4 research outputs found

    Interactive GPU-based generation of solvent-excluded surfaces

    Get PDF
    The solvent-excluded surface (SES) is a popular molecular representation that gives the boundary of the molecular volume with respect to a specific solvent. SESs depict which areas of a molecule are accessible by a specific solvent, which is represented as a spherical probe. Despite the popularity of SESs, their generation is still a compute-intensive process, which is often performed in a preprocessing stage prior to the actual rendering (except for small models). For dynamic data or varying probe radii, however, such a preprocessing is not feasible as it prevents interactive visual analysis. Thus, we present a novel approach for the on-the-fly generation of SESs, a highly parallelizable, grid-based algorithm where the SES is rendered using ray-marching. By exploiting modern GPUs, we are able to rapidly generate SESs directly within the mapping stage of the visualization pipeline. Our algorithm can be applied to large time-varying molecules and is scalable, as it can progressively refine the SES if GPU capabilities are insufficient. In this paper, we show how our algorithm is realized and how smooth transitions are achieved during progressive refinement. We further show visual results obtained from real-world data and discuss the performance obtained, which improves upon previous techniques in both the size of the molecules that can be handled and the resulting frame rate.Peer ReviewedPostprint (author's final draft

    A general illumination model for molecular visualization

    Get PDF
    Several visual representations have been developed over the years to visualize molecular structures, and to enable a better understanding of their underlying chemical processes. Today, the most frequently used atom-based representations are the Space-filling, the Solvent Excluded Surface, the Balls-and-Sticks, and the Licorice models. While each of these representations has its individual benefits, when applied to large-scale models spatial arrangements can be difficult to interpret when employing current visualization techniques. In the past it has been shown that global illumination techniques improve the perception of molecular visualizations; unfortunately existing approaches are tailored towards a single visual representation. We propose a general illumination model for molecular visualization that is valid for different representations. With our illumination model, it becomes possible, for the first time, to achieve consistent illumination among all atom-based molecular representations. The proposed model can be further evaluated in real-time, as it employs an analytical solution to simulate diffuse light interactions between objects. To be able to derive such a solution for the rather complicated and diverse visual representations, we propose the use of regression analysis together with adapted parameter sampling strategies as well as shape parametrization guided sampling, which are applied to the geometric building blocks of the targeted visual representations. We will discuss the proposed sampling strategies, the derived illumination model, and demonstrate its capabilities when visualizing several dynamic molecules.Peer ReviewedPostprint (author's final draft

    Geometric algorithms for cavity detection on protein surfaces

    Get PDF
    Macromolecular structures such as proteins heavily empower cellular processes or functions. These biological functions result from interactions between proteins and peptides, catalytic substrates, nucleotides or even human-made chemicals. Thus, several interactions can be distinguished: protein-ligand, protein-protein, protein-DNA, and so on. Furthermore, those interactions only happen under chemical- and shapecomplementarity conditions, and usually take place in regions known as binding sites. Typically, a protein consists of four structural levels. The primary structure of a protein is made up of its amino acid sequences (or chains). Its secondary structure essentially comprises -helices and -sheets, which are sub-sequences (or sub-domains) of amino acids of the primary structure. Its tertiary structure results from the composition of sub-domains into domains, which represent the geometric shape of the protein. Finally, the quaternary structure of a protein results from the aggregate of two or more tertiary structures, usually known as a protein complex. This thesis fits in the scope of structure-based drug design and protein docking. Specifically, one addresses the fundamental problem of detecting and identifying protein cavities, which are often seen as tentative binding sites for ligands in protein-ligand interactions. In general, cavity prediction algorithms split into three main categories: energy-based, geometry-based, and evolution-based. Evolutionary methods build upon evolutionary sequence conservation estimates; that is, these methods allow us to detect functional sites through the computation of the evolutionary conservation of the positions of amino acids in proteins. Energy-based methods build upon the computation of interaction energies between protein and ligand atoms. In turn, geometry-based algorithms build upon the analysis of the geometric shape of the protein (i.e., its tertiary structure) to identify cavities. This thesis focuses on geometric methods. We introduce here three new geometric-based algorithms for protein cavity detection. The main contribution of this thesis lies in the use of computer graphics techniques in the analysis and recognition of cavities in proteins, much in the spirit of molecular graphics and modeling. As seen further ahead, these techniques include field-of-view (FoV), voxel ray casting, back-face culling, shape diameter functions, Morse theory, and critical points. The leading idea is to come up with protein shape segmentation, much like we commonly do in mesh segmentation in computer graphics. In practice, protein cavity algorithms are nothing more than segmentation algorithms designed for proteins.Estruturas macromoleculares tais como as proteínas potencializam processos ou funções celulares. Estas funções resultam das interações entre proteínas e peptídeos, substratos catalíticos, nucleótideos, ou até mesmo substâncias químicas produzidas pelo homem. Assim, há vários tipos de interacções: proteína-ligante, proteína-proteína, proteína-DNA e assim por diante. Além disso, estas interações geralmente ocorrem em regiões conhecidas como locais de ligação (binding sites, do inglês) e só acontecem sob condições de complementaridade química e de forma. É também importante referir que uma proteína pode ser estruturada em quatro níveis. A estrutura primária que consiste em sequências de aminoácidos (ou cadeias), a estrutura secundária que compreende essencialmente por hélices e folhas , que são subsequências (ou subdomínios) dos aminoácidos da estrutura primária, a estrutura terciária que resulta da composição de subdomínios em domínios, que por sua vez representa a forma geométrica da proteína, e por fim a estrutura quaternária que é o resultado da agregação de duas ou mais estruturas terciárias. Este último nível estrutural é frequentemente conhecido por um complexo proteico. Esta tese enquadra-se no âmbito da conceção de fármacos baseados em estrutura e no acoplamento de proteínas. Mais especificamente, aborda-se o problema fundamental da deteção e identificação de cavidades que são frequentemente vistos como possíveis locais de ligação (putative binding sites, do inglês) para os seus ligantes (ligands, do inglês). De forma geral, os algoritmos de identificação de cavidades dividem-se em três categorias principais: baseados em energia, geometria ou evolução. Os métodos evolutivos baseiam-se em estimativas de conservação das sequências evolucionárias. Isto é, estes métodos permitem detectar locais funcionais através do cálculo da conservação evolutiva das posições dos aminoácidos das proteínas. Em relação aos métodos baseados em energia estes baseiam-se no cálculo das energias de interação entre átomos da proteína e do ligante. Por fim, os algoritmos geométricos baseiam-se na análise da forma geométrica da proteína para identificar cavidades. Esta tese foca-se nos métodos geométricos. Apresentamos nesta tese três novos algoritmos geométricos para detecção de cavidades em proteínas. A principal contribuição desta tese está no uso de técnicas de computação gráfica na análise e reconhecimento de cavidades em proteínas, muito no espírito da modelação e visualização molecular. Como pode ser visto mais à frente, estas técnicas incluem o field-of-view (FoV), voxel ray casting, back-face culling, funções de diâmetro de forma, a teoria de Morse, e os pontos críticos. A ideia principal é segmentar a proteína, à semelhança do que acontece na segmentação de malhas em computação gráfica. Na prática, os algoritmos de detecção de cavidades não são nada mais que algoritmos de segmentação de proteínas

    High quality illustrative effects for molecular rendering

    No full text
    All-atom simulations are crucial in biotechnology. In Pharmacology, for example, molecular knowledge of protein-drug interactions is essential in the understanding of certain pathologies and in the development of improved drugs. To achieve this detailed information, fast and enhanced molecular visualization is critical. Moreover, hardware and software developments quickly deliver extensive data, providing intermediate results that can be analyzed by scientists in order to interact with the simulation process and direct it to a more promising configuration. In this paper we present a GPU-friendly data structure for real-time illustrative visualization of all-atom simulations. Our system generates both ambient occlusion and halos using an occupancy pyramid that needs no precalculation and that is updated on the fly during simulation, allowing the real time rendering of simulation results at sustained high framerates.This work has been supported by the Projects TIN2013-47137-C2-1-P and TIN2014-52211-C2-1-R of the Spanish Ministerio de Economía y Competitividad, and the project 2014-SGR 146 from the Catalan Government.Peer Reviewe
    corecore