4 research outputs found

    Skew-Aware Collective Communication for MapReduce Shuffling

    Get PDF
    This paper proposes and examines the three in-memory shuffling methods designed to address problems in MapReduce shuffling caused by skewed data. Coupled Shuffle Architecture (CSA) employs a single pairwise all-to-all exchange to shuffle both blocks, units of shuffle transfer, and meta-blocks, which contain the metadata of corresponding blocks. Decoupled Shuffle Architecture (DSA) separates the shuffling of meta-blocks and blocks, and applies different all-to-all exchange algorithms to each shuffling process, attempting to mitigate the impact of stragglers in strongly skewed distributions. Decoupled Shuffle Architecture with Skew-Aware Meta-Shuffle (DSA w/ SMS) autonomously determines the proper placement of blocks based on the memory consumption of each worker process. This approach targets extremely skewed situations where some worker processes could exceed their node memory limitation. This study evaluates implementations of the three shuffling methods in our prototype in-memory MapReduce engine, which employs high performance interconnects such as InfiniBand and Intel Omni-Path. Our results suggest that DSA w/ SMS is the only viable solution for extremely skewed data distributions. We also present a detailed investigation of the performance of CSA and DSA in various skew situations

    BDEv 3.0: energy efficiency and microarchitectural characterization of Big Data processing frameworks

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Future Generation Computer Systems. The final authenticated version is available online at: https://doi.org/10.1016/j.future.2018.04.030[Abstract] As the size of Big Data workloads keeps increasing, the evaluation of distributed frameworks becomes a crucial task in order to identify potential performance bottlenecks that may delay the processing of large datasets. While most of the existing works generally focus only on execution time and resource utilization, analyzing other important metrics is key to fully understanding the behavior of these frameworks. For example, microarchitecture-level events can bring meaningful insights to characterize the interaction between frameworks and hardware. Moreover, energy consumption is also gaining increasing attention as systems scale to thousands of cores. This work discusses the current state of the art in evaluating distributed processing frameworks, while extending our Big Data Evaluator tool (BDEv) to extract energy efficiency and microarchitecture-level metrics from the execution of representative Big Data workloads. An experimental evaluation using BDEv demonstrates its usefulness to bring meaningful information from popular frameworks such as Hadoop, Spark and Flink.Ministerio de Economía, Industria y Competitividad; TIN2016-75845-PMinisterio de Educación; FPU14/02805Ministerio de Educación; FPU15/0338

    Deep Data Locality on Apache Hadoop

    Full text link
    The amount of data being collected in various areas such as social media, network, scientific instrument, mobile devices, and sensors is growing continuously, and the technology to process them is also advancing rapidly. One of the fundamental technologies to process big data is Apache Hadoop that has been adopted by many commercial products, such as InfoSphere by IBM, or Spark by Cloudera. MapReduce on Hadoop has been widely used in many data science applications. As a dominant big data processing platform, the performance of MapReduce on Hadoop system has a significant impact on the big data processing capability across multiple industries. Most of the research for improving the speed of big data analysis has been on Hadoop modules such as Hadoop common, Hadoop Distribute File System (HDFS), Hadoop Yet Another Resource Negotiator (YARN) and Hadoop MapReduce. In this research, we focused on data locality on HDFS to improve the performance of MapReduce. To reduce the amount of data transfer, MapReduce has been utilizing data locality. However, even though the majority of the processing cost occurs in the later stages, data locality has been utilized only in the early stages, which we call Shallow Data Locality (SDL). As a result, the benefit of data locality has not been fully realized. We have explored a new concept called Deep Data Locality (DDL) where the data is pre-arranged to maximize the locality in the later stages. Specifically, we introduce two implementation methods of the DDL, i.e., block-based DDL and key-based DDL. In block-based DDL, the data blocks are pre-arranged to reduce the block copying time in two ways. First the RLM blocks are eliminated. Under the conventional default block placement policy (DBPP), data blocks are randomly placed on any available slave nodes, requiring a copy of RLM (Rack-Local Map) blocks. In block-based DDL, blocks are placed to avoid RLMs to reduce the block copy time. Second, block-based DDL concentrates the blocks in a smaller number of nodes and reduces the data transfer time among them. We analyzed the block distribution status with the customer review data from TripAdvisor and measured the performances with Terasort Benchmark. Our test result shows that the execution times of Map and Shuffle have been improved by up to 25% and 31% respectively. In key-based DDL, the input data is divided into several blocks and stored in HDFS before going into the Map stage. In comparison with conventional blocks that have random keys, our blocks have a unique key. This requires a pre-sorting of the key-value pairs, which can be done during ETL process. This eliminates some data movements in map, shuffle, and reduce stages, and thereby improves the performance. In our experiments, MapReduce with key-based DDL performed 21.9% faster than default MapReduce and 13.3% faster than MapReduce with block-based DDL. Additionally, key-based DDL can be combined with other methods to further improve the performance. When key-based DDL and block-based DDL are combined, the Hadoop performance went up by 34.4%. In this research, we developed the MapReduce workflow models with a novel computational model. We developed a numerical simulator that integrates the computational models. The model faithfully predicts the Hadoop performance under various conditions

    Building Efficient Software to Support Content Delivery Services

    Get PDF
    Many content delivery services use key components such as web servers, databases, and key-value stores to serve content over the Internet. These services, and their component systems, face unique modern challenges. Services now operate at massive scale, serving large files to wide user-bases. Additionally, resource contention is more prevalent than ever due to large file sizes, cloud-hosted and collocated services, and the use of resource-intensive features like content encryption. Existing systems have difficulty adapting to these challenges while still performing efficiently. For instance, streaming video web servers work well with small data, but struggle to service large, concurrent requests from disk. Our goal is to demonstrate how software can be augmented or replaced to help improve the performance and efficiency of select components of content delivery services. We first introduce Libception, a system designed to help improve disk throughput for web servers that process numerous concurrent disk requests for large content. By using serialization and aggressive prefetching, Libception improves the throughput of the Apache and nginx web servers by a factor of 2 on FreeBSD and 2.5 on Linux when serving HTTP streaming video content. Notably, this improvement is achieved without changing the source code of either web server. We additionally show that Libception's benefits translate into performance gains for other workloads, reducing the runtime of a microbenchmark using the diff utility by 50% (again without modifying the application's source code). We next implement Nessie, a distributed, RDMA-based, in-memory key-value store. Nessie decouples data from indexing metadata, and its protocol only consumes CPU on servers that initiate operations. This design makes Nessie resilient against CPU interference, allows it to perform well with large data values, and conserves energy during periods of non-peak load. We find that Nessie doubles throughput versus other approaches when CPU contention is introduced, and has 70% higher throughput when managing large data in write-oriented workloads. It also provides 41% power savings (over idle power consumption) versus other approaches when system load is at 20% of peak throughput. Finally, we develop RocketStreams, a framework which facilitates the dissemination of live streaming video. RocketStreams exposes an easy-to-use API to applications, obviating the need for services to manually implement complicated data management and networking code. RocketStreams' TCP-based dissemination compares favourably to an alternative solution, reducing CPU utilization on delivery nodes by 54% and increasing viewer throughput by 27% versus the Redis data store. Additionally, when RDMA-enabled hardware is available, RocketStreams provides RDMA-based dissemination which further increases overall performance, decreasing CPU utilization by 95% and increasing concurrent viewer throughput by 55% versus Redis
    corecore