29 research outputs found

    Buck Converters for Low Power Applications

    Get PDF

    Radio frequency circuits for wireless receiver front-ends

    Get PDF
    The beginning of the 21st century sees great development and demands on wireless communication technologies. Wireless technologies, either based on a cable replacement or on a networked environment, penetrate our daily life more rapidly than ever. Low operational power, low cost, small form factor, and function diversity are the crucial requirements for a successful wireless product. The receiver??s front-end circuits play an important role in faithfully recovering the information transmitted through the wireless channel. Bluetooth is a short-range cable replacement wireless technology. A Bluetooth receiver architecture was proposed and designed using a pure CMOS process. The front-end of the receiver consists of a low noise amplifier (LNA) and mixer. The intermediate frequency was chosen to be 2MHz to save battery power and alleviate the low frequency noise problem. A conventional LNA architecture was used for reliability. The mixer is a modified Gilbert-cell using the current bleeding technique to further reduce the low frequency noise. The front-end draws 10 mA current from a 3 V power supply, has a 8.5 dB noise figure, and a voltage gain of 25 dB and -9 dBm IIP3. A front-end for dual-mode receiver is also designed to explore the capability of a multi-standard application. The two standards are IEEE 802.11b and Bluetooth. They work together making the wireless experience more exciting. The front-end is designed using BiCMOS technology and incorporating a direct conversion receiver architecture. A number of circuit techniques are used in the front-end design to achieve optimal results. It consumes 13.6 mA from a 2.5 V power supply with a 5.5 dB noise figure, 33 dB voltage gain and -13 dBm IIP3. Besides the system level contributions, intensive studies were carried out on the development of quality LNA circuits. Based on the multi-gated LNA structure, a CMOS LNA structure using bipolar transistors to provide linearization is proposed. This LNA configuration can achieve comparable linearity to its CMOS multi-gated counterpart and work at a higher frequency with less power consumption. A LNA using an on-chip transformer source degeneration is proposed to realize input impedance matching. The possibility of a dual-band cellular application is studied. Finally, a study on ultra-wide band (UWB) LNA implementation is performed to explore the possibility and capability of CMOS technology on the latest UWB standard for multimedia applications

    Buck Converters for Low Power Applications

    Get PDF

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    Switched-beam antenna array design for millimeter-wave applications

    Get PDF
    The limited coverage of wireless communication at the millimeter-wave frequency band due to large free-space path loss, i.e. large signal attenuation, has been a major problem. Furthermore, shadowing and small-scale fading may reduce the received signal even more. An array of rod antennas is designed to tackle those problems by providing high gain, broad scan range, and a shaped beam. Each patch, which couples the electromagnetic wave to the rod, is fed by a coplanar waveguide (CPW) feedline. Each rod antenna demonstrates 18 dBi realized gain and 20° half power beamwidth (HPBW). Moreover, the 4 GHz bandwidth of the antenna provides high data rate for the gigabit wireless application. Furthermore, the Radio Frequency Microelectromechanical System (RF MEMS) switch is used to realize a switched antenna with a broad scan range. The design method and the characterization of the antenna are presented. The proposed antenna system is suitable for a wide range of applications, such as wireless high definition video/audio, USB and firewire replacement, Frequency Modulated Continuous Wave (FMCW) radar, and home/office backhaul application at millimeter-wave frequency

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Wireless power transfer for combined sensing and stimulation in implantable biomedical devices

    Get PDF
    Actuellement, il existe une forte demande de Headstage et de microsystĂšmes intĂ©grĂ©s implantables pour Ă©tudier l’activitĂ© cĂ©rĂ©brale de souris de laboratoire en mouvement libre. De tels dispositifs peuvent s’interfacer avec le systĂšme nerveux central dans les paradigmes Ă©lectriques et optiques pour stimuler et surveiller les circuits neuronaux, ce qui est essentiel pour dĂ©couvrir de nouveaux mĂ©dicaments et thĂ©rapies contre des troubles neurologiques comme l’épilepsie, la dĂ©pression et la maladie de Parkinson. Puisque les systĂšmes implantables ne peuvent pas utiliser une batterie ayant une grande capacitĂ© en tant que source d’énergie primaire dans des expĂ©riences Ă  long terme, la consommation d’énergie du dispositif implantable est l’un des principaux dĂ©fis de ces conceptions. La premiĂšre partie de cette recherche comprend notre proposition de la solution pour diminuer la consommation d’énergie des microcircuits implantables. Nous proposons un nouveau circuit de dĂ©calage de niveau qui convertit les niveaux de signaux sub-seuils en niveaux ultra-bas Ă  haute vitesse en utilisant une trĂšs faible puissance et une petite zone de silicium, ce qui le rend idĂ©al pour les applications de faible puissance. Le circuit proposĂ© introduit une nouvelle topologie de dĂ©caleur de niveau de tension utilisant un condensateur de dĂ©calage de niveau pour augmenter la plage de tensions de conversion, tout en rĂ©duisant considĂ©rablement le retard de conversion. Le circuit proposĂ© atteint un dĂ©lai de propagation plus court et une zone de silicium plus petite pour une frĂ©quence de fonctionnement et une consommation d’énergie donnĂ©e par rapport Ă  d’autres solutions de circuit. Les rĂ©sultats de mesure sont prĂ©sentĂ©s pour le circuit proposĂ© fabriquĂ© dans un processus CMOS TSMC de 0,18- mm. Le circuit prĂ©sentĂ© peut convertir une large gamme de tensions d’entrĂ©e de 330 mV Ă  1,8 V et fonctionner sur une plage de frĂ©quence de 100 Hz Ă  100 MHz. Il a un dĂ©lai de propagation de 29 ns et une consommation d’énergie de 61,5 nW pour les signaux d’entrĂ©e de 0,4 V, Ă  une frĂ©quence de 500 kHz, surpassant les conceptions prĂ©cĂ©dentes. La deuxiĂšme partie de cette recherche comprend nos systĂšmes de transfert d’énergie sans fil proposĂ© pour les applications optogĂ©nĂ©tiques. L’optogĂ©nĂ©tique est la combinaison de la mĂ©thode gĂ©nĂ©tique et optique d’excitation, d’enregistrement et de contrĂŽle des neurones biologiques. Ce systĂšme combine plusieurs technologies telles que les MEMS et la microĂ©lectronique pour collecter et transmettre les signaux neuronaux et activer un stimulateur optique via une liaison sans fil. Puisque les stimulateurs optiques consomment plus de puissance que les stimulateurs Ă©lectriques, l’interface utilise la transmission de puissance par induction en utilisant des moyens innovants au lieu de la batterie avec la petite capacitĂ© comme source d’énergie.Notre premiĂšre contribution dans la deuxiĂšme partie fournit un systĂšme de cage domestique intelligent basĂ© sur des barrettes multi-bobines superposĂ©es Ă  travers un rĂ©cepteur multicellulaire implantable mince de taille 1×1 cm2, implantĂ© sous le cuir chevelu d’une souris de laboratoire, et unitĂ© de gestion de l’alimentation intĂ©grĂ©e. Ce systĂšme inductif est conçu pour fournir jusqu’à 35,5 mW de puissance dĂ©livrĂ©e Ă  un Ă©metteur-rĂ©cepteur full duplex de faible puissance entiĂšrement intĂ©grĂ© pour prendre en charge des implants neuronaux Ă  haute densitĂ© et bidirectionnels. L’émetteur (TX) utilise une bande ultra-large Ă  impulsions radio basĂ©e sur des approches de combinaison, et le rĂ©cepteur (RX) utilise une topologie Ă  bande Ă©troite Ă  incrĂ©mentation de 2,4 GHz. L’émetteur-rĂ©cepteur proposĂ© fournit un dĂ©bit de donnĂ©es de liaison montante TX Ă  500 Mbits/s double et un dĂ©bit de donnĂ©es de liaison descendante RX Ă  100 Mbits/s, et est entiĂšrement intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm d’une taille totale de 0,8 mm2 . La puissance peut ĂȘtre dĂ©livrĂ©e Ă  partir d’un signal de porteuse de 13,56-MHz avec une efficacitĂ© globale de transfert de puissance supĂ©rieure Ă  5% sur une distance de sĂ©paration allant de 3 cm Ă  5 cm. Notre deuxiĂšme contribution dans les systĂšmes de collecte d’énergie porte sur la conception et la mise en oeuvre d’une cage domestique de transmission de puissance sans fil (WPT) pour une plate-forme de neurosciences entiĂšrement sans fil afin de permettre des expĂ©riences optogĂ©nĂ©tiques ininterrompues avec des rongeurs de laboratoire vivants. La cage domestique WPT utilise un nouveau rĂ©seau hybride de transmetteurs de puissance (TX) et des rĂ©sonateurs multi-bobines segmentĂ©s pour atteindre une efficacitĂ© de transmission de puissance Ă©levĂ©e (PTE) et dĂ©livrer une puissance Ă©levĂ©e sur des distances aussi Ă©levĂ©es que 20 cm. Le rĂ©cepteur de puissance Ă  bobines multiples (RX) utilise une bobine RX d’un diamĂštre de 1 cm et une bobine de rĂ©sonateur d’un diamĂštre de 1,5 cm. L’efficacitĂ© moyenne du transfert de puissance WPT est de 29, 4%, Ă  une distance nominale de 7 cm, pour une frĂ©quence porteuse de 13,56 MHz. Il a des PTE maximum et minimum de 50% et 12% le long de l’axe Z et peut dĂ©livrer une puissance constante de 74 mW pour alimenter le headstage neuronal miniature. En outre, un dispositif implantable intĂ©grĂ© dans un processus CMOS TSMC de 0,18-mm a Ă©tĂ© conçu et introduit qui comprend 64 canaux d’enregistrement, 16 canaux de stimulation optique, capteur de tempĂ©rature, Ă©metteur-rĂ©cepteur et unitĂ© de gestion de l’alimentation (PMU). Ce circuit est alimentĂ© Ă  l’intĂ©rieur de la cage du WPT Ă  l’aide d’une bobine rĂ©ceptrice d’un diamĂštre de 1,5 cm pour montrer les performances du circuit PMU. Deux tensions rĂ©gulĂ©es de 1,8 V et 1 V fournissent 79 mW de puissance pour tout le systĂšme sur une puce. Notre derniĂšre contribution est un systĂšme WPT insensible aux dĂ©salignements angulaires pour alimenter un headstage pour des applications optogĂ©nĂ©tiques qui a Ă©tĂ© prĂ©cĂ©demment proposĂ© par le Laboratoire de MicrosystĂšmes BiomĂ©dicaux (BioML-UL) Ă  ULAVAL. Ce systĂšme est la version Ă©tendue de notre deuxiĂšme contribution aux systĂšmes de collecte d’énergie.Dans la version mise Ă  jour, un rĂ©cepteur de puissance multi-bobines utilise une bobine RX d’un diamĂštre de 1,0 cm et une nouvelle bobine de rĂ©sonateur fendu d’un diamĂštre de 1,5 cm, qui rĂ©siste aux dĂ©fauts d’alignement angulaires. Dans cette version qui utilise une cage d’animal plus petite que la derniĂšre version, 4 rĂ©sonateurs sont utilisĂ©s cĂŽtĂ© TX. De plus, grĂące Ă  la forme et Ă  la position de la bobine de rĂ©pĂ©teur L3 du cĂŽtĂ© du rĂ©cepteur, la liaison rĂ©sonnante hybride prĂ©sentĂ©e peut correctement alimenter la tĂȘte sans interruption causĂ©e par le dĂ©salignement angulaire dans toute la cage de la maison. Chaque 3 tours du rĂ©pĂ©teur RX a Ă©tĂ© enveloppĂ© avec un diamĂštre de 1,5 cm, sous diffĂ©rents angles par rapport Ă  la bobine rĂ©ceptrice. Les rĂ©sultats de mesure montrent un PTE maximum et minimum de 53 % et 15 %. La mĂ©thode proposĂ©e peut fournir une puissance constante de 82 mW pour alimenter le petit headstage neural pour les applications optogĂ©nĂ©tiques. De plus, dans cette version, la performance du systĂšme est dĂ©montrĂ©e dans une expĂ©rience in-vivo avec une souris ChR2 en mouvement libre qui est la premiĂšre expĂ©rience optogĂ©nĂ©tique sans fil et sans batterie rapportĂ©e avec enregistrement Ă©lectrophysiologique simultanĂ© et stimulation optogĂ©nĂ©tique. L’activitĂ© Ă©lectrophysiologique a Ă©tĂ© enregistrĂ©e aprĂšs une stimulation optogĂ©nĂ©tique dans le Cortex Cingulaire AntĂ©rieur (CAC) de la souris.Our first contribution in the second part provides a smart home-cage system based on overlapped multi-coil arrays through a thin implantable multi-coil receiver of 1×1 cm2 of size, implantable bellow the scalp of a laboratory mouse, and integrated power management circuits. This inductive system is designed to deliver up to 35.5 mW of power delivered to a fully-integrated, low-power full-duplex transceiver to support high-density and bidirectional neural implants. The transmitter (TX) uses impulse radio ultra-wideband based on an edge combining approach, and the receiver (RX) uses a 2.4- GHz on-off keying narrow band topology. The proposed transceiver provides dual-band 500-Mbps TX uplink data rate and 100-Mbps RX downlink data rate, and it is fully integrated into 0.18-mm TSMC CMOS process within a total size of 0.8 mm2. The power can be delivered from a 13.56-MHz carrier signal with an overall power transfer efficiency above 5% across a separation distance ranging from 3 cm to 5 cm. Our second contribution in power-harvesting systems deals with designing and implementation of a WPT home-cage for a fully wireless neuroscience platform for enabling uninterrupted optogenetic experiments with live laboratory rodents. The WPT home-cage uses a new hybrid parallel power transmitter (TX) coil array and segmented multi-coil resonators to achieve high power transmission efficiency (PTE) and deliver high power across distances as high as 20 cm. The multi-coil power receiver (RX) uses an RX coil with a diameter of 1 cm and a resonator coil with a diameter of 1.5 cm. The WPT home-cage average power transfer efficiency is 29.4%, at a nominal distance of 7 cm, for a power carrier frequency of 13.56-MHz. It has maximum and minimum PTE of 50% and 12% along the Z axis and can deliver a constant power of 74 mW to supply the miniature neural headstage. Also, an implantable device integrated into a 0.18-mm TSMC CMOS process has been designed and introduced which includes 64 recording channels, 16 optical stimulation channels, temperature sensor, transceiver, and power management unit (PMU). This circuit powered up inside the WPT home-cage using receiver coil with a diameter of 1.5 cm to show the performance of the PMU circuit. Two regulated voltages of 1.8 V and 1 V provide 79 mW of power for all the system on a chip. Our last contribution is an angular misalignment insensitive WPT system to power up a headstage which has been previously proposed by the Biomedical Microsystems Laboratory (BioML-UL) at ULAVAL for optogenetic applications. This system is the extended version of our second contribution in power-harvesting systems. In the updated version a multi-coil power receiver uses an RX coil with a diameter of 1.0 cm and a new split resonator coil with a diameter of 1.5 cm, which is robust against angular misalignment. In this version which is using a smaller animal home-cage than the last version, 4 resonators are used on the TX side. Also, thanks to the shape and position of the repeater coil of L3 on the receiver side, the presented hybrid resonant link can properly power up the headstage without interruption caused by the angular misalignment all over the home-cage. Each 3 turns of the RX repeater has been wrapped up with a diameter of 1.5 cm, in different angles compared to the receiver coil. Measurement results show a maximum and minimum PTE of 53 % and 15 %. The proposed method can deliver a constant power of 82 mW to supply the small neural headstage for the optogenetic applications. Additionally, in this version, the performance of the system is demonstrated within an in-vivo experiment with a freely moving ChR2 mouse which is the first fully wireless and batteryless optogenetic experiment reported with simultaneous electrophysiological recording and optogenetic stimulation. Electrophysiological activity was recorded after delivering optogenetic stimulation in the Anterior Cingulate Cortex (ACC) of the mouse.Currently, there is a high demand for Headstage and implantable integrated microsystems to study the brain activity of freely moving laboratory mice. Such devices can interface with the central nervous system in both electrical and optical paradigms for stimulating and monitoring neural circuits, which is critical to discover new drugs and therapies against neurological disorders like epilepsy, depression, and Parkinson’s disease. Since the implantable systems cannot use a battery with a large capacity as a primary source of energy in long-term experiments, the power consumption of the implantable device is one of the leading challenges of these designs. The first part of this research includes our proposed solution for decreasing the power consumption of the implantable microcircuits. We propose a novel level shifter circuit which converting subthreshold signal levels to super-threshold signal levels at high-speed using ultra low power and a small silicon area, making it well-suited for low-power applications such as wireless sensor networks and implantable medical devices. The proposed circuit introduces a new voltage level shifter topology employing a level-shifting capacitor to increase the range of conversion voltages, while significantly reducing the conversion delay. The proposed circuit achieves a shorter propagation delay and a smaller silicon area for a given operating frequency and power consumption compared to other circuit solutions. Measurement results are presented for the proposed circuit fabricated in a 0.18-mm TSMC CMOS process. The presented circuit can convert a wide range of the input voltages from 330 mV to 1.8 V, and operate over a frequency range of 100-Hz to 100-MHz. It has a propagation delay of 29 ns, and power consumption of 61.5 nW for input signals 0.4 V, at a frequency of 500-kHz, outperforming previous designs. The second part of this research includes our proposed wireless power transfer systems for optogenetic applications. Optogenetics is the combination of the genetic and optical method of excitation, recording, and control of the biological neurons. This system combines multiple technologies such as MEMS and microelectronics to collect and transmit the neuronal signals and to activate an optical stimulator through a wireless link. Since optical stimulators consume more power than electrical stimulators, the interface employs induction power transmission using innovative means instead of the battery with the small capacity as a power source
    corecore