3,338 research outputs found

    High-order dynamic Bayesian network learning with hidden common causes for causal gene regulatory network

    Full text link
    Background: Inferring gene regulatory network (GRN) has been an important topic in Bioinformatics. Many computational methods infer the GRN from high-throughput expression data. Due to the presence of time delays in the regulatory relationships, High-Order Dynamic Bayesian Network (HO-DBN) is a good model of GRN. However, previous GRN inference methods assume causal sufficiency, i.e. no unobserved common cause. This assumption is convenient but unrealistic, because it is possible that relevant factors have not even been conceived of and therefore un-measured. Therefore an inference method that also handles hidden common cause(s) is highly desirable. Also, previous methods for discovering hidden common causes either do not handle multi-step time delays or restrict that the parents of hidden common causes are not observed genes. Results: We have developed a discrete HO-DBN learning algorithm that can infer also hidden common cause(s) from discrete time series expression data, with some assumptions on the conditional distribution, but is less restrictive than previous methods. We assume that each hidden variable has only observed variables as children and parents, with at least two children and possibly no parents. We also make the simplifying assumption that children of hidden variable(s) are not linked to each other. Moreover, our proposed algorithm can also utilize multiple short time series (not necessarily of the same length), as long time series are difficult to obtain. Conclusions: We have performed extensive experiments using synthetic data on GRNs of size up to 100, with up to 10 hidden nodes. Experiment results show that our proposed algorithm can recover the causal GRNs adequately given the incomplete data. Using the limited real expression data and small subnetworks of the YEASTRACT network, we have also demonstrated the potential of our algorithm on real data, though more time series expression data is needed

    Bioinformatics tools in predictive ecology: Applications to fisheries

    Get PDF
    This article is made available throught the Brunel Open Access Publishing Fund - Copygith @ 2012 Tucker et al.There has been a huge effort in the advancement of analytical techniques for molecular biological data over the past decade. This has led to many novel algorithms that are specialized to deal with data associated with biological phenomena, such as gene expression and protein interactions. In contrast, ecological data analysis has remained focused to some degree on off-the-shelf statistical techniques though this is starting to change with the adoption of state-of-the-art methods, where few assumptions can be made about the data and a more explorative approach is required, for example, through the use of Bayesian networks. In this paper, some novel bioinformatics tools for microarray data are discussed along with their ‘crossover potential’ with an application to fisheries data. In particular, a focus is made on the development of models that identify functionally equivalent species in different fish communities with the aim of predicting functional collapse

    Inferring cellular networks – a review

    Get PDF
    In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations

    Integrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks

    Get PDF
    Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal the temporal program of gene expression from microarray expression data, is essential in systems biology. To overcome the challenges posed by the noisy and under-sampled microarray data, developing data fusion methods to integrate legacy biological knowledge for gene network reconstruction is a promising direction. However, large amount of qualitative biological knowledge accumulated by previous research, albeit very valuable, has received less attention for reconstructing dynamic gene networks due to its incompatibility with the quantitative computational models.;In this dissertation, I introduce a novel method to fuse qualitative gene interaction information with quantitative microarray data under the Dynamic Bayesian Networks framework. This method extends the previous data integration methods by its capabilities of both utilizing qualitative biological knowledge by using Bayesian Networks without the involvement of human experts, and taking time-series data to produce dynamic gene networks. The experimental study shows that when compared with standard Dynamic Bayesian Networks method which only uses microarray data, our method excels by both accuracy and consistency

    Learning Bayesian network equivalence classes using ant colony optimisation

    Get PDF
    Bayesian networks have become an indispensable tool in the modelling of uncertain knowledge. Conceptually, they consist of two parts: a directed acyclic graph called the structure, and conditional probability distributions attached to each node known as the parameters. As a result of their expressiveness, understandability and rigorous mathematical basis, Bayesian networks have become one of the first methods investigated, when faced with an uncertain problem domain. However, a recurring problem persists in specifying a Bayesian network. Both the structure and parameters can be difficult for experts to conceive, especially if their knowledge is tacit.To counteract these problems, research has been ongoing, on learning both the structure and parameters of Bayesian networks from data. Whilst there are simple methods for learning the parameters, learning the structure has proved harder. Part ofthis stems from the NP-hardness of the problem and the super-exponential space of possible structures. To help solve this task, this thesis seeks to employ a relatively new technique, that has had much success in tackling NP-hard problems. This technique is called ant colony optimisation. Ant colony optimisation is a metaheuristic based on the behaviour of ants acting together in a colony. It uses the stochastic activity of artificial ants to find good solutions to combinatorial optimisation problems. In the current work, this method is applied to the problem of searching through the space of equivalence classes of Bayesian networks, in order to find a good match against a set of data. The system uses operators that evaluate potential modifications to a current state. Each of the modifications is scored and the results used to inform the search. In order to facilitate these steps, other techniques are also devised, to speed up the learning process. The techniques includeThe techniques are tested by sampling data from gold standard networks and learning structures from this sampled data. These structures are analysed using various goodnessof-fit measures to see how well the algorithms perform. The measures include structural similarity metrics and Bayesian scoring metrics. The results are compared in depth against systems that also use ant colony optimisation and other methods, including evolutionary programming and greedy heuristics. Also, comparisons are made to well known state-of-the-art algorithms and a study performed on a real-life data set. The results show favourable performance compared to the other methods and on modelling the real-life data

    Bayesian networks for omics data analysis

    Get PDF
    This thesis focuses on two aspects of high throughput technologies, i.e. data storage and data analysis, in particular in transcriptomics and metabolomics. Both technologies are part of a research field that is generally called ‘omics’ (or ‘-omics’, with a leading hyphen), which refers to genomics, transcriptomics, proteomics, or metabolomics. Although these techniques study different entities (genes, gene expression, proteins, or metabolites), they all have in common that they use high-throughput technologies such as microarrays and mass spectrometry, and thus generate huge amounts of data. Experiments conducted using these technologies allow one to compare different states of a living cell, for example a healthy cell versus a cancer cell or the effect of food on cell condition, and at different levels. The tools needed to apply omics technologies, in particular microarrays, are often manufactured by different vendors and require separate storage and analysis software for the data generated by them. Moreover experiments conducted using different technologies cannot be analyzed simultaneously to answer a biological question. Chapter 3 presents MADMAX, our software system which supports storage and analysis of data from multiple microarray platforms. It consists of a vendor-independent database which is tightly coupled with vendor-specific analysis tools. Upcoming technologies like metabolomics, proteomics and high-throughput sequencing can easily be incorporated in this system. Once the data are stored in this system, one obviously wants to deduce a biological relevant meaning from these data and here statistical and machine learning techniques play a key role. The aim of such analysis is to search for relationships between entities of interest, such as genes, metabolites or proteins. One of the major goals of these techniques is to search for causal relationships rather than mere correlations. It is often emphasized in the literature that "correlation is not causation" because people tend to jump to conclusions by making inferences about causal relationships when they actually only see correlations. Statistics are often good in finding these correlations; techniques called linear regression and analysis of variance form the core of applied multivariate statistics. However, these techniques cannot find causal relationships, neither are they able to incorporate prior knowledge of the biological domain. Graphical models, a machine learning technique, on the other hand do not suffer from these limitations. Graphical models, a combination of graph theory, statistics and information science, are one of the most exciting things happening today in the field of machine learning applied to biological problems (see chapter 2 for a general introduction). This thesis deals with a special type of graphical models known as probabilistic graphical models, belief networks or Bayesian networks. The advantage of Bayesian networks over classical statistical techniques is that they allow the incorporation of background knowledge from a biological domain, and that analysis of data is intuitive as it is represented in the form of graphs (nodes and edges). Standard statistical techniques are good in describing the data but are not able to find non-linear relations whereas Bayesian networks allow future prediction and discovering nonlinear relations. Moreover, Bayesian networks allow hierarchical representation of data, which makes them particularly useful for representing biological data, since most biological processes are hierarchical by nature. Once we have such a causal graph made either by a computer program or constructed manually we can predict the effects of a certain entity by manipulating the state of other entities, or make backward inferences from effects to causes. Of course, if the graph is big, doing the necessary calculations can be very difficult and CPU-expensive, and in such cases approximate methods are used. Chapter 4 demonstrates the use of Bayesian networks to determine the metabolic state of feeding and fasting mice to determine the effect of a high fat diet on gene expression. This chapter also shows how selection of genes based on key biological processes generates more informative results than standard statistical tests. In chapter 5 the use of Bayesian networks is shown on the combination of gene expression data and clinical parameters, to determine the effect of smoking on gene expression and which genes are responsible for the DNA damage and the raise in plasma cotinine levels of blood of a smoking population. This study was conducted at Maastricht University where 22 twin smokers were profiled. Chapter 6 presents the reconstruction of a key metabolic pathway which plays an important role in ripening of tomatoes, thus showing the versatility of the use of Bayesian networks in metabolomics data analysis. The general trend in research shows a flood of data emerging from sequencing and metabolomics experiments. This means that to perform data mining on these data one requires intelligent techniques that are computationally feasible and able to take the knowledge of experts into account to generate relevant results. Graphical models fit this paradigm well and we expect them to play a key role in mining the data generated from omics experiments. <br/

    Bayesian network learning and applications in Bioinformatics

    Get PDF
    Abstract A Bayesian network (BN) is a compact graphic representation of the probabilistic re- lationships among a set of random variables. The advantages of the BN formalism include its rigorous mathematical basis, the characteristics of locality both in knowl- edge representation and during inference, and the innate way to deal with uncertainty. Over the past decades, BNs have gained increasing interests in many areas, including bioinformatics which studies the mathematical and computing approaches to under- stand biological processes. In this thesis, I develop new methods for BN structure learning with applications to bi- ological network reconstruction and assessment. The first application is to reconstruct the genetic regulatory network (GRN), where each gene is modeled as a node and an edge indicates a regulatory relationship between two genes. In this task, we are given time-series microarray gene expression measurements for tens of thousands of genes, which can be modeled as true gene expressions mixed with noise in data generation, variability of the underlying biological systems etc. We develop a novel BN structure learning algorithm for reconstructing GRNs. The second application is to develop a BN method for protein-protein interaction (PPI) assessment. PPIs are the foundation of most biological mechanisms, and the knowl- edge on PPI provides one of the most valuable resources from which annotations of genes and proteins can be discovered. Experimentally, recently-developed high- throughput technologies have been carried out to reveal protein interactions in many organisms. However, high-throughput interaction data often contain a large number of iv spurious interactions. In this thesis, I develop a novel in silico model for PPI assess- ment. Our model is based on a BN that integrates heterogeneous data sources from different organisms. The main contributions are: 1. A new concept to depict the dynamic dependence relationships among random variables, which widely exist in biological processes, such as the relationships among genes and genes' products in regulatory networks and signaling pathways. This con- cept leads to a novel algorithm for dynamic Bayesian network learning. We apply it to time-series microarray gene expression data, and discover some missing links in a well-known regulatory pathway. Those new causal relationships between genes have been found supportive evidences in literature. 2. Discovery and theoretical proof of an asymptotic property of K2 algorithm ( a well-known efficient BN structure learning approach). This property has been used to identify Markov blankets (MB) in a Bayesian network, and further recover the BN structure. This hybrid algorithm is evaluated on a benchmark regulatory pathway, and obtains better results than some state-of-art Bayesian learning approaches. 3. A Bayesian network based integrative method which incorporates heterogeneous data sources from different organisms to predict protein-protein interactions (PPI) in a target organism. The framework is employed in human PPI prediction and in as- sessment of high-throughput PPI data. Furthermore, our experiments reveal some interesting biological results. 4. We introduce the learning of a TAN (Tree Augmented Naïve Bayes) based net- work, which has the computational simplicity and robustness to high-throughput PPI assessment. The empirical results show that our method outperforms naïve Bayes and a manual constructed Bayesian Network, additionally demonstrate sufficient informa- tion from model organisms can achieve high accuracy in PPI prediction
    corecore