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Abstract

In this thesis, we propose a novel image reconstruction algorithm using multi-scale 3D con-
volutional sparse coding and a spectral decomposition technique for highly undersampled dy-
namic Magnetic Resonance Imaging (MRI) data. The proposed method recovers high-frequency
information using a shared 3D convolution-based dictionary built progressively during the re-
construction process in an unsupervised manner, while low-frequency information is recovered
using a total variation-based energy minimization method that leverages temporal coherence
in dynamic MRI. Additionally, the proposed 3D dictionary is built across three different scales
to more efficiently adapt to various feature sizes, and elastic net regularization is employed to
promote a better approximation to the sparse input data. Furthermore, the computational com-
plexity of each component in our iterative method is analyzed. We also propose an automatic
parameter selection technique based on a genetic algorithm to find optimal parameters for our
numerical solver which is a variant of the alternating direction method of multipliers (ADMM).
We demonstrate the performance of our method by comparing it with state-of-the-art methods
on 15 single-coil cardiac, 7 single-coil DCE, and a multi-coil brain MRI datasets at different
sampling rates (12.5%, 25% and 50%). The results show that our method significantly outper-
forms the other state-of-the-art methods in reconstruction quality with a comparable running
time and is resilient to noise.
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I Introduction

Dynamic magnetic resonance imaging (MRI), including dynamic contrast-enhanced (DCE) MRI
and cardiac MRI, has been widely used to analyze changes in tissue characteristics or the move-
ment of organs over time. Since dynamic MRI’s diagnostic performance is highly correlated
with its temporal resolution [1], speeding up the acquisition time has been actively studied
in the recent decades. More recently, compressed sensing theory [2] has been applied to the
MRI reconstruction problem [3] to reduce the acquisition time. The objective of CS-MRI is
to achieve close-to-perfect reconstruction from sub-Nyquist sampling [4] of k-space data from
the MRI scanner. [5] showed that the computational approach to CS-MRI can also accelerate
conventional imaging. Slow numerical computation of CS-MRI reconstruction process can be
further accelerated by leveraging parallel computing hardware such as graphics processing units
(GPUs) [6].

Early work on CS-MRI exploited the sparsity of signal by applying universal sparsifying
transforms such as the Fourier transform, total variation (TV) [7], and Wavelets [8]. For dy-
namic CS-MRI, spatio-temporal correlations are commonly used (e.g., k-t FOCUSS [9, 10]).
Dictionary learning, a technique extracting common feature sets (i.e. atoms) from the training
data, has been employed in CS-MRI to replace universal sparsifying transforms [11–15]. Since
dictionary learning can generate custom-designed atoms that are better fit to the target image,
reconstruction quality improves significantly compared to that of universal transforms. Recently,
a filter-based dictionary learning method such as convolutional sparse coding (CSC) [16, 17],
has been proposed to overcome the drawbacks of conventional patch-based dictionary learning,
which includes generating redundant atoms and longer running time. CSC has been successfully
adopted in solving dynamic CS-MRI problems [18,19].

In this thesis, we introduce a novel dynamic CS-MRI reconstruction method that extends
state-of-the-art CSC-based reconstruction methods [18,19]. First, we employ frequency filtering
to separate low- and high-frequency components of the target image, and then use a relatively
simple energy minimization process based on a temporal total variation (TV) energy for low-
frequency reconstruction while more expensive feature encoding resources (i.e. dictionary of
convolutional filters) are dedicated only to recovering high-frequency component of the image
(see Fig. 1 for the overview of the reconstruction process). The motivation behind this approach
is that, in conventional CS-MRI, low-frequency k-space data is more densely sampled (see Fig. 7c
k-space mask) while filter-based dictionary learning can better represent sparse local features
in high-frequency data. Second, we employ 3D convolutional filters in various scales and elastic
net regularization [20] to further improve the reconstruction quality compared to conventional
approaches that only use a single-scale dictionary and l1 regularization [15, 19]. Third, we pro-
pose an automatic optimal parameter-selection method based on a genetic algorithm (GA) for
our iterative numerical solver, which is a variant of the alternating direction method of multipli-
ers (ADMM). The proposed GA method belongs to the class of metaheuristics algorithms [21]
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Figure 1: Overview of the proposed CS-MRI reconstruction process based on multi-scale 3D
CSC with spectral decomposition and optimal parameter selection using a genetic algorithm.

inspired by natural evolution to optimize objective function [22]. Our approach uses a GA only
once to automatically find a set of optimal parameters without manual intervention, and then we
can reuse them to reconstruct similar datasets. In our experiment on 15 cardiac and 7 dynamic
contrast-enhanced (DCE) MRI datasets in three different Cartesian sampling rates (12.5%, 25%
and 50%), the proposed reconstruction method produces significantly better image quality, com-
pared to several state-of-the-art methods (e.g., k-t FOCUSS [9, 10], single-scale 3D CSC [19],
blind compressive sensing [13], patch-based dictionary learning [14,15], and FTVNNR [23]), and
runs at an efficient rate with GPU acceleration.

The rest of the thesis is organized as follows. Section II illustrates the background knowl-
edge included compressed sensing problem in dynamic MRI and dictionary learning algorithms.
Section III reviews the recent literature related to the proposed method. Details of the proposed
reconstruction process are introduced in Section IV. We demonstrate the performance of our
reconstruction method and compare it with state-of-the-art methods in Section V. Finally, we
summarize our work and propose future research directions in Section VI.

II Background

2.1 The Compressed Sensing In Dynamic MRI Problem

MRI scanner uses strong magnetic fields and radiofrequency pules to generate signals from body
in frequency domain ( k-space) and images are created by taking inverse Fourier transform
(FH), as shown in first row of Fig. 2. However, it takes a long acquisition time because the
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magnetic fields of system need to align atoms inside organs and then the scanner records what
happens as they relax back from excited state to unexcited state. In order to speed up the time
of acquiring data, the scanner can only get a few samples despite of causing bad quality images
( see second row, Fig. 2). A good reconstruction method is used to overcome this drawback
by applying compressed sensing MRI [3] that generates high quality images and fast acquisition
time. Compressed sensing MRI [3] is a sampling strategy that will allow perfect reconstruction of

MRI Scanner
HF

Reconstruction 
Algorithm

HF

k-space Images

Best quality
Slow acquisition

Worst quality
Fast acquisition

High quality
Fast acquisition

undersample

Figure 2: Overview of the CS-MRI problem.

discrete signal from a small number of samples. The dynamic MR data is obtained in frequency
domain (k-space) as a sequence of 2D images (sfx ⇥ sfy) acquired at sft different time instances
which are stacked to become 3D volume sf . Thus, undersampling mask R is used to speed up
acquisition process by sampling m << sf k-space data. Given a sparsity transformation T ,
the problem CSMRI can be expressed with 2D Fourier transformation for every instance F2 as
follow:

min
s
kT (s)kp s.t. : kRF2(s)�mk

2
2 < ✏

2 (1)

where 0  p  1 and ✏ is a small constant representing for noise sampling in k-space. Generally,
an important of CSMRI is enforcing sparsity transformation kT (s)kp as much as possible.

2.2 Dictionary Learning Algorithms

Patch-based dictionary learning decompose patches of image into a linear combination
of overcomplete basis sets that provides sparse representation of this particular signal. The
objective function Eq. 2 shows that the method collects patches and vectorize them as column
representation. Output of this method is an approximation between dictionary D and sparse
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map x, as shown in Fig. 3. However, redundant of atom and slow running time are drawbacks
of this method because of using small patches for input.

min
d,x

↵

2

NX

n

���sn �Dxn

���
2

2
+ �

NX

n

kxnk0 s.t. : kDk22  1 (2)

D

Collect patches and vectorize
them as column representation

Figure 3: Overview of patch-based dictionary learning.

Convolutional sparse coding (CSC) is learning-based method that learns a shift-invariant
dictionary built by convolution filters from data. The brief overview of CSC is finding its best
approximation image (s) from the summation of response map

P
N

n
dn ⇤ xn, shown in 3 .

min
d,x

↵

2

���s�
NX

n

dn ⇤ xn

���
2

2
+ �

NX

n

kxnk1 s.t. : kdnk
2
2  1 (3)

Each response map is calculated by convolution between a filter (or atom) dn and sparse map
xn. The second non-linear norm term enforces sparsity to xn that helps finding a feasible
solution of collection dn and xn. The remaining constraint restricts the Frobenius norm of
each atom dn within a unit length. Zeiler et al. [24] proposed a solution by solving series
of subproblems between dn and xn until convergence; however, performance is significantly
affected by complexity convolution operator because the solvers is completely on image domain.
The efficient approaches [7, 16, 25] to solve Eq. 3 leverages Fourier Convolution theorem that
convolution operator on spatial domain is equivalent to element-wise on frequency domain. For
example, Fig. 4 shows that features are extracted by using convolutional sparse coding.

≈ ∑
k=1

K

∑
k=1

K

*
dk

xk

≈

D

Figure 4: Overview of convolutional sparse coding.
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III Related work

Since its inception in [3]’s seminal work, CS-MRI has been actively studied to accelerate the
time-consuming MRI imaging process. Conventional CS-MRI algorithms are mainly based on
promoting sparsity in the data by employing l1 regularization in universal sparsifying transforma-
tion models. In such methods, the target image is transformed into a sparse domain by applying
universal transforms such as Wavelet and Fourier transforms or total variation operation [26,27].
CS-MRI for dynamic data is also proposed by enforcing spatial and temporal coherence (i.e.,
k-t FOCUSS [9, 10] and [28]). These conventional CS-MRI methods suffer from computational
overhead because of solving expensive nonlinear l1 minimization problems. This leads to the
development of efficient numerical algorithms [29, 30] that leverage the Alternating Direction
Method of Multipliers (ADMMs) to solve this nonlinear problem in CS-MRI [6]. CS-MRI re-
construction methods using nuclear norm and low-rank matrix completion techniques [23,31–35]
have also been proposed.

More recently, while the major limitation of universal transform-based methods is just using
transformation in general, dictionary learning (DL) [36], an unsupervised learning approach, can
be adapted to features from input data by training dictionary. Thus, conventional DL in CS-MRI
[11–15] approaches have successfully applied to enhancing MRI reconstruction quality. Caballero
et al. [14, 15], for instance, demonstrated the efficiency of using patch-based DL for dynamic
MRI reconstruction with temporal TV filter for enforcing coherence of time-axis. Efficient
convolutional sparse coding (CSC) is then introduced by minimizing an energy objective function
using a convolutional operator on the image domain, which leads to element-wise in the frequency
domain, derived within ADMMs framework [16, 17, 25]. [18, 19] first employed CSC to solve
CS-MRI problems, which significantly improves running time and reconstruction quality by
building more compact and expressive shift-invariance convolutional filters. Nevertheless, MR
data contains various feature sizes so that multiple dictionary sizes in the multi-scale 3D CSC
method can adapt well to the data rather than single-scale atom size methods (e.g., [13,15,19]).
The multi-scale 3D CSC in our method builds the dictionary by simultaneously learning shift-
invariant multiple sizes of convolutional filters from data (Fig. 5). In this approach, zero-filling
(Fig. 5b, zero-filling reconstruction) and randomly initialized filters (e.g., in Fig. 5d, the various
filter sizes) are updated iteratively until they converge, as shown in Fig. 5c, 5e, and 5f.

There are a few approaches that leverage different reconstruction strategies based on the
frequency range of the image. [37] proposed a two-stage reconstruction method which performs
the first-step reconstruction of low-frequency component only from the central region of k-space
data, and then combines this result with the remaining k-space data (corresponding to high-
frequency component) to conduct the second-step reconstruction from the full k-space data. A
filter-based reconstruction approach [38] separates k-space with high- and low-pass filters, re-
constructs each frequency component independently, and combines the reconstructed results to
generate the final image. Our method shares a similar idea with these previous work by split-
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(a) Full-sampling (b) Zero-filling (c) Converged result

(d) Initial filters

(e) 2D view of converged filters

(f) 3D view of converged filters

Figure 5: Overview multi-scale 3D CSC for CS-MRI reconstruction.

ting k-space (i.e. frequency) data, but our method employs advanced reconstruction methods
specifically designed to leverage characteristics of each frequency (i.e. multi-scale 3D CSC for
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sparsity in high-frequency and temporal TV for coherency in low-frequency). Furthermore, our
method iteratively updates the result to enforce the measurement consistency (see Algorithm 1
and the constrain term in Eq. 7) while the other methods perform one-time reconstruction for
each frequency data and then combining them.

Genetic algorithm (GA) is a population-based method which is inspired by nature’s capability
to evolve living beings well-adapted to their environment [21,39]. This meta-heuristic algorithm,
which is well known in optimization problem with many applications [21, 22, 39], deals in every
iteration with a set of solutions rather than with a single solution (i.e. hill-climbing, simulated
annealing and tabu search). The main idea of GA is generating a sequence of populations (i.e.
generations) where each individual in a population is a solution to the problem. A new generation
is created from the previous generation using natural operations such as mutations and crossovers
based on the fitness values from members of the current population. This evolution process stops
when the number of generations is greater than the pre-defined number and outputs an individual
which has a minimum fitness value. Meta-heuristics in optimization is an immense research field
and many different classes of algorithms exist, such as single-state methods, population methods,
and hybrid methods [21,39]. To the best of our knowledge, our approach is the first attempt to
use GA for automatic parameter selection in the CS-MRI reconstruction problem.

IV Proposed Method

The overview of our proposed CS-MRI reconstruction process is illustrated in Fig. 1. The input to
our method is a zero-filling reconstruction that is generated by applying inverse Fourier transform
to the undersampled k-space data from the MRI scanner, which suffers from undersampling
artifacts. Then, the proposed method consists of two components: the reconstruction process
that takes a zero-filling reconstruction as an initial guess to improve image quality (i.e. removing
undersampling artifact, Fig. 1 yellow box), and the parameter searching process using a GA
(Fig. 1 blue box).

4.1 Reconstruction Process

In the reconstruction process, the input zero-filling reconstruction image is separated into low-
and high-frequency zero-filling images by applying a band-pass frequency filter. The high-
frequency image is then reconstructed by using multi-scale 3D CSC with elastic net regular-
ization. This multi-scale CSC method adapts well to features of various sizes, and elastic net
regularization can outperform l1-only regularization without impairing the sparsity of repre-
sentation [20]. In the meantime, the low-frequency image is reconstructed by minimizing the
total variation along the temporal direction (i.e., promoting sparsity in the temporal gradient
field), which is based on the observation that the information in dynamic MRI data is sparser
in first-order temporal gradients than in spatial gradients [15]. At the end of the reconstruction
process, the reconstructed low- and high-frequency images are combined together to generate
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a refined output (i.e. undersampling artifact is reduced). This update process is repeated (see
Algorithm 1) until reaching the stopping criteria in which the number of iterations are greater
than a pre-defined number, or primal and dual residuals are less than an absolute value, as
discussed in Sec. 3.3 of [30]. More detailed discussions of the proposed method are presented in
the following sections.

Algorithm 1 Iterative reconstruction process using spectral decomposition
1: procedure Reconstruction(m) . m: sparse measurement of k-space
2: s0  F

H

2 (m) . input: zero-filling reconstruction
3: while stopping criteria not met do
4: s

l

i
= F

H

2 HF2(si) . H: low-pass filter; F2: 2D Fourier transform
5: s

h

i
= si � s

l

i

6: s
l

i+1  find s
l

i+1 in minimizing temporal TV problem . Eq. 8
7: s

h

i+1  find s
h

i+1 in multi-scale 3D CSC problem . Eq. 12
8: si  s

l

i+1 + s
h

i+1

9: return si . si with removed artifact

Spectral decomposition using a frequency filter

To apply different reconstruction strategies based on the frequency range, we decompose the
input image into low- and high-frequency images by applying a two-dimensional Butterworth
low-pass filter (BLPF) to every 2D MRI slice in the frequency domain. The transfer function
H(u, v) of the BLPF of order n with a cutoff frequency at a specified distance D0 from the origin
is defined as follows:

H(u, v) =
1

1 + [D(u, v)/D0]2n
(4)

where D(u, v) is the distance from a point (u, v) to the center of the frequency domain, and
the parameters D0 and n define how the frequency is cut off. Thus, for the input image s, the
low-frequency image s

l can be computed using two-dimensional Fourier transform F2 and its
inverse F

H

2 along the time-axis as follows:

s
l = F

H

2 HF2(s) (5)

and the high-frequency image s
h can be computed as follows:

s
h = s� s

l (6)

The choice of D0 and n can be automatically made via our proposed parameter selection method
(see Section 4.3).
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Temporal total variation and multi-scale 3D CSC for reconstruction

After the frequency filter splits the input image s into high (sh) and low (sl) frequency images, the
reconstruction process reduces undersampling artifact in s by solving the energy minimization
problem as follows:

min
d,x,sh,sl

↵

2

���sh �
NX

n

KX

k

dn,k ⇤ xn,k

���
2

2

+ �1

NX

n

KX

k

���xn,k
���
1
+

�2

2

NX

n

KX

k

���xn,k
���
2

2
+ ✓

���rts
l

���
1

s.t. : kRF2(s
h + s

l)�mk
2
2 < ✏

2
, kdn,kk

2
2  1

(7)

where N is the number of filter scales (i.e. levels), K is the number of filters in each scale,
⇤ is a convolution operator, dn,k is the k-th filter (or atom) in n

th dictionary (i.e. dictionary
for level n), and xn,k is its corresponding sparse code (or sparse map) for s

h. Note that the
dimension of the filters we used were 15 ⇥ 15 ⇥ 20, 20 ⇥ 20 ⇥ 25, and 25 ⇥ 25 ⇥ 30, and the
dimension of the sparse map xn,k was identical to the size of the image. In Eq. 7, the first
term measures the difference between s

h and its sparse approximation s
h
�

PP
dn,k ⇤ xn,k,

weighted by ↵. The combination of the second and third terms, which are weighted by �1 and
�2 parameters, are called elastic net regularization [20]. The fourth term ✓krts

l
k1 is the total

variation energy that enforces the temporal coherence of the low-frequency image. The rest of
this equation is the collection of constraints: the first constraint keeps the consistency between
undersampled measurement m and the undersampled reconstructed image using k-space mask
R with F2 operator; the second constraint restricts the Frobenius norm of each atom dn,k within
a unit length. In following discussion, we simplify the notations without indices n, k and also
replace the result of Fourier transform of a given variable by using subscript f (for instance,
df3 represents simplified notation for F3d in the 3D domain and s

h

f2
is the simplified notation

for F2s
h in the 2D spatial domain). The problem (7) can be split into two sub-optimization

problems as follows, which can be iteratively updated for the global minimum solution.
Temporal TV minimization: we minimize Eq. 7 with respect to s

l, which contains the
total variation along the time-axis and the measurement constraint term.

min
sl

✓krts
l
k1

s.t. : kRF2(s
h + s

l)�mk
2
2 < ✏

2
(8)

Eq. 8 can be written in an unconstrained form with � parameter, as shown in Eq. 9 below:

min
sl

✓krts
l
k1 +

�

2
kRF2(s

h + s
l)�mk

2
2 (9)

This problem can be efficiently solved by an iterative clipping algorithm using the primal-dual
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method [40].

s
l

(i+1) =
�

2
F

H

2 m
l
�r

T

t z(i)

z(i+1) = clip(z(i) +
1

⌘
rts

l

(i+1),
✓

2
)

(10)

where m
l is equal to m�RF2s

h and i is the iteration number. The clipping function is defined
in Eq. 11.

clip(a, b) =

8
<

:
a, if |a|  b

b · sign(a), if |a| � b

(11)

The index i starts with 0, the initial z(0) = 0, and ⌘ � maxeig(rtr
T
t ). In this case, the

maximum eigenvalue of rtr
T
t is less than four regardless to the length of signal; thus, we can

set ⌘ = 4 and the maximum number of iterations equals 40 in our experiments. Note that ✓ and
� are optimized by using a GA (see Section 4.3). For more details on parameter and derivation
about the algorithm, refer to [40]

Multi-scale 3D CSC with elastic net regularization: in this problem, we find s
h in

the energy minimization function, as follows:

min
d,x,sh

↵

2

���sh �
NX

n

KX

k

dn,k ⇤ xn,k

���
2

2

+ �1

NX

n

KX

k

���xn,k
���
1
+

�2

2

NX

n

KX

k

���xn,k
���
2

2

s.t. : kRF2(s
h + s

l)�mk
2
2 < ✏

2
, kdn,kk

2
2  1

(12)

Eq. 12 can be re-written using auxiliary variables y and g for x and d, as follows:

min
d,x,g,y,sh

↵

2

���sh �
XX

d ⇤ x

���
2

2
+ �1kyk1 +

�2

2
kyk

2
2

s.t. : x� y = 0, kRF2s
h
�m

h
k
2
2 < ✏

2
,

g = Proj(d), kgk22  1

(13)

where m
h is equal to m � RF2s

l. The g and d variables are related by a projection operator
as a combination of a truncated matrix with the corresponding dictionary size followed by a
padding-zero in oder to make the dimension of g the same as that of x, and the variable g

should also be zero-padded to make its size similar to gf3 and xf3 so we can leverage Fourier
transform to solve this problem. The constrained Eq. 13 can be unconstrained by using dual
variable u, h, and further regulates the measurement consistency and the dual differences with
�, ⇢ and �, respectively:

min
d,x,g,y,sh

↵

2

���sh �
XX

d ⇤ x

���
2

2
+ �1kyk1 +

�2

2
kyk

2
2

+
�

2
kRF2s

h
�m

h
k
2
2 +

⇢

2
kx� y + uk

2
2

+
�

2
kd� g + hk

2
2 s.t. : g = Proj(d), kgk22  1

(14)
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We solve Eq. 14 by iteratively finding the minimization solution of subproblems, as shown below:
Solve for x:

min
x

↵

2

���
XX

d ⇤ x� s
h

���
2

2
+

⇢

2
kx� y + uk

2
2 (15)

We apply the Fourier transform to subproblem (15), it becomes:

min
xf3

↵

2

���
XX

df3xf3 � s
h

f3

���
2

2
+

⇢

2
kxf3 � yf3 + uf3k

2
2 (16)

Next, the minimum solution can be found by taking the derivative of Eq. 16 with respect to
variable xf3 and setting it to zero. The solution is shown in Eq. 17.

(↵DH

f3
Df3 + ⇢I)xf3 = D

H

f3
s
h

f3
+ ⇢(yf3 � uf3) (17)

where Df3 is the concatenation of all diagonalized matrices df3 n,k, as illustrated in Eq. 18 and
D

H

f3
is the Hermitian transpose of Df3 .

Df3 = [diag(df3 1,1), ..., diag(df3 1,k), ..., diag(df3 n,k)] (18)

Solve for y:
min
y

�1kyk1 +
�2

2
kyk

2
2 +

⇢

2
kx� y + uk

2
2 (19)

In [16–19], l1 regularization is only used for CSC; however, our subproblem contains both lasso
and ridge regularizations. Fortunately, this subproblem can also be solved by using a shrinkage
operation:

y = S�1/(�2+⇢)

⇣
⇢(x+ u)

�2 + ⇢

⌘
(20)

Update for u:
The update rule for u can be defined as a fixed-point iteration with the difference between x

and y (u converges when x and y converge each other).

u = u+ x� y (21)

Solve for d:
min
d

↵

2

���
XX

d ⇤ x� s
h

���
2

2
+

�

2
kd� g + hk

2
2 (22)

We solve this subproblem in the Fourier domain, similar to x:

min
df3

↵

2

���
XX

df3xf3 � s
h

f3

���
2

2
+

�

2
kdf3 � gf3 + hf3k

2
2 (23)

(↵XH

f3
Xf3 + �I)df3 = X

H

f3
s
h

f3
+ �(gf3 � hf3) (24)

Note that Xf3 stands for the concatenated matrix of all diagonal matrices xf3 n,k as shown in
Eq. 25 and X

H

f3
is the Hermitian transpose of Xf3 .

Xf3 = [diag(xf3 1,1), ..., diag(xf3 1,k), ..., diag(xf3 n,k)] (25)
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Solve for g:
min
g

�

2
kd� g + hk

2
2 s.t. : g = Proj(d), kgk22  1 (26)

g can be solved by using the inverse Fourier transform of df3 . This projection should be con-
strained by suppressing the elements which are outside the filter size dn,k, and followed by
normalizing its l2-norm to a unit length.
Update for h: Similar to u, we update h as follows:

h = h+ d� g (27)

Solve for s
h:

min
sh

↵

2

���sh �
XX

d ⇤ x

���
2

2
+

�

2
kRF2s

h
�m

h
k
2
2 (28)

Subproblem (28) can be transformed and solved in the 2D Fourier domain:

min
s
h
f2

↵

2

���shf2 � F
H

2

XX
df3xf3

���
2

2
+

�

2
kRs

h

f2
�m

h
k
2
2 (29)

Previously, df3 and xf3 were obtained in the 3D Fourier domain, we must bring it onto the same
space by applying an inverse Fourier transform along the time-axis F

H

2 . Finally, s
h

f2
can be

found by solving the following linear system:

(�RH
R+ ↵I)sh

f2
= �R

H
m

h + ↵F
H

2

XX
df3xf3 (30)

Note that we can efficiently solve independent linear systems (17), (24), and (30) via the
Sherman-Morrison formula, as shown in [17]. After the iteration process, s

h will be the re-
sults of applying a 2D inverse Fourier transform F

H

2 to s
h

f2
.

4.2 Complexity analysis of proposed reconstruction algorithm

Our iterative method consists of spectral decomposition using low-pass filter and solving sub-
problems. In order to investigate computational complexity, we will carefully analyze these
components using Big O Notation, as shown in Table 1. Suppose P is the number of pixels in
dynamic MR image and M is total convolutional filters (M = N ⇥K). Firstly, the cost of fast
Fourier transforms (FFTs) of the MR image is O(PlogP ). In spectral decomposition step, low-
pass filter is used to separate spectral of MR data which costs O(P ); however, this step needs
FFTs operator so it costs O(PlogP ). Temporal TV minimization (sl) contains FFTs, calculating
temporal TV and clipping operator which cost O(PlogP ), O(P ) and O(P ), respectively. For
solving subproblems x, d and s

h (Eq. 17, 24 and 30), these can be efficiently solved by Sherman-
Morrison formula with O(MP ) cost proposed by [25] so that the dominant operator is FFTs at
all M indices O(MPlogP ). The same computational complexity O(MPlogP ) can be interpreted
for solving subproblem g because of domination of FFTs operator. Finding solution for y using
shrinkage operation which is applied for every element in y; thus, it cost O(MP ). Finally,
the addition and subtraction operations for updating u and h cost O(MP ). In conclusion, the
proposed method costs O(MPlogP ).
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Component Complexity

Spectral decomposition (Eq. 4) O(PlogP )

Solve s
l (Eq. 10) O(PlogP )

Solve x, d and s
h (Eq. 17, 24 and 30) O(MPlogP )

Solve g O(MPlogP )

Solve y (Eq. 20) O(MP )

Update u and h (Eq. 21 and 27 ) O(MP )

Table 1: Complexity analysis of proposed method.

4.3 Parameter Searching Process

The proposed reconstruction process contains many user-controllable parameters (e.g., ↵, �,
�1, �2, ⇢, �, ✓, D0 and n), and manually adjusting these parameters is a time-consuming and
laborious process. Thus, we propose an automatic parameter searching process, which can be
thought of as a pre-processing step of the reconstruction process. Our searching approach employ
a GA, which is a meta-heuristic algorithm inspired by the process of natural evolution, as shown
in Fig. 6. In the proposed parameter searching process, we create a simulation based on the
objective function which is defined by a fully-sampled k-space data and an undersampling mask,
and a GA finds the best parameters to minimize this objective function.

A detailed description of the parameter selection process is introduced below. First, the
full (ground-truth) image is undersampled to generate zero-filling reconstruction using the same
sampling mask used in the reconstruction process. Then, GA arbitrarily initializes a population
with L members where each individual (i) has a set of nine randomly chosen parameters to
be used in the reconstruction process. Next, the zero-filling is reconstructed L times by using
our method (Fig. 1 yellow box) that each time uses a set of nine parameters which contents
in every individual (i) of the current population to get reconstructed results (z ). The fitness
values of objective function f are then calculated for each member in the current population
by comparing between the full-sampled and reconstructed image (z ) as well as sparse code x.
After ward, GA selects members, called parents, based on the ranking of their calculated fitness
values. Finally, there are three types of children that are generated for the next generation such
as elite children with the best fitness values, crossover children created by combining a pair of
parents and mutation children created by introducing random changes to a single parent. The
algorithm continues by creating a loop of generating the new generation based on bio-operators
until reaching the terminate condition (i.e., the current generation is greater than pre-defined
number). In general, the goal of GA in optimization problem is conducting many trials and
errors to find the best individual which minimizes the fitness function. Therefore, we propose a
fitness function (f), as shown in Eq. 31, that uses Peak Signal-To-Noise-Ratio (PSNR) between
the CS-reconstruction result, the full reconstruction, and the average value of sparse codes (x̄)
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Figure 6: Genetic algorithm for automatically searching optimal parameters.

↵ � �1 �2 ⇢ � ✓ D0 n

Lower 0.001 0.001 0.001 0.001 1 1 0.001 1 1
Upper 5 5 5 5 100 100 1 5 5

Table 2: Lower and upper bounds of parameters used in our experiment.

which are outputs of the reconstruction process (Fig. 1 yellow box) after 100 iterations.

f = �PSNR+ ⌧ x̄ (31)

where ⌧ is the weight for trade-off between 2 values PSNR (bigger is better) and average of x
(smaller is better). Moreover, we also set possible lower and upper bounds for each parameter
to narrow down the GA’s searching space, as illustrated in Table 2. Specially, our experiment
shows that a GA can be applied only once to find the optimal parameters that work for similar
types of data (i.e., cardiac or DCE MRI data).
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V Experiment Results

To assess the performance of our method, we conducted experiments on 15 cardiac MRI datasets
from The Data Science Bowl [41] (30 frames of a 256⇥256 image across the cardiac cycle of a
heart for each dataset), 7 tumor DCE MRI datasets (128⇥128 image with 128 frames of each
dataset) and a multi-coil MRI brain dataset [42] (128⇥128 with 12 frames in which each frame
consists of 12 parallel acquisitions) in three different rates of Cartesian k-space undersampling
masks (12.5%, 25% and 50% sampling masks), as shown in Fig. 7c. GA is also set to run only one
time to search parameters in five generations with L = 200 and ⌧ = 20. More specifically, for each
kind of dataset, we arbitrarily select one full-sampled data and the sampling mask to optimize
parameters, and reuse these found parameters to reconstruct the remaining of MRI datasets.
We compare our method with several state-of-the-art methods, including k-t FOCUSS [10],
FTVNNR [23], BCS [13], Caballero et al. [15], and 3D CSC [19]. We also compare with the
intermediate versions of our method (i.e., incrementally adding new features, such as multi-scale
extension of CSC, elastic net regularization, and spectral decomposition, to the baseline version
of 3D CSC [19] to assess how each addition of feature affects the overall performance of the
method (see Table 3). The proposed prototype system is implemented using MATLAB 2017a
with GPU support.

Method Abbreviation

k-t FOCUSS [10] k-t FOCUSS

Algorithm using low-rank and
total variation regularizations [23]

FTVNNR

Blind compressive sensing [13] BCS

DLTG [15] DLTG

3D CSC [19] 3D-CSC

Multi-scale 3D CSC Multi-scale

Multi-scale 3D CSC with l1, l2 regularization Elastic multi-scale

Elastic multi-scale and temporal TV minimization Elastic multi-scale tv

Elastic multi-scale on high-frequency, and
temporal TV minimization on low-frequency

Our method

Table 3: CS-MRI reconstruction methods compared in our experiment.

5.1 Reconstruction quality evaluation

For a fair comparison, we set up all DLTG [15] and CSC methods with the same number of filters
(27 filters). All multi-scale 3D CSC methods used three different filter sizes (N = 3) and each
size contained nine convolutional filters (K = 9). The box-plots below illustrate achievements
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of Mean Square Errors (MSEs), Peak Signal-To-Noise-Ratios (PSNRs) and Structural SIM-
ilarities (SSIMs) for cardiac and tumor DCE MRIs; on each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. As can be seen in Fig. 8 and 9, our method gives a higher PSNR, SSIM and
a lower MSE compared to the other approaches in case of 12.5%, 25%, 50% sampling rates.
Fig. 10 and 11 show a qualitative comparison of various reconstruction results. It is shown that
our method generates less visual artifact compared to other methods (see the region of inter-
ests and pixel-wise error maps), even under an extremely low sampling rate (12.5%). It is also
worth noting that our method can reconstruct temporal changes in DCE data more accurately
compared to k-t FOCUSS and DLTG at a very low sampling rate (see Fig. 9 12.5%).

The Akep value, borrowed from the [43]’s model, is also a commonly used quality metric for
dynamic MRI (especially DCE) to judge the consistency of the reconstructed image sequence
because this value reflects the degree of MRI signal enhancement and the exchange rate in
term of brightness and the contrast. Therefore, Akep value characterizes the velocity of MRI
signal change in the region of interest (ROI) of the tumor, which is shown to provide the
relevant information regarding tumor perfusion and permeability. To assess how the proposed
reconstruction method performs, we measure the Akep on each reconstructed image (actually,
Akep is generated per pixel) and generate a least-square fitting curve. By comparing the curve’s
shape, we can verify the reconstruction method’s efficacy. The Fig. 12a shows Akep values as a
color map of Tumor 1 dataset in Fig. 7b where our result clearly preserves details much better
than the others and Fig. 12b and 12c shows the curve fitting profiles at some locations (marked
A and B in Fig. 12a). As illustrated, our curve fitting profiles closely approximate the ground
truth (full signal). In addition, our method effectively reduces the intensity variation (or noise)
of the reconstructed images (see the variation of red circles are much smaller than that of other
results) due to enforcing temporal coherence using a TV energy.

Overall, the proposed method achieves better reconstruction quality than other state-of-the-
art methods. Shift-invariant convolution filters can represent both spatial and temporal features
well, whilst multi-scale 3D CSC with l1 and l2 regularization shows its performance with better
MSE, PSNR and SSIM . Moreover, our frequency-splitting reconstruction approach, using
temporal TV minimization for low-frequency and multi-scale 3D CSC with elastic net regular-
ization for high-frequency, can significantly improve the image quality as well as convergence
rate, which will be discussed in Section 5.4.

5.2 Extension to multi-coil parallel MR

Although we introduced our method for single coil MRI data in the previous sections, the
proposed method can be applied to multi-coil MRI data as well with a small modification. For
this, the main objective function (Eq. 7) can be combined with SENSE in the k-t SPARSE-
SENSE framework [44] by multiplying the coil sensitivity matrix E after the undersampled
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Fourier transform as shown in Eq. 32 below:

min
d,x,she ,s
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e
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(32)

where s
h
e = Es

h and s
l
e = Es

l.
We tested the parallel version of our method on a 12-coil MRI brain dataset, and compared

with FTVNNR, BCS and 3D-CSC methods for image quality assessment. For all sampling rates
we tested (12.5%, 25% and 50%), our method outperformed the other methods (i.e., higher
PSNR of reconstructed images, see Fig. 13a and Fig. 13b). Fig. 14 also shows that our method
is less prone to pixel-wise errors and generates images closer to the full reconstruction than
FTVNNR, BCS and 3D-CSC.

5.3 Robustness to noise

Noise resiliency is another important quality measure for the MR image reconstruction algorithm.
To assess the noise resiliency of the proposed method, we synthetically corrupted the undersam-
pled k-space data with Gaussian random noise and compared the reconstruction quality. In this
experiment, we used cardiac and DCE MRI datasets at three Cartesian sampling rates, cor-
rupted with Gaussian white noise in various levels (the range of standard deviation of Gaussian
is {0.01, 0.03, 0.05, 0.07, 0.09, 0.1}), as shown in Fig. 7c. We compared the reconstruction
results with those of three representative methods (FTVNNR [23], BCS [13] and 3D-CSC [19])
because they represent general transformation (non-learning approach), patch-based dictionary
learning, and convolutional sparse coding, respectively. The optimal parameters found in the
previous experiments (Sec. 5.1) are used for all methods in this experiment. As shown in Fig. 15,
16 and 17, our method produced the results with much higher PSNR, less noise, and superior
image quality compared to the other methods.

5.4 Convergence evaluation

Fig. 18 illustrates the convergence of our method over 100 iterations. The left column contains
full low-frequency, full high-frequency, full reconstruction and total time-axis gradient value of
full low frequency, whilst right column gives the changing of refined output with its low- and high-
frequency as well as the convolutional filters and temporal total variation value. In Fig. 18, the
features in high-frequency part are progressively refined along with converging of convolutional
filters every twenty epochs. The temporal total variation value in low-frequency also reduces over
iterations which enforces the coherence of time-axis. As seen in Fig. 19 and 20, using temporal
TV minimization is clearly helpful for the reconstruction process, while our frequency splitting
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approach can significantly improve the quality with comparable convergence rate. The proposed
method converges faster (i.e. require less number of epochs) than 3D-CSC, multi-scale and
elastic multi-scale. Note that patch-based dictionary (DLTG [15]) usually converges faster, but
the actual running time is much slower because there is no GPU acceleration as in our method
(see Table 4). Moreover, Fig. 19 and 20 show adequate convergence curves of the CSC methods
with a large PSNR improvement and no divergence. Thus, GA can find optimal parameters
for the reconstruction process. In our observation, when we used the searched parameters for
all datasets in the same kind of MRIs, the efficiency of convergence rate still remains, as shown
in Fig. 20.

5.5 Running time evaluation

We measured the average reconstruction time of methods on a PC equipped with an Intel i7-
7700K CPU and a NVIDIA Titan X GPU. All CSC approaches and DLTG [15] were run for
200 epochs, as shown in Fig. 19 and 20; however, the rate of convergence varied over methods.
For example, our method converged in about 130 epochs, while DLTG took about 40 epochs
(see Fig. 19) and 3D-CSC took more than 185 epochs (see Fig. 20). As shown in Table 4, the
average per-epoch running time of our method on a GPU is 36.9⇥, 84⇥, 5⇥, and 16.5⇥ faster
than BCS, DLTG, 3D-CSC (CPU) and the CPU version of our method, respectively. A similar
performance gain of our method was observed on DCE MRI data and multi-coil brain MRI date
as well. Furthermore, DLTG converged faster (i.e., small number of epochs) than our method,
but the actual running time of our method on a GPU to reach the convergence was significantly
faster than that of DLTG (speed up of 25.58⇥ for cardiac and 23⇥ for DCE data). However, due
to the computational overhead of our method (e.g., frequency filtering and energy optimization
in low- and high-frequency), single-scale 3D CSC on a GPU was faster than our method. We
also expect a significant performance improvement using NVIDIA CUDA and C/C++ over the
current implementation using MATLAB, which is left for the future work.

Cardiac dataset (second) DCE dataset (second) Brain dataset (second)
per epoch total time per epoch total time per epoch total time

k-t FOCUSS (CPU) _ 177.6 _ 256.2 _ _
FTVNNR (CPU) _ 131.1 _ 151.5 _ 65.1
BCS (CPU) 41.05 410.5 54.01 540.1 29.1 290.1
DLTG (CPU) 66.12 2644.8 76.97 3078.8 _ _
3D-CSC (CPU) 3.94 728.9 5.86 1084.1 2.875 474.38
Our method (CPU) 12.96 1684 18.35 2385.5 6.87 1099.2
3D-CSC (GPU) 0.503 93.06 0.728 134.68 0.361 57.76
Our method (GPU) 0.787 102.31 1.029 133.77 0.403 64.5

Table 4: Average running time of various reconstruction methods (per epoch: average running
time of one epoch; total time: average running time to reach the convergence).
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VI Conclusion and Future Work

In this thesis, we introduced a novel CS-MRI reconstruction workflow based on an unsuper-
vised learning approach. We discovered that the frequency-dependent reconstruction, i.e., using
temporal total variation for low-frequency reconstruction and multi-scale 3D CSC with elastic
net regularization for high-frequency reconstruction, played an important role for improving the
overall reconstruction quality and the convergence rate. We also analyze computational com-
plexity of our reconstruction algorithm. The proposed automatic parameter searching method
using GA significantly reduced user’s effort for tuning parameters in the reconstruction process.
Furthermore, we showed that the proposed method can be easily extended to parallel MR imag-
ing. The results showed that the proposed method outperformed the state-of-the-art CS-MRI
reconstruction methods, such as k-t FOCUSS [9, 10], FTVNNR [23], single-scale 3D CSC [19],
blind compressive sensing [13] and patch-based dictionary learning [14, 15], in terms of image
quality and noise resiliency. In the future, we plan to improve the speed of proposed method by
leveraging the parallel computing technology, such as multi-GPU and cluster systems. Explor-
ing advanced meta-heuristic algorithms to improve the parameter selection process is another
interesting future research direction.
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(a) Cardiac datasets

1 2 3 4

5 6 7 8

(b) Tumor DCE (1-7) and multi-coil brain (8) datasets

(c) Undersampling k-space masks

Figure 7: MRI datasets and Cartesian undersampling masks used in our experiments
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Figure 8: MSEs, PSNRs, and SSIMs evaluation in three different sampling rates on cardiac
MRIs (first column: MSEs; second column: PSNRs; third column: SSIMs).
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Figure 9: MSEs, PSNRs, and SSIMs evaluation in three different sampling rates on tumor DCE
MRIs (first column: MSEs; second column: PSNRs; third column: SSIMs).
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Figure 10: Image quality and pixel-wise error comparison of various reconstruction methods on
Cardiac 2 dataset (12.5% sampling)
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Figure 11: Image quality and pixel-wise error comparison of various reconstruction methods on
Tumor 2 dataset (12.5% sampling)
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(a) Akep maps of 25% sampling reconstruction of Tumor 1 dataset
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(c) Temporal profile of B

Figure 12: Reconstruction quality comparison of Tumor 1 dataset
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Figure 13: PSNRs evaluation on the multi-coil MRI brain dataset
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Figure 14: Image quality and pixel-wise error comparison of multi-coil reconstruction methods
on the brain dataset (12.5% sampling)
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Figure 15: Average PSNRs of the images reconstructed from the various noise-corrupted k-space
data
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Figure 16: Reconstruction of noise-corrupted Cardiac 3 dataset (at noise level 0.01)
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Zero-filling 3D-CSC Our methodFTVNNR BCSFull-sampling

Figure 17: Reconstruction of noise-corrupted DCE tumor 3 dataset (at noise level 0.01)
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Figure 18: Convergence of proposed method for reconstructing 12.5% sampling Cardiac 1 dataset
over 100 epochs.
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Figure 19: Convergence rate comparison of 12.5% sampling Cardiac 2 and Tumor 2 datasets in
terms of PSNRs.
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(a) Convergence curves of two different Cardiac 3 and 4 datasets
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(b) Convergence curves of two different Tumor 3 and 4 datasets

Figure 20: Convergence curves of 12.5% sampling cardiac and tumor data in terms of PSNRs
using the optimal parameters found by the genetic algorithm.
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