2,149 research outputs found

    A Hybrid High-Order method for nonlinear elasticity

    Full text link
    In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and three space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local principle of virtual work inside each mesh element, with interface tractions that obey the law of action and reaction. A complete analysis covering very general stress-strain laws is carried out, and optimal error estimates are proved. Extensive numerical validation on model test problems is also provided on two types of nonlinear models.Comment: 29 pages, 7 figures, 4 table

    A Virtual Element Method for elastic and inelastic problems on polytope meshes

    Full text link
    We present a Virtual Element Method (VEM) for possibly nonlinear elastic and inelastic problems, mainly focusing on a small deformation regime. The numerical scheme is based on a low-order approximation of the displacement field, as well as a suitable treatment of the displacement gradient. The proposed method allows for general polygonal and polyhedral meshes, it is efficient in terms of number of applications of the constitutive law, and it can make use of any standard black-box constitutive law algorithm. Some theoretical results have been developed for the elastic case. Several numerical results within the 2D setting are presented, and a brief discussion on the extension to large deformation problems is included

    On the Virtual Element Method for Topology Optimization on polygonal meshes: a numerical study

    Get PDF
    It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods

    A Stress/Displacement Virtual Element Method for Plane Elasticity Problems

    Full text link
    The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a-priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis
    • …
    corecore