12 research outputs found

    Conception et évaluation d'actionneurs à embrayages magnétorhéologiques pour la robotique collaborative

    Get PDF
    La robotique collaborative se démarque de la robotique industrielle par sa sécurité dans le but de travailler en collaboration avec les humains. Toutefois, la majorité des robots collaboratifs sériels reposent sur un actionnement à haut ratio de réduction, ce qui augmente considérablement la masse reflétée à l’effecteur du robot, et donc, nuit à la sécurité. Pour pallier cette masse reflétée et maintenir un seuil minimal de sécurité, les vitesses d’opération sont abaissées, nuisant ainsi directement à la productivité des entreprises. Afin de minimiser la masse reflétée à l’effecteur, les masses des actionneurs ainsi que leur inertie reflétée doivent être minimisés. Les embrayages à fluide magnétorhéologique (MR) maintenus en glissement continus découplent l’inertie provenant de la source de puissance, souvent un moteur et un réducteur, offrant ainsi un actionneur possédant un haut rapport couple-inertie. Toutefois, les embrayages MR, utilisés de façon antagoniste, ajoutent des composantes à l’actionneur ce qui réduit la densité de couple, et donc, augmente la masse reflétée à l’effecteur du robot. Certains actionneurs MR [1–3] ont été développés, mais leur basse densité de couple contrebalance leur faible inertie lorsqu’utilisés comme actionneurs aux articulations de robots collaboratifs sériels. Cette constatation a mené à ma question de recherche : Comment profiter de la faible inertie des actionneurs MR pour maximiser les performances dynamiques des robots collaboratifs sériels? L’objectif de ce projet de recherche vise donc à étudier le potentiel des embrayages MR en robotique collaborative. Pour ce faire, deux architectures MR sont développées et testées expérimentalement. La première architecture consiste en une articulation robotisée modulaire comportant des embrayages MR en glissement continu et possédant un rapport couple/masse et une taille équivalente à l’actionneur d’Universal Robots (UR) de couple égal, mais possédant un rapport couple/inertie 150 fois supérieur. À l’intérieur de l’articulation, deux chaines de puissance (2 moteurs et 2 embrayages MR) indépendantes se rejoignent à la sortie du joint offrant ainsi une redondance et augmentant la densité de couple comparativement à une architecture standard (1 moteur pour 2 embrayages MR). La deuxième architecture étudiée consiste en un actionnement délocalisé du robot où les embrayages MR sont situés à la base du robot et une transmission hydrostatique à membranes déroulantes achemine la puissance aux articulations. Cette architecture a été testée expérimentalement dans un contexte de bras robotisé surnuméraire. Contrairement à l’articulation MR, cette architecture n’offre pas une modularité habituellement recherchée en robotique sérielle, mais offre la possibilité de réduire l’inertie de la structure avec la délocalisation de l’actionnement. Finalement, les deux architectures développées ont été comparées à une architecture standard (haut ratio avec réducteur harmonique) afin de situer le potentiel du MR en robotique collaborative. Cette analyse théorique a démontré que pour un robot collaboratif sériel à 6 degrés de liberté, les architectures MR ont le potentiel d’accélérer 6 et 3 fois plus (respectivement) que le robot standard d’UR, composé d’actionneurs à hauts ratios

    Implementation of Automatic DC Motor Braking PID Control System on (Disc Brakes)

    Get PDF
    The vital role of an automated braking system in ensuring the safety of motorized vehicles and their passengers cannot be overstated. It simplifies the braking process during driving, enhancing control and reducing the chances of accidents. This study is centered on the design of an automatic braking device for DC motors utilizing disc brakes. The instrument employed in this study was designed to accelerate the vehicle in two primary scenarios - before the collision with an obstacle and upon crossing the safety threshold. It achieves this by implementing the Proportional Integral Derivative (PID) control method. A significant part of this system comprises ultrasonic sensors, used for detecting the distance to obstructions, and rotary encoder sensors, which are utilized to measure the motor's rotational speed. These distance and speed readings serve as essential reference points for the braking process. The system is engineered to initiate braking when the distance value equals or falls below 60cm or when the speed surpasses 8000rpm. During such events, the disc brake is activated to reduce the motor's rotary motion. The suppression of the disc brake lever is executed pneumatically, informed by the sensor readings. Applying the PID method to the automatic braking system improved braking outcomes compared to a system without the PID method. This was proven by more effective braking results when the sensors detected specific distance and speed values. Numerous PID tuning tests achieved optimal results with K_p = 5, K_i = 1, and K_d = 3. These values can be integrated into automatic braking systems for improved performance. The PID method yielded more responsive braking outcomes when applied in distance testing. On the contrary, the braking results were largely unchanged in the absence of PID. Regarding speed testing, the PID method significantly improved the slowing down of the motor speed when it exceeded the maximum speed limit of 8000 rpm. This eliminates the possibility of sudden braking, thus maintaining the system within a safe threshold. The average time taken by the system to apply braking was 01.09 seconds, an indication of its quick responsiveness. This research is a valuable addition to control science, applying the PID control method to automatic DC motor braking. It provides valuable insights and concrete applications of PID control to complex mechatronic systems. It is also noteworthy for its development and optimization of suitable PID parameters to achieve responsive and stable braking. The study, therefore, offers a profound understanding of how PID control can be employed to manage braking systems on automatic DC motors, thereby advancing knowledge and application of control in control science and mechatronics

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    High-Speed Humanoid Robot Arm for Badminton Using Pneumatic-Electric Hybrid Actuators

    No full text

    Real-Time Optimal Control Technique of A Rotary Inverted Pendulum System

    Get PDF
    This paper presents a real time control technique to stabilize inverted pendulum in the vertical upright position. Stabilize the inverted pendulum is a classical control problem that could be related to some problems in industrial applications. Two common problems that always been encountered by inverted pendulum system is unstable behavior and nonlinear. This lead to numerous studies on the control algorithm to balance the inverted pendulum system in the vertical upright position. Generally, inverted pendulum is mounted on DC motor and is equipped with sensor to measure angular displacement. Inverted pendulum has the same analogy with human that try to balance a broomstick using fingertip. Balancing the Inverted Pendulum requires a good control system. Therefore an optimal control technique is proposed to achieve desired design requirement which are less than 5% overshoot and less than 5 seconds settling time. The controller is optimized to achieve the best performance result. Finally the performance of the controller is compared with PID controller as a benchmark
    corecore