8,195 research outputs found

    Multi-micron silicon photonicsplatform for highly manufacturable and versatile photonic integrated circuits

    Get PDF
    We describe and characterize a multi-micron silicon photonics platform that was designed to combine performance, power efficiency, manufacturability, and versatility for integrated photonic applications ranging from data communications to sensors. We outline the attributes needed for broad applicability, high-volume manufacturing, and large-scale deployment of silicon photonics, and describe how the platform is favorable with respect to these attributes. We present demonstrations of key technologies needed for the communications and sensing applications, including low-loss fiber attach, compact low-loss filters, efficient hybrid wavelength division multiplexed lasers, and high-speed electro-absorption modulators and integrated photodetectors

    SiGe EAM-based transceivers for datacenter interconnects and radio over fiber

    Get PDF
    Silicon photonics is a key-enabling technology leveraging decades of effort and infrastructure of the microelectronics CMOS industry resulting in high yield, low cost and potential high volume manufacturing. Furthermore, due to the high index contrast of the platform, very compact, high-complexity photonic integrated circuits can be devised. To benefit from these advantages, high-speed modulators should also be compatible with silicon technology. In this respect, SiGe electro-absorption modulators (EAM) are considered as a promising candidate since they are CMOS-compatible and offer high-speed, compact, low-loss and low-power modulation. In this paper, we discuss SiGe EAM-based transceivers for next-generation datacenter interconnects (DCI) and radio-over-fiber (RoF) fronthaul in next-generation cellular networks

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Foundry technology and services for si photonics

    Get PDF
    We discuss the progress in development and offering of silicon photonic integration platforms based on 200mm and 300mm wafer technologies. Devices have capability for developing high-speed datacommunication, but are also used for life science applications

    Expanded-beam backside coupling interface for alignment-tolerant packaging of silicon photonics

    Get PDF
    We demonstrate an alignment-tolerant backside coupling interface in the O-band for silicon photonics by generating an optimized through-substrate (downward) directionality beam from a TE-mode grating coupler and hybrid integrating the chip with backside silicon microlenses to achieve expanded beam collimation. The key advantage of using such an expanded beam interface is an increased coupling tolerance to lateral and longitudinal misalignment. A 34 mu m beam diameter was achieved over a combined substrate thickness of 630 mu m which was then coupled to a thermally expanded core single-mode fiber to investigate the tolerances. A 1-dB fiber-to-microlens lateral alignment tolerance of 14 mu m and an angular alignment tolerance of 1 degrees was measured at a wavelength of 1310 nm. In addition, a large +/- 2.5 mu m 1-dB backside alignment accuracy was measured for the placement of microlens with respect to the grating. The radius of curvature of Si microlens to achieve a collimated beam was 480 mu m, and a 1-dB longitudinal alignment tolerance of 700 mu m was measured for coupling to a single-mode expanded core fiber. The relaxation in alignment tolerances make the demonstrated coupling interface suitable for chip-to-package or chip-to-board couplin

    Laser sources on a heterogeneous III-V/silicon platform

    Get PDF
    The heterogeneous integration of III-V semiconductor lasers on a silicon waveguide platform using DVS-BCB adhesive bonding is reviewed. Both mW-level lasers and ultra-compact laser sources are discussed

    Co-integration of Ge detectors and Si modulators in an advanced Si photonics platform

    Get PDF
    A Si photonics platform is described, co-integrating advanced passive components with Si modulators and Ge detectors. This platform is developed on a 200mm CMOS toolset, compatible with a 130nm CMOS baseline. The paper describes the process flow, and describes the performance of selected electro-optical devices to demonstrate the viability of the flow

    Mid-IR heterogeneous silicon photonics

    Get PDF
    In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticle films and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources and optical parametric oscillators that can be used as spectroscopic sensor sources
    • …
    corecore