9 research outputs found

    High-performance low-loss silicon-on-insulator microring resonators using TM-polarized light

    Get PDF
    Microring resonators on SOI are investigated for both orthogonal polarizations. By demonstrating low-loss (1.94dB/cm) microring resonators with an intrinsic Q up to 340000 we proof that using TM-polarized light enables high-performance filters

    Tunable 4-channel ultra-dense WDM demultiplexer with III-V photodiodes integrated in silicon-on-insulator

    Get PDF
    A tunable 4-channel ultra-dense WDM demultiplexer with 0.25nm channel spacing is demonstrated with III-V photodiodes integrated on Silicon-on-Insulator using rib waveguides. A possible application is an in-band label extractor for all-optical packet switching

    Silicon-on-Insulator polarization rotating micro-ring resonator

    Get PDF
    We propose a novel micro-ring resonator which uses quasi-TE polarized light in the bus waveguide to excite the quasi-TM polarized modes in a micro-ring. An all-pass filter is demonstrated on Silicon-on-Insulator

    Backscattering in silicon microring resonators: a quantitative analysis

    Get PDF
    Silicon microring resonators very often exhibit resonance splitting due to backscattering. This effect is hard to quantitatively and predicatively model. This paper presents a behavioral circuit model for microrings that quantitatively explains the wide variations in resonance splitting observed in experiments. The model is based on an in-depth analysis of the contributions to backscattering by both the waveguides and couplers. Backscattering transforms unidirectional microrings into bidirectional circuits by coupling the clockwise and counterclockwise circulating modes. In high-Q microrings, visible resonance splitting will be induced, but, due to the stochastic nature of backscattering, this splitting is different for each resonance. Our model, based on temporal coupled mode theory, and the associated fitting method, are both accurate and robust, and can also explain asymmetrically split resonances. The cause of asymmetric resonance splitting is identified as the backcoupling in the couplers. This is experimentally confirmed and its dependency on gap and coupling length is further analyzed. Moreover, the wide variation in resonance splitting of one spectrum is analyzed and successfully explained by our circuit model that incorporates most linear parasitic effects in the microring. This analysis uncovers multi-cavity interference within the microring as an important source of this variation

    Silicon photonics for optical fiber communication

    Get PDF

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF

    All-optical spiking neurons integrated on a photonic chip

    Get PDF
    corecore