating system design (e.g., UML) and behavior (e.g., state charts), most formal verification platforms require the specification to be written in a textual specification language or in the mathematical language of an underlying logical framework. One exception is invariant-based programming, in which programs together with their specifications are drawn as invariant diagrams, a type of state transition diagram annotated with intermediate assertions (preconditions, postconditions, invariants). Even though the allowed program states—called situations—are described diagrammatically, the intermediate assertions defining a situation’s meaning in the domain of the program are still written in conventional textual form. To explore the use of diagrams in expressing the intermediate assertions of invariant diagrams, we designed a pictorial language for expressing array properties. We further developed this notation into a diagrammatic domain-specific language (DSL) and implemented it as an extension to the Why3 platform. The DSL supports expression of array properties. The language is based on Reynolds’s interval and partition diagrams and includes a construct for mapping array intervals to logic predicates. Automated verification of a program is attained by generating the verification conditions and proving that they are true. In practice, full proof automation is not possible except for trivial programs and verifying even simple properties can require significant effort both in specification and proof stages. An animation tool which supports run-time evaluation of the program statements and intermediate assertions given any user-defined input can support this process. In particular, an execution trace leading up to a failed assertion constitutes a refutation of a verification condition that requires immediate attention. As an extension to Socos, a verificion tool for invariant diagrams built on top of the PVS proof system, we have developed an execution model where program statements and assertions can be evaluated in a given program state. A program is represented by an abstract datatype encoding the program state, together with a small-step state transition function encoding the evaluation of a single statement. This allows the program’s runtime behavior to be formally inspected during verification. We also implement animation and interactive debugging support for Socos. The thesis also explores visualization of system development in the context of model decomposition in Event-B. Decomposing a software system becomes increasingly critical as the system grows larger, since the workload on the theorem provers must be distributed effectively. Decomposition techniques have been suggested in several verification platforms to split the models into smaller units, each having fewer verification conditions and therefore imposing a lighter load on automatic theorem provers. In this work, we have investigated a refinement-based decomposition technique that makes the development process more resilient to change in specification and allows parallel development of sub-models by a team. As part of the research, we evaluated the technique on a small case study, a simplified version of a landing gear system verification presented by Boniol and Wiels, within the Event-B specification language.Vikten av programvaras korrekthet har accentuerats dĂ„ ett vĂ€xande antal sĂ€kerhetskritiska system, vilka Ă€r beroende av programvaran som styr dessa, har utvecklas. En av de mer framtrĂ€dande metoderna som riktar in sig pĂ„ utveckling av korrekt programvara Ă€r formell verifiering. Inom formell verifiering avses med ett korrekt program ett program som uppfyller sina specifikationer och som Ă€r fritt frĂ„n defekter. Medan formell verifiering teoretiskt sett kan garantera ett korrekt program med avseende pĂ„ specifikationerna, har tillĂ€mpligheten av formella verifieringsmetod visat sig i praktiken vara svĂ„r och dyr. Till svar pĂ„ dessa utmaningar har ett stort antal olika stödmetoder och automatiseringsverktyg föreslagits för samtliga faser frĂ„n specifikationen till bevisningen av de hĂ€rledda korrekthetsvillkoren. Denna avhandling behandlar praktiska verifieringsmetoder applicerade pĂ„ diagrambaserade modelleringssprĂ„k. Medan diagrambaserade sprĂ„k ofta anvĂ€nds för kommunikation av programvarudesign (t.ex. UML) samt beteende (t.ex. tillstĂ„ndsdiagram), krĂ€ver de flesta verifieringsplattformar att specifikationen kodas medelst ett textuellt specifikationsspĂ„k eller i sprĂ„ket hos det underliggande logiska ramverket. Ett undantag Ă€r invariantbaserad programmering, inom vilken ett program tillsammans med dess specifikation ritas upp som sk. invariantdiagram, en typ av tillstĂ„ndstransitionsdiagram annoterade med mellanliggande logiska villkor (förvillkor, eftervillkor, invarianter). Även om de tillĂ„tna programtillstĂ„nden—sk. situationer—beskrivs diagrammatiskt Ă€r de logiska predikaten som beskriver en situations betydelse i programmets domĂ€n fortfarande skriven pĂ„ konventionell textuell form. För att vidare undersöka anvĂ€ndningen av diagram vid beskrivningen av mellanliggande villkor inom invariantbaserad programming, har vi konstruerat ett bildbaserat sprĂ„k för villkor över arrayer. Vi har dĂ€refter vidareutvecklat detta sprĂ„k till ett diagrambaserat domĂ€n-specifikt sprĂ„k (domain-specific language, DSL) och implementerat stöd för det i verifieringsplattformen Why3. SprĂ„ket lĂ„ter anvĂ€ndaren uttrycka egenskaper hos arrayer, och Ă€r baserat pĂ„ Reynolds intevall- och partitionsdiagram samt inbegriper en konstruktion för mappning av array-intervall till logiska predikat. Automatisk verifiering av ett program uppnĂ„s genom generering av korrekthetsvillkor och Ă„tföljande bevisning av dessa. I praktiken kan full automatisering av bevis inte uppnĂ„s utom för trivial program, och Ă€ven bevisning av enkla egenskaper kan krĂ€va betydande anstrĂ€ngningar bĂ„de vid specifikations- och bevisfaserna. Ett animeringsverktyg som stöder exekvering av sĂ„vĂ€l programmets satser som mellanliggande villkor för godtycklig anvĂ€ndarinput kan vara till hjĂ€lp i denna process. SĂ€rskilt ett exekveringspĂ„r som leder upp till ett falskt mellanliggande villkor utgör ett direkt vederlĂ€ggande (refutation) av ett bevisvillkor, vilket krĂ€ver omedelbar uppmĂ€rksamhet frĂ„n programmeraren. Som ett tillĂ€gg till Socos, ett verifieringsverktyg för invariantdiagram baserat pĂ„ bevissystemet PVS, har vi utvecklat en exekveringsmodell dĂ€r programmets satser och villkor kan evalueras i ett givet programtillstĂ„nd. Ett program representeras av en abstrakt datatyp för programmets tillstĂ„nd tillsammans med en small-step transitionsfunktion för evalueringen av en enskild programsats. Detta möjliggör att ett programs exekvering formellt kan analyseras under verifieringen. Vi har ocksĂ„ implementerat animation och interaktiv felsökning i Socos. Avhandlingen undersöker ocksĂ„ visualisering av systemutveckling i samband med modelluppdelning inom Event-B. Uppdelning av en systemmodell blir allt mer kritisk dĂ„ ett systemet vĂ€xer sig större, emedan belastningen pĂ„ underliggande teorembe visare mĂ„ste fördelas effektivt. Uppdelningstekniker har föreslagits inom mĂ„nga olika verifieringsplattformar för att dela in modellerna i mindre enheter, sĂ„ att varje enhet har fĂ€rre verifieringsvillkor och dĂ€rmed innebĂ€r en mindre belastning pĂ„ de automatiska teorembevisarna. I detta arbete har vi undersökt en refinement-baserad uppdelningsteknik som gör utvecklingsprocessen mer kapabel att hantera förĂ€ndringar hos specifikationen och som tillĂ„ter parallell utveckling av delmodellerna inom ett team. Som en del av forskningen har vi utvĂ€rderat tekniken pĂ„ en liten fallstudie: en förenklad modell av automationen hos ett landningsstĂ€ll av Boniol and Wiels, uttryckt i Event-B-specifikationsprĂ„ket

    Relatively Complete Counterexamples for Higher-Order Programs

    Full text link
    In this paper, we study the problem of generating inputs to a higher-order program causing it to error. We first study the problem in the setting of PCF, a typed, core functional language and contribute the first relatively complete method for constructing counterexamples for PCF programs. The method is relatively complete in the sense of Hoare logic; completeness is reduced to the completeness of a first-order solver over the base types of PCF. In practice, this means an SMT solver can be used for the effective, automated generation of higher-order counterexamples for a large class of programs. We achieve this result by employing a novel form of symbolic execution for higher-order programs. The remarkable aspect of this symbolic execution is that even though symbolic higher-order inputs and values are considered, the path condition remains a first-order formula. Our handling of symbolic function application enables the reconstruction of higher-order counterexamples from this first-order formula. After establishing our main theoretical results, we sketch how to apply the approach to untyped, higher-order, stateful languages with first-class contracts and show how counterexample generation can be used to detect contract violations in this setting. To validate our approach, we implement a tool generating counterexamples for erroneous modules written in Racket.Comment: In Proceedings of the 36th annual ACM SIGPLAN conference on Programming Language Design and Implementation, Portland, Oregon, June 201

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    SIMPAL: A Compositional Reasoning Framework for Imperative Programs

    Get PDF
    The Static IMPerative AnaLyzer (SIMPAL) is a tool for performing compositional reasoning over software programs that utilize preexisting software components. SIMPAL features a specification language, called Limp, for modeling programs that utilize preexisting components. Limp is an extension of the Lustre synchronous data flow language. Limp extends Lustre by introducing control flow elements, global variables, and syntax specifying preconditions, postconditions, and global variable interactions of preexisting components. SIMPAL translates Limp programs to an equivalent Lustre representation which can be passed to the JKind model checking tool to perform assume-guarantee reasoning, reachability, and viability analyses. The feedback from these analyses can be used to refine the program to ensure the software functions as intended
    • 

    corecore