326 research outputs found

    Assessment of microelectronics packaging for high temperature, high reliability applications

    Full text link

    Characterization of Thermo-Mechanical Damage in Tin and Sintered Nano-Silver Solders

    Get PDF
    abstract: Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder. Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size. High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.Dissertation/ThesisDoctoral Dissertation Materials Science and Engineering 201

    PCB Quality Metrics that Drive Reliability (PD 18)

    Get PDF
    Risk based technology infusion is a deliberate and systematic process which defines the analysis and communication methodology by which new technology is applied and integrated into existing and new designs, identifies technology development needs based on trends analysis and facilitates the identification of shortfalls against performance objectives. This presentation at IPC Works Asia Aerospace 2019 Events provides the audience a snapshot of quality variations in printed wiring board quality, as assessed, using experiences in processing and risk analysis of PWB structural integrity coupons. The presentation will focus on printed wiring board quality metrics used, the relative type and number of non-conformances observed and trend analysis using statistical methods. Trend analysis shows the top five non-conformances observed across PWB suppliers, the root cause(s) behind these non-conformance and suggestions of mitigation plans. The trends will then be matched with the current state of the PWB supplier base and its challenges and opportunities. The presentation further discusses the risk based SMA approaches and methods being applied at GSFC for evaluating candidate printed wiring board technologies which promote the adoption of higher throughput and faster processing technology for GSFC missions

    Harsh-Environment Packaging for Downhole Gas and Oil Exploration

    Full text link

    Microwave assisted processing of metal loaded inks and pastes for electronic interconnect applications

    Get PDF
    Isotropically conductive adhesives (ICAs) and inks are potential candidates for low cost interconnect materials and widely used in electrical/electronic packaging applications. Silver (Ag)filled ICAs and inks are the most popular due to their high conductivity and good reliability. However, the price of Ag is a significant issue for the wider exploitation of these materials in low cost, high volume applications such as printed electronics. In addition, there is a need to develop systems compatible with temperature sensitive substrates through the use of alternative materials and heating methods. Copper (Cu) is considered as a more cost-effective filler for ICAs and in this work, Cu powders were treated to remove the oxide layer and then protected with a self-assembled monolayer (SAM). The coating was found to be able to limit the re-oxidation of the Cumicron particles. The treated Cu powderswerecombined with one of two different adhesive resins to form ICAs that were stencil printed onto glass substrates before curing. The use of conventional and microwave assisted heating methods under an inert atmosphere for the curing of the Cu loaded ICAs was investigated in detail. The samples were characterised for electrical performance, microstructure and shrinkage as a function of curing temperature (80–150°C) and time. Tracks with electrical conductivity comparable to Ag filled adhesives were obtained for both curing methods and with both resins. It was found that curing could be accelerated and/or carried out at lower temperature with the addition of microwave radiation for one adhesive resin, but the other showed almost no absorption indicating a difference in curing mechanism for the two formulations. [Continues.

    Solar cell degradation : the role of moisture ingress

    Get PDF
    Moisture ingress is one of the key fault mechanisms responsible for photovoltaic (PV) devices degradation. Moisture and moisture induced degradation (MID) products can attack the solar cell and the PV module components which can lead to solar cell degradation (e.g., microcracks), corrosion, optical degradation, potential induced degradation (PID), etc. These MID mechanisms have dire implications for the performance reliability of PV modules. Understanding the influence of moisture ingress on solar PV device’s degradation will boost the interest in investing in solar PV power installations globally, especially in the Nordics. In this thesis, the effect of moisture ingress on 20-years old field-aged multicrystalline silicon (mc-Si) PV modules is investigated. The defective areas in the PV modules were identified using visual inspection, electroluminescence (EL), ultraviolet fluorescence (UV-F), and infrared thermal (IR-T) techniques. Scanning electron microscopy and energy dispersive Xray spectroscopy (SEM-EDS) analyses were used to elucidate the role of moisture on the observed degradation mechanisms. In addition, temperature coefficient profiling is used as a diagnostic tool to characterize different moisture induced defects. The ethylene vinyl acetate (EVA) front encapsulation was found to undergo optical degradation and the extracted cells show dark discolored Tedlar®/Polyester/Tedlar® (TPT) backsheets. Corrosion at the solder joint was dominant and is attributed to the dissolution of lead and tin (main components of solder) and the Ag grids in moisture and acetic acid due to galvanic corrosion. Degradation of the EVA encapsulation produces acetic acid, carbon dioxide, phosphorus, sulfur, fluorine, and chlorine. It was observed that under the influence of moisture ingress, leached metal ions e.g., Na, Ag, Pb, Sn, Cu, Zn, and Al migrate to the surface of the solar cells. This led to the formation of oxides, hydroxides, sulfides, phosphates, acetates, and carbonates of silver, lead, tin, copper, zinc, and aluminum. Also, other competing reactions led to the formation of stannates of copper, silver, sodium, and zinc. Similarly, migration of silver and aluminum to the surfaces of the TiO2 antireflection coating (ARC) nanoparticles (NPs) lead to the formation of titania-alumina and silver-titania complexes. Formation of these titania-metal complexes affects the opto-electrical efficiency of the TiO2 ARC in the PV module. Additionally, in the presence of moisture and acetic acid, Pb is preferentially corroded (to form lead acetate complexes) instead of the expected sacrificial Sn in the solder. In the EL and UV-F images, these degradation species appear as dark spots, and as hot spots in IR-T images. More importantly, these MID defects and fault modes lead to parasitic resistance and mismatch losses, and hence, degradation in the current-voltage (I-V) characteristics, temperature coefficients, and maximum power (Pmax) of the field-aged PV modules. The observed temperature sensitivities are characteristic of different moisture-induced defects. Taken together, this work has expounded on the understanding and detection of MID phenomenon in field-deployed solar PV modules.publishedVersio

    Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    Full text link
    • …
    corecore