252 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationDynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a powerful tool to detect cardiac diseases and tumors, and both spatial resolution and temporal resolution are important for disease detection. Sampling less in each time frame and applying sophisticated reconstruction methods to overcome image degradations is a common strategy in the literature. In this thesis, temporal TV constrained reconstruction that was successfully applied to DCE myocardial perfusion imaging by our group was extended to three-dimensional (3D) DCE breast and 3D myocardial perfusion imaging, and the extension includes different forms of constraint terms and various sampling patterns. We also explored some other popular reconstruction algorithms from a theoretical level and showed that they can be included in a unified framework. Current 3D Cartesian DCE breast tumor imaging is limited in spatiotemporal resolution as high temporal resolution is desired to track the contrast enhancement curves, and high spatial resolution is desired to discern tumor morphology. Here temporal TV constrained reconstruction was extended and different forms of temporal TV constraints were compared on 3D Cartesian DCE breast tumor data with simulated undersampling. Kinetic parameters analysis was used to validate the methods

    Frequency-splitting Dynamic MRI Reconstruction using Multi-scale 3D Convolutional Sparse Coding and Automatic Parameter Selection

    Get PDF
    Department of Computer Science and EngineeringIn this thesis, we propose a novel image reconstruction algorithm using multi-scale 3D con- volutional sparse coding and a spectral decomposition technique for highly undersampled dy- namic Magnetic Resonance Imaging (MRI) data. The proposed method recovers high-frequency information using a shared 3D convolution-based dictionary built progressively during the re- construction process in an unsupervised manner, while low-frequency information is recovered using a total variation-based energy minimization method that leverages temporal coherence in dynamic MRI. Additionally, the proposed 3D dictionary is built across three different scales to more efficiently adapt to various feature sizes, and elastic net regularization is employed to promote a better approximation to the sparse input data. Furthermore, the computational com- plexity of each component in our iterative method is analyzed. We also propose an automatic parameter selection technique based on a genetic algorithm to find optimal parameters for our numerical solver which is a variant of the alternating direction method of multipliers (ADMM). We demonstrate the performance of our method by comparing it with state-of-the-art methods on 15 single-coil cardiac, 7 single-coil DCE, and a multi-coil brain MRI datasets at different sampling rates (12.5%, 25% and 50%). The results show that our method significantly outper- forms the other state-of-the-art methods in reconstruction quality with a comparable running time and is resilient to noise.ope

    Performance Analysis between Two Sparsity Constrained MRI Methods: Highly Constrained Backprojection(HYPR) and Compressed Sensing(CS) for Dynamic Imaging

    Get PDF
    One of the most important challenges in dynamic magnetic resonance imaging (MRI) is to achieve high spatial and temporal resolution when it is limited by system performance. It is desirable to acquire data fast enough to capture the dynamics in the image time series without losing high spatial resolution and signal to noise ratio. Many techniques have been introduced in the recent decades to achieve this goal. Newly developed algorithms like Highly Constrained Backprojection (HYPR) and Compressed Sensing (CS) reconstruct images from highly undersampled data using constraints. Using these algorithms, it is possible to achieve high temporal resolution in the dynamic image time series with high spatial resolution and signal to noise ratio (SNR). In this thesis we have analyzed the performance of HYPR to CS algorithm. In assessing the reconstructed image quality, we considered computation time, spatial resolution, noise amplification factors, and artifact power (AP) using the same number of views in both algorithms, and that number is below the Nyquist requirement. In the simulations performed, CS always provides higher spatial resolution than HYPR, but it is limited by computation time in image reconstruction and SNR when compared to HYPR. HYPR performs better than CS in terms of SNR and computation time when the images are sparse enough. However, HYPR suffers from streaking artifacts when it comes to less sparse image data

    Fast image reconstruction with L2-regularization

    Get PDF
    Purpose We introduce L2-regularized reconstruction algorithms with closed-form solutions that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative algorithms while maintaining similar image quality for various applications in MRI reconstruction. Materials and Methods We compare fast L2-based methods to state of the art algorithms employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three applications; (i) Fast Quantitative Susceptibility Mapping (QSM), (ii) Lipid artifact suppression in Magnetic Resonance Spectroscopic Imaging (MRSI), and (iii) Diffusion Spectrum Imaging (DSI). In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two to three orders of magnitude speed up is demonstrated with similar reconstruction quality. Results The closed-form solution developed for regularized QSM allows processing of a three-dimensional volume under 5 s, the proposed lipid suppression algorithm takes under 1 s to reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion propagators from undersampled q-space for a single slice under 30 s, all running in Matlab using a standard workstation. Conclusion For the applications considered herein, closed-form L2-regularization can be a faster alternative to its iterative counterpart or L1-based iterative algorithms, without compromising image quality.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant NIBIB K99EB012107)National Institutes of Health (U.S.) (Grant NIH R01 EB007942)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant NIBIB R01EB006847)Grant K99/R00 EB008129National Center for Research Resources (U.S.) (Grant NCRR P41RR14075)National Institutes of Health (U.S.) (Blueprint for Neuroscience Research U01MH093765)Siemens CorporationSiemens-MIT AllianceMIT-Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship
    corecore