20,901 research outputs found

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table

    A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures

    Full text link
    As multicore systems continue to gain ground in the High Performance Computing world, linear algebra algorithms have to be reformulated or new algorithms have to be developed in order to take advantage of the architectural features on these new processors. Fine grain parallelism becomes a major requirement and introduces the necessity of loose synchronization in the parallel execution of an operation. This paper presents an algorithm for the Cholesky, LU and QR factorization where the operations can be represented as a sequence of small tasks that operate on square blocks of data. These tasks can be dynamically scheduled for execution based on the dependencies among them and on the availability of computational resources. This may result in an out of order execution of the tasks which will completely hide the presence of intrinsically sequential tasks in the factorization. Performance comparisons are presented with the LAPACK algorithms where parallelism can only be exploited at the level of the BLAS operations and vendor implementations

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Minimizing Communication in Linear Algebra

    Full text link
    In 1981 Hong and Kung proved a lower bound on the amount of communication needed to perform dense, matrix-multiplication using the conventional O(n3)O(n^3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin gave a new proof of this result and extended it to the parallel case. In both cases the lower bound may be expressed as Ω\Omega(#arithmetic operations / M\sqrt{M}), where M is the size of the fast memory (or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDLTLDL^T factorization, QR factorization, algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra. The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth) we get lower bounds on the number of messages required to move it (latency). We illustrate how to extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix), to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph theoretic problems. We point out recently designed algorithms for dense LU, Cholesky, QR, eigenvalue and the SVD problems that attain these lower bounds; implementations of LU and QR show large speedups over conventional linear algebra algorithms in standard libraries like LAPACK and ScaLAPACK. Many open problems remain.Comment: 27 pages, 2 table

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    • …
    corecore