3,700 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    1-D Convolutional Graph Convolutional Networks for Fault Detection in Distributed Energy Systems

    Full text link
    This paper presents a 1-D convolutional graph neural network for fault detection in microgrids. The combination of 1-D convolutional neural networks (1D-CNN) and graph convolutional networks (GCN) helps extract both spatial-temporal correlations from the voltage measurements in microgrids. The fault detection scheme includes fault event detection, fault type and phase classification, and fault location. There are five neural network model training to handle these tasks. Transfer learning and fine-tuning are applied to reduce training efforts. The combined recurrent graph convolutional neural networks (1D-CGCN) is compared with the traditional ANN structure on the Potsdam 13-bus microgrid dataset. The achievable accuracy of 99.27%, 98.1%, 98.75%, and 95.6% for fault detection, fault type classification, fault phase identification, and fault location respectively.Comment: arXiv admin note: text overlap with arXiv:2210.1517

    On the identifiability, parameter identification and fault diagnosis of induction machines

    Get PDF
    PhD ThesisDue to their reliability and low cost, induction machines have been widely utilized in a large variety of industrial applications. Although these machines are rugged and reliable, they are subjected to various stresses that might result in some unavoidable parameter changes and modes of failures. A common practice in induction machine parameter identification and fault diagnosis techniques is to employ a machine model and use the external measurements of voltage, current, speed, and/or torque in model solution. With this approach, it might be possible to get an infinite number of mathematical solutions representing the machine parameters, depending on the employed machine model. It is therefore crucial to investigate such possibility of obtaining incorrect parameter sets, i.e. to test the identifiability of the model before being used for parameter identification and fault diagnosis purposes. This project focuses on the identifiability of induction machine models and their use in parameter identification and fault diagnosis. Two commonly used steady-states induction machine models namely T-model and inverse Γ- model have been considered in this thesis. The classical transfer function and bond graph identifiability analysis approaches, which have been previously employed for the T-model, are applied in this thesis to investigate the identifiability of the inverse Γ-model. A novel algorithm, the Alternating Conditional Expectation, is employed here for the first time to study the identifiability of both the T- and inverse Γ-models of the induction machine. The results obtained from the proposed algorithm show that the parameters of the commonly utilised Tmodel are non-identifiable while those of the inverse Γ-model are uniquely identifiable when using external measurements. The identifiability analysis results are experimentally verified by the particle swarm optimization and Levenberg-Marquardt model-based parameter identification approaches developed in this thesis. To overcome the non-identifiability problem of the T-model, a new technique for induction machine parameter estimation from external measurements based on a combination of the induction machine’s T- and inverse Γ-models is proposed. Results for both supply-fed and inverter-fed operations show the success of the technique in identifying the parameters of the machine using only readily available measurements of steady-state machine current, voltage and speed, without the need for extra hardware. ii A diagnosis scheme to detect stator winding faults in induction machines is also proposed in this thesis. The scheme uses time domain features derived from 3-phase stator currents in conjunction with particle swarm optimization algorithm to check characteristic parameters of the machine and detect the fault accordingly. The validity and effectiveness of the proposed technique has been evaluated for different common faults including interturn short-circuit, stator winding asymmetry (increased resistance in one or more stator phases) and combined faults, i.e. a mixture of stator winding asymmetry and interturn short-circuit. Results show the accuracy of the proposed technique and it is ability to detect the presence of the fault and provide information about its type and location. Extensive simulations using Matlab/SIMULINK and experimental tests have been carried out to verify the identifiability analysis and show the effectiveness of the proposed parameter identification and fault diagnoses schemes. The constructed test rig includes a 1.1 kW threephase test induction machine coupled to a dynamometer loading unit and driven by a variable frequency inverter that allows operation at different speeds. All the experiment analyses provided in the thesis are based on terminal voltages, stator currents and rotor speed that are usually measured and used in machine control.Libya, through the Engineering Faculty of Misurata- Misurata Universit
    corecore