1,014 research outputs found

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for Securing Internet-of-Things Applications

    Full text link
    This paper presents the first hardware implementation of the Datagram Transport Layer Security (DTLS) protocol to enable end-to-end security for the Internet of Things (IoT). A key component of this design is a reconfigurable prime field elliptic curve cryptography (ECC) accelerator, which is 238x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Our full hardware implementation of the DTLS 1.3 protocol provides 438x improvement in energy-efficiency over software, along with code size and data memory usage as low as 8 KB and 3 KB respectively. The cryptographic accelerators are coupled with an on-chip low-power RISC-V processor to benchmark applications beyond DTLS with up to two orders of magnitude energy savings. The test chip, fabricated in 65 nm CMOS, demonstrates hardware-accelerated DTLS sessions while consuming 44.08 uJ per handshake, and 0.89 nJ per byte of encrypted data at 16 MHz and 0.8 V.Comment: Published in IEEE Journal of Solid-State Circuits (JSSC

    Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks

    Get PDF
    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature

    A Brand-New, Area - Efficient Architecture for the FFT Algorithm Designed for Implementation of FPGAs

    Get PDF
    Elliptic curve cryptography, which is more commonly referred to by its acronym ECC, is widely regarded as one of the most effective new forms of cryptography developed in recent times. This is primarily due to the fact that elliptic curve cryptography utilises excellent performance across a wide range of hardware configurations in addition to having shorter key lengths. A High Throughput Multiplier design was described for Elliptic Cryptographic applications that are dependent on concurrent computations. A Proposed (Carry-Select) Division Architecture is explained and proposed throughout the whole of this work. Because of the carry-select architecture that was discussed in this article, the functionality of the divider has been significantly enhanced. The adder carry chain is reduced in length by this design by a factor of two, however this comes at the expense of additional adders and control. When it comes to designs for high throughput FFT, the total number of butterfly units that are implemented is what determines the amount of space that is needed by an FFT processor. In addition to blocks that may either add or subtract numbers, each butterfly unit also features blocks that can multiply numbers. The size of the region that is covered by these dual mathematical blocks is decided by the bit resolution of the models. When the bit resolution is increased, the area will also increase. The standard FFT approach requires that each stage contain  times as many butterfly units as the stage before it. This requirement must be met before moving on to the next stage

    Energy Efficient Hardware Design for Securing the Internet-of-Things

    Full text link
    The Internet of Things (IoT) is a rapidly growing field that holds potential to transform our everyday lives by placing tiny devices and sensors everywhere. The ubiquity and scale of IoT devices require them to be extremely energy efficient. Given the physical exposure to malicious agents, security is a critical challenge within the constrained resources. This dissertation presents energy-efficient hardware designs for IoT security. First, this dissertation presents a lightweight Advanced Encryption Standard (AES) accelerator design. By analyzing the algorithm, a novel method to manipulate two internal steps to eliminate storage registers and replace flip-flops with latches to save area is discovered. The proposed AES accelerator achieves state-of-art area and energy efficiency. Second, the inflexibility and high Non-Recurring Engineering (NRE) costs of Application-Specific-Integrated-Circuits (ASICs) motivate a more flexible solution. This dissertation presents a reconfigurable cryptographic processor, called Recryptor, which achieves performance and energy improvements for a wide range of security algorithms across public key/secret key cryptography and hash functions. The proposed design employs circuit techniques in-memory and near-memory computing and is more resilient to power analysis attack. In addition, a simulator for in-memory computation is proposed. It is of high cost to design and evaluate new-architecture like in-memory computing in Register-transfer level (RTL). A C-based simulator is designed to enable fast design space exploration and large workload simulations. Elliptic curve arithmetic and Galois counter mode are evaluated in this work. Lastly, an error resilient register circuit, called iRazor, is designed to tolerate unpredictable variations in manufacturing process operating temperature and voltage of VLSI systems. When integrated into an ARM processor, this adaptive approach outperforms competing industrial techniques such as frequency binning and canary circuits in performance and energy.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147546/1/zhyiqun_1.pd

    A survey of hardware implementations of elliptic curve cryptographic systems

    No full text
    Elliptic Curve Cryptography (ECC) has gained much recognition over the last decades and has established itself among the well known public-key cryptography schemes, not least due its smaller key size and relatively lower computational effort compared to RSA. The wide employment of Elliptic Curve Cryptography in many different application areas has been leading to a variety of implementation types and domains ranging from pure software approaches over hardware implemenations to hardware/software co-designs. The following review provides an overview of state of the art hardware implemenations of ECC, specifically in regard to their targeted design goals. In this context the suitability of the hardware/software approach in regard to the security challenges opposed by the low-end embedded devices of the Internet of Things is briefly examined. The paper also outlines ECC’s vulnerability against quantum attacks and references one possible solution to that problem
    corecore