232 research outputs found

    Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 1

    Get PDF
    This research program has dealt with the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements; (2) finite element modeling of the electromagnetic problem; (3) coupling of thermal and mechanical effects; and (4) computer implementation and solution of the superconductivity transition problem. The research was carried out over the period September 1988 through March 1993. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles; (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements; and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects; and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The grant has fully supported the thesis work of one doctoral student (James Schuler, who started on January 1989 and completed on January 1993), and partly supported another thesis (Carmelo Militello, who started graduate work on January 1988 completing on August 1991). Twenty-three publications have acknowledged full or part support from this grant, with 16 having appeared in archival journals and 3 in edited books or proceedings

    A semi-implicit hybrid finite volume / finite element scheme for all Mach number flows on staggered unstructured meshes

    Full text link
    In this paper a new hybrid semi-implicit finite volume / finite element (FV/FE) scheme is presented for the numerical solution of the compressible Euler and Navier-Stokes equations at all Mach numbers on unstructured staggered meshes in two and three space dimensions. The chosen grid arrangement consists of a primal simplex mesh composed of triangles or tetrahedra, and an edge-based / face-based staggered dual mesh. The governing equations are discretized in conservation form. The nonlinear convective terms of the equations, as well as the viscous stress tensor and the heat flux, are discretized on the dual mesh at the aid of an explicit local ADER finite volume scheme, while the implicit pressure terms are discretized at the aid of a continuous P1\mathbb{P}^{1} finite element method on the nodes of the primal mesh. In the zero Mach number limit, the new scheme automatically reduces to the hybrid FV/FE approach forwarded in \cite{BFTVC17} for the incompressible Navier-Stokes equations. As such, the method is asymptotically consistent with the incompressible limit of the governing equations and can therefore be applied to flows at all Mach numbers. Due to the chosen semi-implicit discretization, the CFL restriction on the time step is only based on the magnitude of the flow velocity and not on the sound speed, hence the method is computationally efficient at low Mach numbers. In the chosen discretization, the only unknown is the scalar pressure field at the new time step. Furthermore, the resulting pressure system is symmetric and positive definite and can therefore be very efficiently solved with a matrix-free conjugate gradient method. In order to assess the capabilities of the new scheme, we show computational results for a large set of benchmark problems that range from the quasi incompressible low Mach number regime to compressible flows with shock waves

    Poroelasticity problem: numerical difficulties and efficient multigrid solution

    Get PDF
    This work contains some of the more relevant results obtained by the author regarding the numerical solution of the Biot’s consolidation problem. The emphasis here is on the stable discretization and the highly efficient solution of the resulting algebraic system of equations, which is of saddle point type. On the one hand, a stabilized linear finite element scheme providing oscillation-free solutions for this model is proposed and theoretically analyzed. On the other hand, a monolithic multigrid method is considered for the solution of the resulting system of equations after discretization by using the stabilized scheme. Since this system is of saddle point type, special smoothers of “Vanka”-type have to be considered. This multigrid method is designed with the help of an special local Fourier analysis that takes into account the specific characteristics of the considered block-relaxations. Results from this analysis are presented and compared with those experimentally computed

    Automatic 3D modeling by combining SBFEM and transfinite element shape functions

    Full text link
    The scaled boundary finite element method (SBFEM) has recently been employed as an efficient means to model three-dimensional structures, in particular when the geometry is provided as a voxel-based image. To this end, an octree decomposition of the computational domain is deployed and each cubic cell is treated as an SBFEM subdomain. The surfaces of each subdomain are discretized in the finite element sense. We improve on this idea by combining the semi-analytical concept of the SBFEM with certain transition elements on the subdomains' surfaces. Thus, we avoid the triangulation of surfaces employed in previous works and consequently reduce the number of surface elements and degrees of freedom. In addition, these discretizations allow coupling elements of arbitrary order such that local p-refinement can be achieved straightforwardly
    • …
    corecore