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Abstract

Purpose—We introduce L2-regularized reconstruction algorithms with closed-form solutions

that achieve dramatic computational speed-up relative to state of the art L1- and L2-based iterative

algorithms while maintaining similar image quality for various applications in MRI

reconstruction.

Materials and Methods—We compare fast L2-based methods to state of the art algorithms

employing iterative L1- and L2-regularization in numerical phantom and in vivo data in three

applications; 1) Fast Quantitative Susceptibility Mapping (QSD), 2) Lipid artifact suppression in

Magnetic Resonance Spectroscopic Imaging (MRSI), and 3) Diffusion Spectrum Imaging (DSI).

In all cases, proposed L2-based methods are compared with the state of the art algorithms, and two

to three orders of magnitude speed up is demonstrated with similar reconstruction quality.

Results—The closed-form solution developed for regularized QSM allows processing of a 3D

volume under 5 seconds, the proposed lipid suppression algorithm takes under 1 second to

reconstruct single-slice MRSI data, while the PCA based DSI algorithm estimates diffusion

propagators from undersampled q-space for a single slice under 30 seconds, all running in Matlab

using a standard workstation.

Conclusion—For the applications considered herein, closed-form L2-regularization can be a

faster alternative to its iterative counterpart or L1-based iterative algorithms, without

compromising image quality.
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Introduction

Regularized image reconstruction aims to improve image quality by imposing prior

knowledge on the target signals. Regularization proves beneficial in a wide range of

applications including parallel imaging (1,2), compressed sensing (3), denoising (4) and

solution of inverse problems in general. Given a linear system A · x = b, where A is the

observation model, x is the unknown signal and b are the acquired data, the most commonly

encountered regularizers employ ℓ2 or ℓ1 penalties either on the reconstructed signal itself,

or on its representation with respect to a transform C by solving,

[1]

[2]

While ℓ2(Tikhonov)-regularized reconstruction in Eq.1 admits a closed-form solution (AHA
+ α · CHC)−1AHb when the inverse exists, established methods often operate iteratively,

either because the system is too large to invert explicitly, or because A · x can be computed

efficiently (e.g. Fast Fourier Transform) without having to store the matrix A. On the other

hand, ℓ1-penalized reconstruction in Eq.2 does not have a closed-form solution, and most

compressed sensing algorithms operate iteratively by alternating between a soft thresholding

step and ensuring consistency of the system A · x = b, e.g. (2,5,6).

This work presents ℓ2-based methods with closed-form solutions which can be computed

efficiently, while retaining similar image quality as the iterative state of the art algorithms.

We demonstrate the generality of the approach by assessing its performance and speed

compared to more standard methods in three different applications. The main contributions

include,

i. Derivation of a closed-form solution to regularized Quantitative Susceptibility
Mapping (QSM): The proposed method requires only two FFTs, and is three

orders of magnitude faster than the existing iterative solvers (7,8), while giving the

exact minimizer of the optimization problem.

ii. Fast lipid suppression for Magnetic Resonance Spectroscopic Imaging
(MRSI): By requiring the lipid and metabolite spectra to be approximately

orthogonal, effective lipid artifact reduction is demonstrated. The present ℓ2-based

method is three orders of magnitude faster than its previously proposed, iterative

ℓ1-based counterpart (9,10), with similar lipid reduction performance. It can also be

synergistically combined with the dual-density lipid suppression method (11,12) to

yield artifact free spectra in less than a second per slice.

iii. Fast Diffusion Spectrum Imaging (DSI) reconstruction from undersampled q-
space: Applying Principal Component Analysis (PCA) on a training dataset from

one subject captures the structure of diffusion propagators with a low-dimensional

representation. Propagators of another subject are then estimated in this PCA space

from undersampled q-space by solving a simple least-squares problem. The
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proposed PCA-based method is two orders of magnitude faster with similar image

quality compared to a previously proposed technique that applies compressed

sensing with a dictionary trained for sparse representation. Dictionary training and

reconstruction from undersampled q-space are also much simpler, requiring only

linear algebra operations.

Accompanying Matlab code submitted as Supplementary Material reproduces the key

figures presented in the manuscript, and will also be available online on the author’s

website.

The proposed and the state of the art algorithms are detailed in the Materials and Methods

section along with data acquisition and reconstruction methods. Quantitative comparisons of

computation time and image quality are presented under the Results header.

Materials and Methods

All computational results reported in this work were obtained in Matlab environment

running on a workstation with 48 GB memory and 12 processors.

Regularized Quantitative Susceptibility Mapping with closed-form solution

QSM aims to map the tissue magnetic susceptibility χ based on the measured tissue phase ϕ.

Susceptibility is highly correlated with tissue iron deposition especially in the deep gray

matter structures (13), hence its estimation allows quantification of tissue iron concentration.

As the innate paramagnetic effect of deoxyhemoglobin leads to a susceptibility shift

between the veins and the surrounding tissue, susceptibility mapping also permits estimation

of blood oxygenation level (14). However, the mapping requires the solution of the system

[3]

for the unknown χ, where F is the Fourier transform and D is a diagonal matrix with entries

. As the kernel D equals to zero on the conical surface  and

effectively undersamples the frequency content of χ. As such, Eq.3 is an ill-posed problem

and its solution is facilitated by additional information about the underlying susceptibility

map. This information is either provided by acquiring additional observations where the

object is tilted at various angles with respect to the main field (15), or by imposing a spatial

prior about the susceptibility distribution via regularization (7). While the maps obtained

from multi-orientation measurements were seen to have higher quality than the regularized

single-orientation reconstructions (16), this benefit comes at the expense of substantially

increased scan time. As such, regularized QSM remains an important tool that aims to solve,

[4]

Regularizers employed in previous works are of the form  or ‖WGχ‖1,

where W is either the identity I or a diagonal weighting matrix derived from the magnitude

signal (7) and G = [Gx; Gy; Gz] is the gradient operator in three dimensions. Average

susceptibility values in iron rich gray matter structures have been computed with ℓ2- and ℓ1-
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based reconstructions in the literature, and were reported to yield similar correlations with

tissue iron concentration (8). However, a closed-form solution to Eq.4 exists in the case of

ℓ2-regularization:

[5]

Since the matrix inversion involved in Eq.5 is computationally prohibitive, existing methods

operate iteratively to minimize the objective in Eq.4. The proposed closed-form solution

relies on computing the image gradients in k-space rather than the image space, thus making

direct inversion of the system possible. The gradient along the x-axis can be expressed as

Gx = FHExF, where Ex is a diagonal matrix with entries ,

which is the k-space representation of the difference operator δx − δx−1. Here, kx is the k-

space index and Nx is the matrix size along x, and Gy and Gz are similarly defined. With this

formulation, the term GHG becomes , and after simplifications the

closed-form solution can be expressed as

[6]

The matrix inversion now involves only diagonal matrices, hence it is straight forward to

evaluate. The total cost of susceptibility mapping is two FFTs and multiplication of diagonal

matrices.

QSM Reconstruction Experiments

Two reconstruction methods that minimize the objective function in Eq.4 are considered:

i. Nonlinear conjugate gradient (CG) algorithm (7,8) using 100 iterations, and

ii. Proposed closed-form solution.

Experiments were performed on a numerical phantom and on in vivo data.

i. Numerical phantom: consists of 3-compartments (gray and white matter, CSF)

with a matrix size of 240×240×154. Within each compartment, χ is constant and

equal to χgray=−0.023, χwhite =0.027, χCSF =−0.018 ppm (17). The field map ϕ was

computed from this ground truth χ map using forward dipole model ϕ = FHDFχ,

and Gaussian noise with peak-SNR = 100 was added, so that the normalized root-

mean-square-error (RMSE) of the noisy field map was 5.9 % relative to the noise

free phase (Fig.1, first row). λ was chosen to minimize the RMSE in the χ maps

reconstructed with the closed-form method, and was found to be λ = 2 · 10−4. The

same λ was used for both the closed-form and iterative CG reconstructions.

ii. In vivo data: 3D SPGR (spoiled gradient echo) data were acquired on a healthy

subject at 1.5T with resolution 0.94×0.94×2.5mm3, matrix size 256×256×62 and

TR/TE = 58ms/40ms. Background phase was removed using dipole fitting (18) to

yield the tissue phase (Fig.2, first row). λ = 1.5 · 10−2 was chosen based on the L-

curve heuristic (19). Data were zero-padded to twice the size to avoid aliasing with

circular convolution.
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Fast Lipid Suppression for MR Spectroscopic Imaging

Estimation and visualization of biochemical metabolites in the brain, especially the NAA

(N-acetyl Aspartate) peak at 2 ppm is made difficult by the ringing artifacts caused by the

subcutaneous lipid signals around the skull. These artifacts are caused by side lobes of the

point spread function arising from the limited spatial resolution of spectroscopic imaging

techniques. Because the lipid signals have much higher signal amplitude than the cortical

metabolites, especially at short echo times, the ringing artifacts severely contaminate the

brain spectra and impede the detection of metabolite signals. In addition to important

contributions on the excitation side (e.g. outer volume suppression (20), inversion recovery

(21)), several post-processing methods have been proposed to mitigate lipid artifacts. These

algorithms include data extrapolation (22), dual-density reconstruction (11,12), and lipid-

basis penalty (9,10). In particular, lipid-basis method operates iteratively, and can be

synergistically combined with dual-density sampling to yield effective lipid suppression (9).

In more detail,

i. Dual-density reconstruction: requires acquisition of high-resolution spectra

csihigh to generate a lipid image, and low-resolution data csilow with adequate SNR

for metabolite signal quantification. With the help of a binary mask Mlipid that

selects the lipid ring, a high-resolution lipid image is generated as:

[7]

This masked lipid image is then combined with the low-resolution spectra csilow in

k-space via

[8]

Here, Flow samples the low-resolution k-space, while Fhigh selects the peripheral k-

space. The dual-density image dual is then generated by combining the low spatial

frequency content in the metabolite image csilow and the high frequency content of

the lipid image.

ii. Lipid-basis penalty: relies on the approximation that lipid and metabolite spectra

are orthogonal to each other. This prior is enforced via the following optimization

problem,

[9]

where xi is the spectrum in the ith voxel, α is a regularization parameter, Mbrain is

the binary brain mask, and L is the lipid-basis matrix. Spectra from dual inside the

lipid mask are used to generate L, so that each column of L is a lipid spectrum

sampled from the dual-density image. In essence, Eq.9 minimizes the sum of inner

products between lipid and target metabolite spectra and is solved iteratively by

gradient descent methods (10).
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iii. Proposed lipid-basis reconstruction with ℓ2-regularization: Instead of summing

the absolute value of inner products, a simplified closed-form solution can be

obtained by considering the square of inner product terms:

[10]

This can be further simplified by noticing that the optimization problem is

independent across voxels,

[11]

The solution can be evaluated in closed-form,

[12]

The reconstruction matrix (I + β · LLH)−1 needs to be computed only once, and the

matrix inversion is of modest size (e.g. 512×512 for a 512-point frequency axis).

Per voxel, the computational cost is a matrix-vector multiplication.

Lipid Suppression Experiments

Single slice constant density spiral MRSI data were acquired in vivo at 3T using 32-channel

receive array with a voxel size of 0.16 mL (FOV = 24 cm, slice thickness = 1 cm, echo time

= 50 ms, repetition time = 2 s, number of averages = 20, acquisition time = 33 min).

Chemical shift selective suppression (CHESS (23)) pulse was applied for water suppression,

and PRESS-box (point resolved spectroscopy (24)) excited the entire field-of-view;

however, no lipid suppression was applied during acquisition. This spiral acquisition was

coil combined after gridding onto a Cartesian grid, and all subsequent processing was

applied on this grid. Lipid suppression was performed with three different methods:

i. Dual-density reconstruction: To emulate dual-density sampling strategy, two

datasets were derived from the 20-average, 0.16 mL resolution image. The high-

resolution csihigh has 2 averages of 0.16 mL spectra and corresponds to a 3.3 min

acquisition. The low-resolution csilow has 20 averages of 0.56 mL data with a

corresponding acquisition time of 10 min. The artifact reduced image dual was

obtained by the combination of the two images due to Eq.8 (Fig.3). The lipid and

brain masks were generated manually with the aid of a thresholded lipid image

derived from non-lipid-suppressed dataset.

ii. Lipid-basis reconstruction with ℓ1-penalty: Further lipid suppression was applied

to dual due to Eq.9, and optimization was performed with the conjugate gradient

algorithm. The regularization parameter α was chosen with the L-curve heuristic

(19) and was found to be α = 10−3.

iii. Proposed lipid-basis reconstruction with ℓ2-penalty: Further suppression was

applied to dual due to closed-form expression in Eq.12. The regularization
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parameter β was tuned so that the data consistency  term was the same

for the ℓ1- and ℓ2-regularized reconstructions and was found to be β = 0.65. Setting

the data consistency levels to be the same aimed to allow a fair comparison of lipid

suppression performances of the two methods.

Fast undersampled Diffusion Spectrum Imaging (DSI) reconstruction

DSI is a diffusion imaging technique that involves sampling of full q-space and yields a

complete description of water diffusion in terms of diffusion propagators that represent the

local probability of water motion across space. The relation between the q-space samples

and the diffusion propagator inside a voxel is given by F · p = q, where F represents the

Fourier transform, while p and q are the probability-space and q-space descriptions of

diffusion. However, the full-sampling requirement of DSI is prohibitive for clinical

applications, as data acquisition takes ~1 hour. Existing compressed sensing algorithms aim

to recover diffusion propagators from undersampled q-space. These include,

i. Wavelet & TV regularization (25): places a sparsity prior on the diffusion

propagators with respect to wavelet and total variation (TV) transforms and

iteratively solves,

[13]

where FΩ is the undersampled Fourier transform, Ψ is a wavelet operator, and

TV(․) is the total variation penalty.

ii. Dictionary-FOCUSS (26): Starting from a training dataset of propagators P, the

K-SVD algorithm (26)

iii. is employed to generate a dictionary D for sparse representation of these

propagators. Compressed sensing reconstruction with respect to this dictionary is

carried out via the FOCUSS (27) algorithm,

[14]

Here, x are the dictionary transform coefficients and the reconstructed diffusion

propagator p̂ is obtained by the mapping p̂ = D · x̂.

Both of these sparsity-based methods operate iteratively and are computationally expensive.

The proposed PCA-based algorithm simplifies both the training and reconstruction steps,

and the solution can be computed in closed-form:

PCA-based fast DSI reconstruction—Again starting with a training set P consisting of

L propagators, PCA finds a low-dimensional representation that captures most of the

variation in the dataset. First, the mean signal pmean is subtracted from each training

propagator pi, and the covariance matrix ZZH composed of these mean-subtracted

descriptors is orthogonalized,
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[15]

[16]

This yields an orthonormal matrix Q that contains the diffusion eigenvectors as its columns.

Selecting the submatrix QT that contains the eigenvectors corresponding to the T largest

eigenvalues in Λ, PCA coefficients of a target propagator p can be obtained using,

[17]

The location of pca in the probability-space pT can be recovered via,

[18]

Next, a low-dimensional fit to the undersampled q-space can be computed in the least-

squares sense, , which can equivalently be expressed in PCA space,

[19]

A closed-form solution to Eq.19 can be obtained by using the pseudo inverse of FΩQT,

[20]

The result in the diffusion probability space is finally found by the mapping

. The reconstruction matrix pinv(FΩQT) needs to be computed only once,

and the computational cost is one matrix-vector multiplication per voxel.

DSI Reconstruction Experiments

Diffusion imaging data were acquired at a 3T system equipped with the Connectome

gradients (Gmax = 300 mT/m and Slew = 200 T/m/s) from two healthy subjects using a 64-

channel receive array (28). Echo-planar imaging parameters were: 2.3 mm isotropic voxel

size, field of view = 220×220×130, matrix size = 96×96×57, and bmax = 8000 s/mm2

(acquired using Gmax = 200 mT/m). 515 directions full sphere q-space sampling with

interspersed b = 0 images every 20 pulse repetition times (for motion correction using

FLIRT (29)) was applied using in-plane acceleration = 2, pulse repetition time/echo time =

5.4 s/60 ms, for a total imaging time of 50 minutes. Eddy current related distortions were

corrected using the reversed polarity method (30). Variable-density undersampling using a

power-law density function (3) with R = 3 acceleration was applied in q-space. Dictionary-

FOCUSS and PCA methods used training diffusion propagators obtained from a single slice

of the training subject that is different from the test subject on which reconstructions were

applied.

i. Wavelet & TV regularization: The objective function in Eq.13 is minimized

iteratively with the sparse MRI toolbox (3) using 100 conjugate gradient iterations,
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which were seen to be sufficient for convergence. In addition to the total variation

constraint, two different wavelet transforms (Ψ) were considered: Haar wavelets

(using Matlab’s native wavelet decomposition) and CDF 9–7 wavelets (using

Matlab code available at http://www.getreuer.info/home/waveletcdf97) which were

reported to yield better sparse approximations for simulated diffusion propagators

than the Haar transform (31). In the experiments herein, CDF 9–7 implementation

was seen to be computationally more efficient than the Haar transform (23 sec/

voxel for Haar & TV and 0.8 sec/voxel for CDF 9–7 & TV, Fig.5). For both types

of wavelet bases, a single level of decomposition yielded the lowest reconstruction

error (results not shown). The regularization parameters α and β were determined

by parameter sweeping. In the case of CDF 9–7 & TV method, whole slice was

reconstructed with different parameters, and the setting that minimized the average

reconstructed error (α = 10−3 and β = 3·10−4) was chosen to be the optimal one. For

the Haar & TV method, only 100 voxels randomly selected within the slice were

reconstructed for each parameter setting due to the high computational cost. The

optimal selection was found to be α = 3·10−4 and β = 10−4.

ii. Dictionary-FOCUSS: Compared to the implementation in (26) that uses 10 outer

and 50 inner loops for the FOCUSS algorithm, 5 outer and 30 inner iterations were

seen to be sufficient for convergence. This way, reconstruction time was reduced

from 12 sec/voxel to 2.2 sec/voxel without affecting the reconstruction quality. As

in (26), an overcomplete dictionary with 3191 columns was trained with K-SVD

and used in reconstruction.

iii. PCA reconstruction: The number of eigenvalues to keep (T) was determined

using the training dataset, which was assumed to be fully-sampled. The value of T

that minimized the reconstruction error in the training dataset for the same

undersampling mask was chosen to be the optimal parameter (T=50). PCA

reconstruction time was about 30 sec per slice.

Results

Regularized Quantitative Susceptibility Imaging

Reconstruction of the numerical phantom was completed in 3.3 sec with the proposed

closed-form solution, while the conjugate gradient algorithm with 100 iterations took 65 min

of computation (Fig.1). The normalized RMSE relative to the true susceptibility map was

17.4 % with the proposed method and 18.0 % with the conjugate gradient algorithm.

Processing the in vivo dataset took 1.3 sec with the closed-form method and 29 min with the

iterative solver (Fig.2). Bottom row of Fig.2 depicts the 250-fold magnified difference

between the closed-form and conjugate gradient reconstructions.

Lipid suppression for MR Spectroscopic Imaging

Lipid maps obtained by summing the absolute value of the reconstructed spectra over the

lipid resonance frequency range are shown in top row of Fig.3, where images without

suppression, dual-density reconstruction, lipid-basis penalty with ℓ1 regularization, and the
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proposed ℓ2-based method are compared. The reconstruction times were 0.1 sec for dual-

density, 7 min for lipid-basis with ℓ1-penalty, and 0.2 sec for the proposed method.

Regarding the lipid signal profile inside the brain (bottom half of Fig.3), dual-density

reconstruction obtained 6.59 dB (2.1 times) average reduction in artifacts compared to the

non-lipid-suppressed image. ℓ1-based lipid-basis yielded 19.56 dB (9.5 times) reduction of

lipid signal compared to using no suppression and 12.98 dB (4.5 times) reduction relative to

dual-density technique inside the brain. Similarly, ℓ2-based lipid-basis obtained 19.53 dB

(9.5 times) and 12.95 dB (4.4 times) reduction in lipid power relative to using no

suppression and dual-density sampling.

Example spectra marked on the anatomical image are depicted in Fig.4, where the dual-

density and the proposed ℓ2-based method are compared in the top row, while the bottom

row overlays the ℓ2- and ℓ1-regularized reconstructions.

Undersampled Diffusion Spectrum Imaging

Normalized RMSE values in the reconstructed probability density functions (propagators) at

each voxel are presented in Fig.5 for the algorithms under consideration. Using CDF 9–7

wavelets with total variation yielded 15.9 % error on average, and the computation time was

35 min for this slice. Haar wavelets & TV had 15.6 % average RMSE and required 950 min

of processing. Dictionary-FOCUSS method obtained 7.6 % average RMSE in 90 min, and

the proposed PCA-based reconstruction yielded 7.8 % error in 0.4 min of computation time.

Orientation distribution function (ODF) glyphs inside the region of interest marked on the

average fractional anisotropy image are depicted in Fig.6. To facilitate comparison between

the ODFs produced by different methods, three voxels are further magnified.

Discussion

Quantitative Susceptibility Mapping

A closed-form expression for ℓ2-regularized susceptibility kernel inversion was derived and

shown to be three orders of magnitude faster than the iterative conjugate gradient solution.

This allowed computation of 3-d susceptibility maps to be performed in a few seconds. The

proposed method finds the exact minimizer of the optimization problem, while the iterative

algorithms aim to converge to this solution (Figs. 1 and 2), which explains the reduced

RMSE in Fig.1. This closed-form solution may facilitate clinical application of regularized

QSM. However, it is noted that obtaining the tissue field map from the unwrapped phase

images require a pre-processing step that removes the contribution of phase background

effects. The background component arises from air-tissue and bone-tissue interfaces, and

can be eliminated to a great extent using the dipole fitting algorithm (32). This method,

however, works iteratively and processing a 3-d dataset takes at least half an hour. Recently

proposed fast background removal methods may greatly mitigate the computational burden

of this pre-processing step (33,34).

Recent articles investigate employing ℓ1-regularized image gradients (i.e. total variation) for

susceptibility inversion (8,35). For estimation of average χ values inside iron rich gray

matter structures, both choices of regularization style (ℓ1 and ℓ2) were reported to generate
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similar results (8). However, the ℓ2-regularization over the gradients assumes smoothly

varying signal characteristics, therefore using ℓ1 penalty for a piece-wise constant solution

might be more suitable for susceptibility quantification in narrow structures such as vessels.

On the other hand, ℓ1-based methods are constrained to work iteratively, and hence can be

time consuming, thereby limiting their practicality.

Lipid Suppression for MRSI

The proposed ℓ2-based lipid suppression algorithm attains three orders of magnitude speed

up relative to its previously proposed ℓ1-regularized counterpart (10) with slightly improved

artifact reduction performance (Fig.4). Since reconstruction of a single slice MRSI data is

completed under a second, clinical application of the method to 3-d spectroscopic imaging

would be feasible.

Another artifact reduction method, dual-density sampling (12), was seamlessly merged in

the proposed reconstruction pipeline. This method provides a partially lipid-suppressed

starting point for the lipid-basis method, and enhances the end result. Since the dual-density

acquisition may be difficult to realize on the scanner, it can be by-passed or a different initial

starting point might be considered. For instance, the data extrapolation method (36) can be

synergistically combined with the proposed lipid-basis reconstruction. Another alternative

could be variable density spiral acquisition, which was shown to have more benign point

spread function (37).

The fast lipid suppression method demonstrated effective artifact reduction, at a relatively

short echo time of 50 ms, near the skull where the contamination is the largest (Fig. 4). A

drawback of the lipid-basis and data extrapolation post-processing algorithms is that they

require a binary mask that marks the location of the lipid layer. Herein, thresholding-guided

manual segmentation was employed. More sophisticated methods, such as acquiring an

accompanying structural image or a non-water-suppressed reference data, could allow

automatic generation of a lipid mask.

The regularization parameter α in the ℓ1-based lipid-basis reconstruction was selected using

the L-curve method. This technique involves reconstruction of the dataset several times and

finding the optimal balance between the data consistency and regularization terms. For the

proposed method, the regularization parameter β was chosen so that ℓ1- and ℓ2-based

algorithms yielded the same data consistency level. While this was done to allow a fair

comparison of the methods, the parameter β will still need to be determined for different in

vivo settings. As the ℓ2-based algorithm takes less than a second of computation time, it will

be feasible to trace the L-curve and find a suitable parameter. If an estimate of the noise

variance is available, an alternative would be to set β so that the data consistency term is at

noise level (38). Based on the lipid signal profiles in Fig.3, ℓ1- and ℓ2-based suppression

yield comparable artifact reduction inside the brain (19.56 dB for ℓ1 and 19.53 dB reduction

for ℓ2 method), but the proposed ℓ2-based technique remains computationally much faster.

Undersampled Diffusion Spectrum Imaging

The proposed PCA-based method demonstrated two orders of magnitude speed-up relative

to Dictionary-FOCUSS algorithm, while obtaining similar image quality. Both of these
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methods involve extracting priors from a training dataset, and thus achieve much reduced

reconstruction error compared to using fixed transforms such as wavelets and total variation.

This may indicate that the key to obtaining high fidelity diffusion propagators from

undersampled q-space is encouraging the reconstructed signals to lie in the column space of

a trained dictionary, rather than the selection of regularization style (ℓ1 or ℓ2) with respect to

this dictionary.

As the proposed method is simple and fast in terms of training and reconstruction, it might

allow online reconstruction of 3-dimensional DSI datasets. Since each voxel is processed

independently, another potential source of performance gain is parallel processing.

For results reported herein, training data were obtained from a subject different from the test

subject. Even though this might indicate that the method generalizes across subjects, further

validation across healthy versus patient and young versus elderly populations is necessary.

The number of eigenvectors used in the PCA representations was also determined based on

the training subject and was found to be T = 50. If this was determined based on the test

subject, T = 49 would be obtained. Both settings lead to the same RMSE, indicating that

parameter selection on the training dataset might be feasible.

Regarding the ODF visualization in Fig.6, it can be seen that glyphs obtained with

Dictionary-FOCUSS and PCA have higher fidelity than the Wavelet & TV method.

In conclusion, ℓ2-based reconstruction is shown to work just as well as ℓ1-regularization,

given that the imaging application is suitable. Moreover, the fact that ℓ2-regularization

admits a closed-form solution can be exploited to achieve substantial computational savings.

In the contexts of QSM, MRSI, and DSI, two to three orders of magnitude speed up was

demonstrated relative to the state of the art algorithms. In the spirit of reproducible research,

Matlab code and example datasets for the proposed methods will be offered online.
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Fig.1.
QSM reconstruction of a numerical phantom. Top row: Phase map is simulated by the

forward dipole model from the ground truth, piece-wise constant susceptibility phantom and

Gaussian noise is added to this simulated phase. Middle row: Susceptibility map computed

from the noisy phase using the proposed closed-form method with a processing time of 3.3

seconds. Bottom row: The difference between the ground truth susceptibility and the

closed-form solution.
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Fig.2.
In vivo QSM at 1.5T. Top row: Tissue phase obtained after removal of background

contributions to the field map with the dipole fitting algorithm. Middle row: Closed-form

QSM solution obtained from the tissue phase in 1.3 seconds. Bottom row: 250-fold

magnified difference between the proposed closed-form susceptibility and the iterative

solution obtained with the conjugate gradient algorithm.
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Fig.3.
Top row: Lipid maps in dB-scale obtained by summation over the lipid resonance

frequencies without lipid suppression, with dual-density reconstruction, L1-based lipid-basis

method and the proposed L2-based lipid-basis regularization. Bottom row: Overlay of

signal profiles along the black horizontal line for the four reconstruction methods.
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Fig.4.
Example cortical spectra inside the region of interest marked on the structural image. Top

panel overlays the spectra from dual-density and the proposed L2-based lipid suppression

method, while the bottom panel compares the results obtained with L1- and L2-based lipid-

basis penalty reconstructions.
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Fig.5.
Pdf reconstruction error maps obtained with the four methods for 3-fold accelerated DSI.

CDF 9–7 wavelets & TV regularization obtained 15.9% average RMSE in 35 minutes of

computation time, Haar wavelets & TV reconstruction had 15.6% error in 950 minutes, and

Dictionary-FOCUSS reconstruction yielded 7.6% error in 90 minutes for this slice. The

proposed PCA-based reconstruction returned 7.8% average RMSE in 0.4 minutes of

processing time.
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Fig.6.
Odf visualizations inside the region of interest marked on the Fractional Anisotropy (FA)

map, comparing glyphs obtained from fully-sampled data, Haar & TV regularization,

Dictionary-FOCUSS reconstruction and the proposed PCA method. Three voxels are further

magnified to facilitate the comparison.
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