
SeMA (2016) 73:31–57
DOI 10.1007/s40324-015-0054-9

Poroelasticity problem: numerical difficulties
and efficient multigrid solution

Carmen Rodrigo1

Received: 29 July 2015 / Accepted: 22 October 2015 / Published online: 13 November 2015
© Sociedad Española de Matemática Aplicada 2015

Abstract Thiswork contains someof themore relevant results obtained by the author regard-
ing the numerical solution of the Biot’s consolidation problem. The emphasis here is on the
stable discretization and the highly efficient solution of the resulting algebraic system of
equations, which is of saddle point type. On the one hand, a stabilized linear finite element
scheme providing oscillation-free solutions for this model is proposed and theoretically ana-
lyzed. On the other hand, a monolithic multigrid method is considered for the solution of
the resulting system of equations after discretization by using the stabilized scheme. Since
this system is of saddle point type, special smoothers of “Vanka”-type have to be considered.
This multigrid method is designed with the help of an special local Fourier analysis that takes
into account the specific characteristics of the considered block-relaxations. Results from this
analysis are presented and compared with those experimentally computed.

Keywords Poroelasticity · Multigrid · Stabilized schemes · Local Fourier analysis ·
Vanka smoothers · Monotone discretizations

Mathematics Subject Classification 65M60 · 65M15 · 74F10 · 74S05

1 Introduction to poroelasticity problem

Poroelasticity theory describes the interaction between the deformation of an elastic porous
material and the fluid flow inside of it. This coupling was already taken into account in the
early one-dimensional work of Terzaghi, considered the father of soil mechanics, which was
based on laboratory experimentation, see [38]. However, Maurice Biot, known as the founder
of the theory of poroelasticity, was who established the three-dimensional mathematical for-
mulation in the forties, see for example [2]. Nowadays, the analysis and numerical simulation
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32 C. Rodrigo

of Biot’s models has become a trend topic due to their wide range of applications, and there-
fore, the study of this type of problems is of great interest to scientists and engineers. Biot’s
models are used today in a great variety of fields, ranging from geomechanics and petrol
engineering, where these models have been applied ever since its inception, to biomechan-
ics or even food processing more recently. Some examples of applications in geosciences
include petroleum production, solid waste disposal, carbon sequestration, soil consolidation,
glaciers dynamics, subsidence, liquefaction and hydraulic fracturing, for instance. In biome-
chanics, the poroelastic theory can be used to describe tumor-induced stresses in the brain
(see [34]), which can cause deformation of the surrounding tissue, and bone deformation
under a mechanical load (see [37]), for example.

We consider the quasi-static Biot model for soil consolidation. We assume the porous
medium to be linearly elastic, homogeneous, isotropic and saturated by an incompressible
Newtonian fluid. According to Biot’s theory [2], the consolidation process must satisfy the
following system of equations:

Equilibrium equation: div σ ′ − α∇ p = g, in �, (1)

Constitutive equation: σ ′ = λtr(ε)I + 2με, in �, (2)

Compatibility condition: ε(u) = 1

2
(∇u + ∇ut ), in �, (3)

Darcy’s law: q = −κ

η
∇ p, in �, (4)

Continuity equation: ∇ · q + α
∂

∂t
(∇ · u) = f, in �, (5)

where λ and μ are the Lamé coefficients, α is the Biot-Willis constant which we will assume
equal to one, κ is the permeability of the porous medium, η the viscosity of the fluid, I is the
identity tensor, u is the displacement vector, p is the pore pressure, σ ′ and ε are the effective
stress (the part of the total stress that is not carried by the fluid, which is the stress applied
to the grains of the porous medium) and strain tensors for the porous medium and q is the
percolation velocity of the fluid relative to the soil. The right hand term g is the density of
applied body forces and the source term f represents a forced fluid extraction or injection
process. Here, we consider a bounded open subset � ⊂ R

n, n ≤ 3 with regular boundary �.
This mathematical model can also be written in terms of the displacements of the solid

matrix and the pressure of the fluid. We assume g(x, t) = 0 for simplicity in the presentation,
and the system can be written as follows,

− ∇ · (μ∇u) − ∇ (λ + μ)(∇ · u) + ∇ p = 0, x ∈ �, (6)
∂

∂t
(∇ · u) − ∇ ·

(
κ

η
∇ p

)
= f (x, t), 0 < t ≤ T . (7)

To complete the formulation of the problem we must add appropriate boundary and initial
conditions. For instance,

p = 0, σ ′ n = t, on �1,

u = 0,
κ

η
(∇ p) · n = 0, on �2,

(8)

where n is the unit outward normal to the boundary and�1∪�2 = �, with �1 and �2 disjoint
subsets of�with non nullmeasure. For the initial time, t = 0, the following incompressibility
condition is fulfilled
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(∇ · u) (x, 0) = 0, x ∈ �. (9)

Let L2(�) be the Hilbert space of square integrable scalar valued functions defined
on �, and let H1(�) denote the subspace of L2(�) of functions with first (distribu-
tional) derivatives in L2(�). To present the variational formulation of the problem, we
introduce the following functional spaces Q = {

q ∈ H1(�), q = 0 on �1
}
and U ={

u ∈ (H1(�))n,u = 0 on �2
}
. Then, considering the bilinear forms

a(u, v) = 2μ
n∑

i, j=1

(εi j (u), εi j (v)) + λ(∇ · u,∇ · v),

ap(p, q) = κ

η

n∑
i=1

(
∂p

∂xi
,

∂q

∂xi

)
,

the variational formulation for problem (6)–(7) with the boundary and initial conditions
(8)–(9) consists of the following:
For each t ∈ (0, T ], find (u(t), p(t)) ∈ U × Q such that

a(u(t), v) − (∇ · v, p(t)) = h(v), ∀ v ∈ U, (10)

−
(

∂ ∇ · u(t)

∂t
, q

)
− ap(p(t), q) = ( f, q), ∀q ∈ Q, (11)

with the initial condition
(∇ · u(0), q) = 0,∀ q ∈ L2(�), (12)

and where

h(v) =
∫

�1

t · v d�.

2 Stable discretization of the model

The numerical solution of poroelastic problems is usually approached using finite element
methods, see for example the monograph of Lewis and Schrefler in [20] and the papers
in [18,19,21,23].

It is well-known that the standard finite element solution of the poroelasticity equations
can present strong nonphysical oscillations in the fluid pressure, see for instance [1,7,8,15,
29]. For example, this is the case when linear finite elements are used to approximate both
displacement and pressure unknowns. As in Stokes problems, approximation spaces for the
vector and scalar fields, satisfying LBB condition (see [6]) can be used. This approach has
been theoretically investigated by Murad et al. [25–27]. However, the LBB property is not a
sufficient condition to ensure a free-oscillatory behavior of the solution.
These nonphysical oscillationsmay be removed by using a very fine grid in space,which is not
practical. Therefore, in order to avoid the nonphysical oscillations of the discrete solution, for
example, one can add certain stabilization terms to theGalerkin formulation.We have applied
this strategy in [1] to provide a stable scheme by using linear finite element approximations
for both unknowns. More concretely, a time-dependent artificial term was added to the flow
equation. The stabilization parameter, which depends on the elastic properties of the solid
and on the size of the triangulation, was given a priori, and we showed its optimality in the
one-dimensional case. This scheme provides solutions without oscillations independently of
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the chosen discretization parameters. In [1], any theoretical result on this stabilized scheme
was given, but recently, we have presented a convergence proof in [30]. Also in this same
paper, by using the same technique, we also present a stabilization of the Stokes-stable MINI
element scheme for the poroelasticity problem.

2.1 One-dimensional problem

To illustrate the cause of the pressure oscillatory behaviour, we consider the following one-
dimensional test problem which corresponds to a column of height H of a porous medium
saturated by an incompressible fluid, bounded by impermeable and rigid lateral walls and
bottom, and supporting a load σ0 on the top which is free to drain. This problem can be
written as

− ∂

∂x

(
E

∂u

∂x

)
+ ∂p

∂x
= 0,

∂

∂t

(
∂u

∂x

)
− ∂

∂x

(
K

∂p

∂x

)
= 0,

(x, t) ∈ (0, H) × (0, T ], (13)

with boundary and initial conditions

E
∂u

∂x
(0, t) = σ0, p(0, t) = 0, t ∈ (0, T ],

u(H, t) = 0, K
∂p

∂x
(H, t) = 0, t ∈ (0, T ],

∂u

∂x
(x, 0) = 0, x ∈ [0, H ],

where E is the Young’s modulus and K = κ/η is the hydraulic conductivity. It can be easily
seen that problem (13) is decoupled, giving rise to the following heat-type equation for the
pressure

∂

∂t

(
1

E
p

)
− ∂

∂x

(
K

∂p

∂x

)
= 0. (14)

This means that therefore the pressure solution is monotone, and we should use a monotone
scheme in order to keep this property.

In order to discretize problem (13), we consider a non-uniform partition of spatial domain
� = (0, H), 0 = x0 < x1 < · · · < xn−1 < xn = H. In this way, the domain � is given by
the disjoint union of elements Ti = [xi , xi+1], 0 ≤ i ≤ n − 1, of size hi = xi+1 − xi . We
assume that the physical parameters E(x) and K (x) are constant on each element Ti , and
they are denoted here by Ei and Ki respectively.
We consider an uniform time discretization by using a backward Eulermethod. Regarding the
space discretization, we consider linear finite elements for both displacement and pressure.
In this case, the following linear system of equations has to be solved on each time step

[
Al Gl

GT
l τ Ap

] [
Um
l

Pm

]
=
[
0 0
GT

l 0

] [
Um−1
l

Pm−1

]
+
[
f ml
0

]
, (15)

where m ≥ 1, and τ is the time discretization parameter. It is clear that the pressure at time
level m must satisfy the following equation

(Cl + τ Ap)P
m = Cl P

m−1 − GT
l A−1

l ( f ml − f m−1
l ), (16)
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where Cl = −GT
l A−1

l Gl is a tridiagonal matrix such that for an interior node xi it is given
by

(Cl P
m)i = 1

4

(
hi−1

Ei−1
Pm
i−1 +

(
hi−1

Ei−1
+ hi

Ei

)
Pm
i + hi

Ei
Pm
i+1

)
. (17)

Notice that the scheme associatedwith the above equation should be an appropriate discretiza-
tion for problem (14). Depending on the relation between the space and time discretization
parameters, the off-diagonal elements of matrix Cl + τ Ap could be positive and therefore
the cause of possible non-physical oscillations in the approximation of the pressure. To avoid
these instabilities, the following restriction holds,

max
0≤i≤n−1

h2i
4Ki Ei

< τ. (18)

For example, in the case of an uniform-grid of size h and constant values of the parameters
E and K in the whole domain, such restriction becomes h2 < 4EK τ . To confirm these
unstable behaviour, we solve system (13) in the computational domain (0, 1) by using linear
finite elements considering K E τ = 10−6. In this case, it is necessary a mesh of at least 500
nodes to fulfill the restriction. In Fig. 1a, b we show the corresponding approximation of the
pressure at the first time step, for two different values of h, that is, h = 1/32 and h = 1/500.
Besides, we have plotted the analytical solution of the problem (see [1]). We can observe that
strong non-physical oscillations appear for this type of finite element approximations, when
the space discretization parameter is not small enough. It is clear that this is due to a lack
of monotonicity of the scheme. Other authors have related these oscillations to the locking
effect and/or the fact that the pair of finite element does not satisfy an inf-sup condition.
However, since our test is an one-dimensional problem, elastic locking can not appear, and
therefore, in general, this can not be the only cause of this oscillatory behaviour. Regarding
the LBB condition, we are going to show now that this property is not enough to avoid the
presence of the spurious oscillations. We consider the Taylor-Hood finite element method,
which approximates the displacement by continuous piecewise quadratic functions and the
pressure by continuous piecewise linear functions. It is well-known that this pair of finite
elements satisfies the LBB condition. Following similar computations as for the P1–P1 case,
and considering again the backward Euler scheme, we obtain the following lineal system of
equations on each time step

⎡
⎣ Ab 0 Gb

0 Al Gl

GT
b GT

l τ Ap

⎤
⎦
⎡
⎣Um

b
Um
l

Pm

⎤
⎦ =

⎡
⎣ 0 0 0
0 0 0
GT

b GT
l 0

⎤
⎦
⎡
⎣Um−1

b
Um−1
l

Pm−1

⎤
⎦+

⎡
⎣ f mb

f ml
0

⎤
⎦ , (19)

where Al ,Gl correspond again to the linear basis functions whereas Ab,Gb are associated
with the bubble basis functions. In this case, the pressure at time levelm satisfies the equation

(Cl+Cb+τ Ap)P
m = (Cl+Cb)P

m−1−GT
l A−1

l ( f ml − f m−1
l )−GT

b A
−1
b ( f mb − f m−1

b ), (20)

where Cl is as in (17) and Cb = −GT
b A

−1
b Gb is given by

(CbP
m)i = 1

12

(
− hi−1

Ei−1
Pm
i−1 +

(
hi−1

Ei−1
+ hi

Ei

)
Pm
i − hi

Ei
Pm
i+1

)
.

We can observe that the off-diagonal entries of matrix Cb have the right sign, but again
depending on the values of the involved parameters, the whole matrix Cl + Cb + τ Ap can
still have positive off-diagonal terms. To avoid this, on each element the restriction
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max
0≤i≤n−1

h2i
6Ki Ei

< τ. (21)

must be fulfilled. Summarizing, we remark that the use of quadratic finite elements for
displacement contributes in a positive way to the reduction of the oscillations, but it is still
not enough. To illustrate this behaviour, we consider again system (19) on an uniform grid
of size h and constant coefficients E and K . In this particular case, the restriction (21) is
simplified to h2 < 6EK τ , and when EK τ = 10−6 it is deduced that 409 nodes are needed
to ensure a non-oscillatory behaviour. In Fig. 2 we show the corresponding approximation
of the pressure at the first time step, for two different values of h, that is, h = 1/32 and
h = 1/409. Notice again that in the first case non-physical oscillations appear, and then we
can conclude that the LBB property is not enough to ensure the monotonicity of the scheme.

To avoid the restrictions (18) for P1–P1 and (21) for P2–P1, which can yield to the
necessity of using a very fine grid, we have proposed stable schemes providing oscillation-
free solutions independently of the chosen parameters. Since schemes (16) and (20) should
be suitable discretizations of the heat-type Eq. (14), the idea is to add artificial terms in order
to recover the standard monotone linear finite element discretization of such equation. With
this purpose, we define the following tridiagonal matrix

(a) (b)

Fig. 1 Numerical solution for the pressure field obtained with finite elements P1–P1 and corresponding exact
solution for a h = 1/32 and b h = 1/500

(a) (b)

Fig. 2 Numerical solution for the pressure field obtained with finite elements P2–P1 and corresponding exact
solution for a h = 1/32 and b h = 1/409
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(a) (b)

Fig. 3 Numerical solution for the pressure field obtained with the stabilized finite elements. a P1–P1 and b
P2–P1 and corresponding exact solution

(AεP
m)i = ε

(
− hi−1

Ei−1
Pm
i−1 +

(
hi−1

Ei−1
+ hi

Ei

)
Pm
i − hi

Ei
Pm
i+1

)
, (22)

where ε = 1/4 for the linear finite element pair and ε = 1/6 for the Taylor–Hood method.
Then, it is clear that the perturbation of scheme (16)

(Cl + Aε + τ Ap)P
m = (Cl + Aε)P

m−1 − GT
l A−1

l ( f ml − f m−1
l ), (23)

or the perturbation of (20)

(Cl + Cb + Aε + τ Ap)P
m = (Cl + Cb + Aε)P

m−1 − GT
l A−1

l ( f ml − f m−1
l )

−GT
b A

−1
b ( f mb − f m−1

b ), (24)

results in the monotone standard discretization by linear finite element method with mass-
lumping. Notice that this perturbation corresponds to add to the variational formulation of
the second equation of system (13) the term

ε

n−1∑
i=0

h2i
Ei

∫
Ti

1

τ

(
∂

∂x
pm+1
h − ∂

∂x
pmh

)
∂

∂x
qh dx . (25)

Finally, in Fig. 3 we show the approximation for the pressure obtained by using the proposed
stabilization scheme for both the linear finite element pair and the Taylor Hood method,
and considering h = 1/32. Notice that for this value of the spatial discretization parameter,
not satisfying the restriction, we obtained oscillatory solutions. However, with the stabilized
schemes (23) and (24) we obtain oscillation-free solutions.

Next, we illustrate the appearance of non-physical oscillations in the pressure field when
a low-permeability is assumed in a region of the domain. We consider a porous material on
which a low–permeable layer (K = 10−8) is placedbetween two layerswith unit permeability
(K = 1), as shown in Fig. 4, see [15]. The boundary of the squared domain is split in two
disjoint subsets �1 and �2 on which we assume the following boundary conditions: on the
top, which is free to drain, a uniform load is applied, that is,

p = 0, σ ′n = g, with g = (0,−1)t , on �1, (26)
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Fig. 4 Domain representing a square of layered porous material with different permeability

(a) (b)

Fig. 5 Numerical solution by P1–P1 for the pressure to the two-material problem awithout stabilization term
and b with stabilization term

whereas at the sides and bottom that are rigid the boundary is considered to be impermeable,
that is,

∇ p · n = 0, u = 0, on �2. (27)

Zero initial conditions are considered for both variables, and the time step is chosen as
τ = 1. This test can be reduced to a one-dimensional problem. Therefore, in the following
simulations we will show the numerical solutions corresponding to one vertical line in the
domain as displayed in Fig. 4.

First we approximate the proposed model problem by using linear finite elements for
displacements and pressure. If no stabilization term is added to the discrete formulation, the
approximation for the pressure field that is obtained by using 32 elements in the grid is shown
in Fig. 5a.We can observe that strong spurious oscillations appear in the part corresponding to
the low-permeable layer.However, if the proposed stabilized scheme is used for the simulation
with the same number of nodes, the oscillations are completely eliminated and the method
gives rise to the real physical solution for the pressure, as we can see in Fig. 5b.

Next, the MINI element method is considered to approximate our model problem. We
consider the same number of elements in the mesh. Similarly to the previous case, when
no stabilization parameter is included in the formulation, the oscillatory behaviour of the
pressure approximation appears, as shown in Fig. 6a. Notice that the oscillations are much
weaker than in the case of P1–P1 elements, but still are not eliminated by using this pair
of finite elements. Again, if the proposed stabilization is considered for the solution of the
problem, an oscillation-free approximation for the pressure field is obtained as displayed in
Fig. 6b.
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(a) (b)

Fig. 6 Numerical solution by P2–P1 for the pressure to the two-material problem awithout stabilization term
and b with stabilization term

2.2 Multi-dimensional problem

We now consider the finite element approximation of problem (10)–(12) by using linear
finite elements for both unknowns or the well-known MINI element. Let Th be a regular
triangularization of � satisfying the usual admissibility assumption. In the two-dimensional
case, we can define finite element approximations for U and Q as Uh and Qh , respectively.
We can write the semidiscrete Galerkin approximation to the problem (10)–(12) as
For each t ∈ (0, T ], find (uh(t), ph(t)) ∈ Uh × Qh such that

a(uh(t), vh) − (∇ · vh, ph(t)) = h(vh), ∀vh ∈ Uh, (28)

−
(

∂ ∇ · uh(t)
∂t

, qh

)
− ap(ph(t), qh) = ( f, qh), ∀qh ∈ Qh . (29)

such that
(∇ · uh(0), qh) = 0, ∀qh ∈ Qh . (30)

In a standard way in the finite element framework, we can consider the usual basis functions
{ψ i }nui=1 for the displacements and those for the pressure {φi }n p

i=1 corresponding either to
P1–P1 or MINI element schemes. In this way, we find that the semi-discrete formulation
(28)–(29) can be expressed as a system of linear ordinary differential equations

[
0 0
B 0

] [
Ut

Pt

]
+
[
A B ′
0 −Ap

] [
U
P

]
=
[
H
F

]
.

Here U represents the unknown vector (u1(t),u2(t), . . . ,unu (t)) and P the unknown vector
(p1(t), p2(t), . . . , pnp (t)), andUt andPt the corresponding vectors with the time derivatives
of the unknowns. The matrix A is the elasticity matrix, −Ap is the diffusive matrix, B ′
is the gradient matrix and B is its transpose, that is minus the divergence matrix. H and
F are the right hand side vectors with components Hi (t) = h(ψ i ), i = 1, . . . , nu and
Fi (t) = ( f, φi ), i = 1, . . . , n p, respectively.

To discretize in time, we consider the backward Euler scheme:
For m ≥ 1, find (umh , pmh ) ∈ Uh × Qh such that

a(umh , vh) − (∇ · vh, pmh ) = h(vh), ∀vh ∈ Uh, (31)

−(∇ · umh , qh) − τap(p
m
h , qh) = −(∇ · um−1

h , qh) + τ( f m, qh) ∀qh ∈ Qh, (32)
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which yields the following linear equations system on each time step
[
A B ′
B −τ Ap

] [
Um

Pm

]
=
[
0 0
B 0

] [
Um−1

Pm−1

]
+
[
Hm

τFm

]
, (33)

where τ is the time discretization parameter and BU0 = 0.
In the multi-dimensional case, we cannot proceed as in 1D since the Schur comple-

ment becomes a full matrix and therefore it is very difficult to obtain any result about the
monotonicity of the discrete schemes. However, we can extend the idea proposed for the one-
dimensional case to obtain stabilized discretizations for (6)–(8). The final scheme results to
be the corresponding discretization of the problem

−∇ · (μ∇u) − ∇(λ + μ) (∇ · u) + ∇ p = 0, (34)
∂

∂t
(∇ · u) − ∇ ·

(
κ

η
∇ p

)
− ∂

∂t
∇ · (β∇ p) = f (x, t), (35)

where a perturbation term− ∂
∂t ∇·(β∇ p) has been added to the flow equation, with parameter

β = h2

β̃(λ + 2μ)
, being β̃ =

{
4, for P1–P1,
6, for MINI element,

where h = minT∈Th hT , being hT the diameter of element T . The corresponding semidiscrete
Galerkin approximation is as follows,
For each t ∈ (0, T ], find (uh(t), ph(t)) ∈ Uh × Qh such that

a(uh, vh) − (∇ · vh, ph) = h(vh), ∀vh ∈ Uh, (36)

−
(

∂ ∇ · uh
∂t

, qh

)
− ap(ph, qh) − β ′ap

(
∂

∂t
ph, qh

)
= ( f, qh), ∀qh ∈ Qh, (37)

where β ′ = β
η

κ
. Considering the backward Euler scheme to discretize in time, we get the

discrete variational problem:

For m ≥ 1, find (umh , pmh ) ∈ Uh × Qh such that

a(umh , vh) − (∇ · vh, pmh ) = h(vh), ∀ vh ∈ Uh, (38)

−(∇ · umh , qh) − (τ + β ′)ap(pmh , qh) = τ( f m, qh) − (∇ · um−1
h , qh)

−β ′ap(pm−1
h , qh) ∀qh ∈ Qh, (39)

which in matrix-form reads as[
A B ′
B −(τ + β ′)Ap

] [
Um

Pm

]
=
[
0 0
B −β ′Ap

] [
Um−1

Pm−1

]
+
[
Hm

τFm

]
.

In order to assess the performance of the proposed method, we solve numerically a
poroelastic problem on a cylindrical shell of deformable porous material with a uniform
load on the inner boundary. The outer boundary is constrained by a rigid body that offers no
resistance to the passage of the fluid, so the boundary conditions for the displacement and
for the pressure are u = 0 and p = 0 respectively. In the inner surface of the cylinder, there
is a fixed pressure, p = 1, which produces a uniform load σ ′n = (cos θ, sin θ). A scheme
of the geometry and boundary conditions are given in Fig. 7.
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The material properties of the porous medium are given in Table 1 where λ and μ are
related to the Young’s modulus E and the Poisson’s ratio ν by

λ = νE

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
.

Figure 8a shows how standard finite elements P1–P1 lead to spurious oscillations in the
pressure approximation at time T = 10−6 using one time step. These nonphysical oscillations
in the pressure are eliminated completely adding the stabilization term h2ap(

∂
∂t ph, qh)/4(λ+

2μ) to the flow equation as can be seen in Fig. 8b.

Fig. 7 Geometry and boundary conditions

Table 1 Material parameters for
the first poroelastic problem

Property Value Unit

Young’s modulus 3 × 104 N/m2

Poisson’s ratio 0.2 –

Permeability 10−7 m2

Fluid viscosity 10−3 Pas
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Fig. 8 Numerical solution of the pressure for the cylindrical shell poroelasticity problem a without stabiliza-
tion term and b adding the term h2ap( ṗh , qh)/4(λ + 2μ)
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3 Stability and convergence of the discrete schemes

In this section we study the stability of the proposed stabilized schemes. By stability, here we
mean bounds on the inverse of the discrete operator (for a fixed time step). This is analyzed
by proving an inf-sup condition for the different discretizations that we consider, namely
stabilized P1–P1 and MINI element schemes.

From now on, we consider that operator AC =
(
A B′
B −C

)
represents a discretization of

poroelasticity problem, where A : Uh 
→ U ′
h is given by 〈Auh, vh〉 := a(uh, vh), B :

Qh 
→ U ′
h is defined by 〈Buh, qh〉 := −(div uh, qh), and C is bounded, selfadjoint and

positive definite. Since C may take different form for different discretizations, we do not
specify its definition here. Notice that A is bounded, selfadjoint and positive definite, and B
is also bounded. Moreover, we define the following norm

‖ qh ‖2:= τ 〈Apqh, qh〉+ ‖ qh ‖2L2(�)
,

where 〈Ap ph, qh〉 := ap(ph, qh), and the triple norm on Uh × Qh

|||(uh, ph)|||2 =‖ uh ‖2A + ‖ ph ‖2C + ‖ ph ‖2 .

Theorem 1 We consider the discretization of poroelasticity problem given by an operator
of the form AC , as previously explained. Then, AC is an isomorphism if and only if for any
qh ∈ Qh,

sup
vh∈Uh

〈B vh, qh〉
‖ vh ‖A

≥ γB ‖ qh ‖ − ‖ qh ‖C . (40)

Proof First we assume that (40) holds and we show that AC is an isomorphism. For this
purpose, we introduce the bilinear form

〈AC (uh, ph); (vh, qh)〉 = 〈Auh, vh〉 + 〈Bvh, ph〉 + 〈Buh, qh〉 − 〈Cph, qh〉.
From the continuity of operators A and B, we can easily show that operator AC is bounded
in ||| · |||. Moreover, from the inf-sup condition (40), for any ph , there existwh ∈ Uh , such that
〈Bwh, ph〉 ≥ (γB‖ph‖ − ‖ph‖C )‖wh‖A. Without loss of generality, we may assume that
‖wh‖A = ‖ph‖, and then we have,

〈Bwh, ph〉 ≥ (γB‖ph‖ − ‖ph‖C )‖ph‖. (41)

Given a pair (uh, ph) ∈ Uh ×Qh , we choose vh = uh +θwh and qh = −ph , withwh defined
as above and some θ > 0 that will be determined later. Then, we can write,

〈AC (uh, ph); (vh, qh)〉 = 〈Auh,uh + θwh〉+ 〈B(uh + θwh), ph〉 − 〈Buh, ph〉+ 〈Cph, ph〉
= ‖uh‖2A + θ〈Auh,wh〉 + θ〈Bwh, ph〉 + ‖ph‖2C .

Applying the inequality ab ≥ − 1

2θ
a2 − θ

2
b2, we have,

θ〈Auh,wh〉 ≥ −1

2
‖uh‖2A − θ2

2
‖wh‖2A = −1

2
‖uh‖2A − θ2

2
‖ph‖2.

Also, by using (41), it is satisfied that,

θ〈Bwh, ph〉 ≥ θγB‖ph‖2 − θ‖ph‖C‖ph‖.
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In this way,

〈AC (uh, ph); (vh, qh)〉 ≥ 1

2
‖uh‖2A +

(
θγB − θ2

2

)
‖ph‖2

−θ

(
1

2θ
‖ph‖2C + θ

2
‖ph‖2

)
+ ‖ph‖2C .

Now, we fix θ = γB

2
to obtain that

〈AC (uh, ph); (vh, qh)〉 ≥ 1

2
‖uh‖2A + γ 2

B

4
‖ph‖2 + 1

2
‖ph‖2C ≥ γ̃ |||(uh, ph)|||2,

where γ̃ = 1
4 min{2, γ 2

B}. On the other hand, the triangle inequality implies that

|||(vh, qh)||| = |||(uh + θwh, ph)||| ≤ γ̃1|||(uh, ph)|||,
with γ̃1 depending only on γB . Hence,

sup
vh ,qh

〈AC (uh, ph); (vh, qh)〉
|||(vh, qh)||| ≥ γ |||(uh, ph)|||, γ = γ̃

γ̃1
,

and we can conclude that AC is an isomorphism.
Next, we assume the invertibility of AC and we show that condition (40) is fulfilled. For

any qh ∈ Qh , we define vh,q = −A−1B ′qh ∈ Uh , in the way that

AC

(
vh,q

qh

)
=
(

0
Bvh,q − Cqh

)
.

Then, the invertibility of AC implies that

‖qh‖ ≤ |||(vh,q , qh)||| ≤ ‖A−1
C ‖ ‖Bvh,q − Cqh‖Q′

h
≤ ‖A−1

C ‖ (‖Bvh,q‖Q′
h
+ ‖Cqh‖Q′

h
).

We can obtain estimates for ‖Bvh,q‖Q′
h
and ‖Cqh‖Q′

h
in order to deduce (40). First, since

C is symmetric and positive (semi)-definite, we have 〈Cqh, sh〉 ≤ √〈Cqh, qh〉√〈Csh, sh〉,
and therefore,

‖Cqh‖Q′
h

= sup
sh∈Qh

〈Cqh, sh〉
‖sh‖ ≤ √‖C‖〈Cqh, qh〉.

Secondly, to estimate ‖Bvh,q‖Q′
h
we note that ‖Bvh,q‖Q′

h
= supsh∈Qh

〈Bvh,q ,sh〉
‖sh‖ and we also

have for all sh ∈ Qh ,

|〈Bvh,q , sh〉|
‖sh‖ = |〈B ′sh, A−1B ′qh〉|

‖sh‖ ≤ ‖B ′‖ |〈B ′sh, A−1B ′qh〉|
‖B ′sh‖U ′

h

≤ ‖B ′‖ sup
fh∈U ′

h

〈 fh, A−1B ′qh〉
‖ fh‖U ′

h

= ‖B ′‖ sup
wh∈Uh

〈Awh, A−1B ′qh〉
‖Awh‖U ′

h

≤ ‖B ′‖‖A−1‖ sup
wh∈Uh

〈Bwh, qh〉
‖wh‖A

= ‖B ′‖ sup
wh∈Uh

〈Bwh, qh〉
‖wh‖A

.

Finally, the inf-sup condition (40) easily follows by combining the last two estimates. ��
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A more general version of the previous result can be found in [30] for a general operator

AC =
(
A B′
B −C

)
: V × Q 
→ V ′ × Q′, where V and Q are Hilbert spaces and V ′ and

Q′ their dual spaces, operator A : V 
→ V ′ is bounded, selfadjoint and positive definite,
operator B : V 
→ Q′ is also bounded and C : Q 
→ Q′ is a bounded operator, sefadjoint
and positive (semi)definite.

Notice that if the inf-sup condition in (40) is satisfiedwithC = 0, then it is also satisfied for
anyC bounded, selfadjoint andpositive (semi)definite. This implies that a stablefinite element
pair for Stokes equations is also stable for poroelasticity. From this, we can conclude that
MINI element is stable for poroelasticity, since it iswell-known that this finite element scheme
satisfies an inf-sup condition for Stokes system, see [3] for example. The discrete space of
functions corresponding to MINI element scheme satisfies that is a direct sum of the space
of piece-wise linear continuous vector valued functions and the space of bubble functions.
Therefore, if wewrite vh = vh,l+vh,b we have that a(uh, vh) = a(uh,l , vh,l)+a(uh,b, vh,b),

since vh,b is zero on ∂T for T ∈ Th . Then, we can write the discrete problem (31)–(32) in
the following block form:

A

⎛
⎝uh,b

uh,l

ph

⎞
⎠ =

⎛
⎝fh,b

fh,l

gh

⎞
⎠ , where A =

⎛
⎝ Ab 0 Gb

0 Al Gl

GT
b GT

l −τ Ap

⎞
⎠ . (42)

By eliminating the equation corresponding to bubble functions, we obtain the following
operator,

Al =
(
Al Gl

Gl −τ Ap − Sb

)
, where Sb = GT

b A
−1
b Gb. (43)

Therefore, changing accordingly the right hand sides, the systems of equations corresponding
to (42) and (43) are equivalent and solvability for MINI element implies solvability for
P1–P1 + Sb. We then have the following theorem from which arises that Sb improves the
“monotonicity” of the P1–P1 scheme.

Theorem 2 Sb is spectrally equivalent to h2 L,where h is the grid-size and L is the discretiza-
tion of Laplace operator by piece-wise linear continuous finite elements, that is, Sb � h2 L
with constants only depending on the shape regularity of the mesh.

This theoremcanbeprovenbyusing the results in theAppendix of [30],whichhold for one,
two and three spatial dimensions. Moreover, this statement implies that if the stiffness matrix
for linear continuous elements is an M-matrix, then Sb is an M-matrix as well, and therefore
adding the term Sb improves the properties of monotonicity of the resulting discrete problem.
Finally, the following result, together with the previous theorem, justifies the addition of the
proposed stabilization terms to both the MINI element and the P1–P1 discretizations.

Theorem 3 Suppose that AC , as in Theorem 1, is an isomorphism, and that D is spectrally
equivalent to C, namely α0‖qh‖C ≤ ‖qh‖D ≤ α1‖qh‖C for some positive constants α0 and
α1. Then AD is an isomorphism.

From this result, we can state that any operator C , spectrally equivalent to τ Ap + Sb will
result in a stable discretization of the Biot’s model. The perturbations spectrally equivalent
to Sb are of the form

〈Cph, qh〉 =
∑
T∈Th

CT h
2
T

∫
T
(∇ ph · ∇qh),
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where CT , T ∈ Th are constants independent of the mesh size h or τ , and therefore we can
conclude that an inf-sup condition is satisfied for stabilized P1–P1.

Once the stability of the two proposed stabilized schemes has been deduced, we can obtain
estimates for the analysis of the fully discretized time dependent Biot’s model. A detailed
error analysis of the problem can be found in [30], and next we summarize the main results
presented in that paper. In the next, we will denote by c a generic constant independent of
time step, mesh size and other parameters.

We can write the fully discretized scheme at time tn , n = 1, 2, . . . as

Find unh = uh(tn) ∈ Uh ⊂ [
H1(�)

]d
and pnh = ph(tn) ∈ Qh ⊂ H1(�), such that,

a(unh, vh) − (div vh, pnh ) = ( f (tn), vh), ∀vh ∈ Uh,

−(div ∂̄tunh, qh) − ap(p
n
h , qh) − εh2(∇ ∂̄t p

n
h ,∇qh) = 0, ∀qh ∈ Qh,

where ∂̄tunh := (unh − un−1
h )/τ and ∂̄t pnh := (pnh − pn−1

h )/τ . The initial data u0h and p0h are
given by the following stabilized Stokes equation,

a(u0h, vh) − (div vh, p0h) = ( f (0), vh) ∀vh ∈ Uh,

(div u0h, qh) + εh2(∇ p0h,∇qh) = 0 ∀qh ∈ Qh .

Although we do not consider this case here, the initial data can also be defined satisfying
divu0h = 0, p0h = 0. In this case, similar convergence results can be obtained (see [30]).

We define the following norm on the finite element spaces: ‖(u, p)‖τ,h := (‖u‖2a
+ τ‖p‖2ap + εh2‖∇ p‖2)1/2, and the following elliptic projections ũh and p̃h for t > 0,
such that

a(̃uh, vh) − (div vh, p̃h) = a(u, vh) − (div vh, p), ∀vh ∈ Uh

ap( p̃h, qh) = ap(p, qh), ∀qh ∈ Qh .

In this way, we can write the discretization error as follows,

u(tn) − unh = (u(tn) − ũh(tn)) − (unh − ũh(tn)) =: ρn
u − enu,

p(tn) − pnh = (p(tn) − p̃h(tn)) − (pnh − p̃h(tn)) =: ρn
p − enp,

and study separately estimates for each of the terms. For the error of the elliptic projections
(by using P1–P1 or mini-element), we have, for any t ,

‖ρu‖a ≤ ch(|u|2 + |p|1),
‖ρp‖1 ≤ ch|p|2, ‖ρp‖ap ≤ ch|p|2,
‖ρp‖ ≤ ch2|p|2.

Besides this results, we also have the corresponding estimates for ∂tρu and ∂tρp .
We can prove the following auxiliary estimates of the error between the elliptic projection
and the numerical solution:
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Lemma 4 The following estimates hold:

‖(enu, enp)‖τ,h ≤ ‖(e0u, e0p)‖τ,h + cτ
n∑
j=1

(
‖w j

u‖a + ε1/2h‖∇w
j
p‖ + ε1/2h‖∇∂t p(t j )‖

)
.

‖enp‖ap ≤ ‖e0p‖ap + cτ 1/2

⎡
⎢⎣
⎛
⎝ n∑

j=1

‖w j
u‖2a

⎞
⎠

1/2

+
⎛
⎝ n∑

j=1

εh2‖∇w
j
p‖2

⎞
⎠

1/2

+
⎛
⎝ n∑

j=1

εh2‖∇∂t p(t j )‖2
⎞
⎠

1/2
⎤
⎥⎦ ,

where w
j
u := ∂tu(t j )− ũh(t j )−ũh (t j−1)

τ
and w

j
p := ∂t p(t j )− p̃h(t j )− p̃h(t j−1)

τ
. Furthermore, we

also have the following estimate in the L2-norm,

‖enp‖ ≤ c‖(e0u, e0p)‖τ,h + cτ
n∑
j=1

(
‖w j

u‖a + ε1/2h‖∇w
j
p‖ + ε1/2h‖∇∂t p(t j )‖

)
. (44)

The next step is to find estimates for the terms corresponding to w
j
u and w

j
p:

Lemma 5 Let u(t) and p(t) be the solution to the model Biot’s problem, w j
u = ∂tu(t j ) −

ũh(t j )−ũh (t j−1)

τ
and ρu(t) = u(t) − ũh(t). Then

n∑
j=1

‖w j
u‖a ≤ c

(∫ tn

0
‖∂t tu‖1dt + 1

τ

∫ tn

0
‖∂tρu‖1dt

)
,

n∑
j=1

‖w j
u‖2a ≤ c

(
τ

∫ tn

0
‖∂t tu‖21dt + 1

τ

∫ tn

0
‖∂tρu‖21dt

)
.

Moreover, if w j
p = ∂t p(t j ) − p̃h(t j )− p̃h (t j−1)

τ
and ρp = p(t) − p̃h(t), we have

n∑
j=1

‖∇w
j
p‖ ≤ c

(∫ tn

0
‖∂t t p‖1dt + 1

τ

∫ tn

0
‖∂tρp‖1dt

)
,

n∑
j=1

‖∇w
j
p‖2 ≤ c

(
τ

∫ tn

0
‖∂t t p‖21dt + 1

τ

∫ tn

0
‖∂tρp‖21dt

)
.

Finally, assuming extra regularity of u(t) and p(t), as usual for convergence analysis of
the finite element method, we have the following theorem for both MINI element and P1–P1
stabilized element, which provides estimates for the final error.

Theorem 6 Let u(t) and p(t) be the solution of the Biot’s system. Thenwe have the following
estimate for displacement u(t),
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‖ (u(tn) − unh, p(tn) − pnh
) ‖τ,h

≤
∥∥∥(e0u, e0p

)∥∥∥
τ,h

+ c

{
τ

[∫ tn

0
‖∂t tu‖1dt +

∫ tn

0
ε1/2h|∂t t p|1dt

]

+ h

[
|u(tn)|2 + |p(tn)|1 + (τ 1/2 + ε1/2h)|p(tn)|2 +

∫ tn

0
(|∂tu|2 + |∂t p|1) dt

+
∫ tn

0
ε1/2h|∂t p|2dt

]
+ tn max

1≤ j≤n
ε1/2h‖∇∂t p(t j )‖

}
.

For pore pressure p(t), we have the estimate

‖p(tn) − pnh‖ap
≤ ‖e0p‖ap + c

{
τ

[(∫ tn

0
‖∂t tu‖21dt

)1/2

+
(∫ tn

0
εh2‖∂t t p‖21dt

)1/2
]

+ h

[
|p(tn)|2 +

(∫ tn

0
(|∂tu|2 + |∂t p|1)2 dt

)1/2

+
(∫ tn

0
εh2|∂t p|22dt

)1/2
]

+√
tn max

1≤ j≤n
ε1/2h‖∇∂t p(t j )‖

}
,

and we also have the following error estimate in L2-norm,

‖p(tn) − pnh‖
≤ c‖

(
e0u, e

0
p

)
‖τ,h + c

{
τ

[∫ tn

0
‖∂t tu‖1dt +

∫ tn

0
ε1/2h|∂t t p|1dt

]

+ h2|p(tn)|2 + h

[∫ tn

0
(|∂tu|2 + |∂t p|1) dt +

∫ tn

0
ε1/2h|∂t p|2dt

]

+ tn max
1≤ j≤n

ε1/2h‖∇∂t p(t j )‖
}

.

Previous error estimates consists of two parts: the error for t > 0, which gives optimal
convergence order; and the error in the approximation of the initial data, which can be split
in two terms, one depending on the errors due to the elliptic projection and the other one
corresponding to the errors due to the choice of initial conditions. Due to the choice of
our initial data, satisfying a stabilized Stokes equation, the initial errors strongly depend on
the regularity of the initial data, and in particular the assumptions on the regularity of the
initial pore pressure are crucial. By assuming p(0) ∈ H1

0 (�), the standard error estimates
for the elliptic projection and stabilized Stokes equation show that the initial data errors
are appropriately bounded, and therefore optimal order of convergence is achieved for the
discrete problem. In this way, the overall convergence rate of the stabilized MINI element is
optimal. However, if we assume that p(0) is merely in L2(�), then we cannot expect that
the errors in the initial data are of optimal order, and, therefore, the overall convergence rate
of the stabilized MINI element is not optimal as well.

4 Monolithic multigrid solver based on Vanka smoothers

Numerical simulation is increasingly prominent in the field of continuum mechanics, and a
very important aspect is the efficient resolution of the resulting systems after the discretization
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of the models. Biot’s models lead to computationally complex problems for which traditional
simulations become too expensive. Therefore, fast numerical algorithms have to be designed
for their solution. Here, we deal with the design of a monolithic multigrid solver for the
highly efficient solution of the resulting algebraic systems of equations. Special smoothers
suitable for saddle point problems, as the Vanka type relaxations, are considered. By using
this approach, an efficient multigrid solver is obtained for the solution of the quasi-static
Biot’s model for soil consolidation.

Since their development in the 70’s, multigrid methods (see [14,36,39], for example)
have been proved to be among the most efficient numerical algorithms for solving the large
sparse systems of equations arising from the discretization of partial differential equations,
achieving asymptotically optimal complexity at least for elliptic problems. These methods
are iterative solvers mainly based on the acceleration of the convergence of classical iterative
methods by using solutions obtained on coarsermeshes as corrections. Two ideas are involved
in the development of multigrid methods: the first one is the fact that some classical iterative
methods have a strong smoothing effect on the components of the error corresponding to the
high frequencies (high oscillating error components), and the second one is that a smooth
error can be well represented on a coarser grid. These observations suggest the following
structure of a two-grid cycle:

1. Perform ν1 iterations of an iterative relaxationmethod Sh on the fine grid (pre-smoothing)
2. Compute the defect of the current fine grid approximation
3. Restrict the defect to the coarse grid by using a restriction operator Rh,2h

4. Solve the coarse grid defect equation
5. Interpolate the correction to the fine grid using a prolongation operator P2h,h

6. Add the interpolated correction to the current fine grid approximation
7. Perform ν2 iterations of an iterative relaxation method Sh on the fine grid (post-

smoothing)

Following this algorithm, the two-grid error transformation operator is given by

Mh,2h = Sν2
h (Ih − P2h,h L

−1
2h Rh,2h Lh)S

ν1
h , (45)

where Ih denotes the identity and the subscript “2h” indicates that the coarse grid is obtained
by doubling the mesh size in each space direction, which is called “standard coarsening”.
Instead of inverting L2h , the coarse-grid equation can be solved by recursive application of
this procedure, yielding amultigridmethod. From the previous algorithm, it is clear thatmany
details are open for discussion and decision, since all the components have to be properly
chosen.

Regarding the coarse-grid correction part of the algorithm, standard inter-grid transfer
operators, dictated by the geometry of the triangular grid, are considered here. This results in
7-point restriction operator and bilinear interpolation of neighboring coarse-grid unknowns.
Finally, on the coarse grids,we apply direct coarse-grid discretization.However, the efficiency
and robustness of a multigrid algorithm is usually strongly influenced by the smoother.
Moreover, for the problemwe are dealingwith, an additional difficulty appears, since it results
in a system of saddle point type aspect. An overview of multigrid methods for discretizations
on rectangular grids of this type of problems is presented in [28], where coupled or Vanka-
relaxation and decoupled distributive relaxation methods appear as the most suitable for this
kind of problems. Due to the fact that for some systems of equations it is a challenge to design
an efficient distributive relaxation scheme, Vanka smoothers seems to be the best option.
These smoothers consist of decomposing the mesh into small subdomains and treating them
separately. Therefore, one relaxation step consists of a loop over all subdomains, solving for
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each one the system arising from the corresponding equations. Next, we give a more detailed
description of the iterative method. We consider a linear system of equations Ah uh = fh,
which, in our case, arises from the discretization of a PDE problem. Vector uh is composed
of unknowns corresponding to m different variables. More concretely, Ni unknowns of each
variable i are considered. Let B be the subset of unknowns involved in an arbitrary block, that
is, B = {u1k1(1), . . . , u1k1(n1), . . . , umkm (1), . . . , u

m
km (nm )},where ki (1), . . . , ki (ni ) are the global

indexes of the ni unknowns corresponding to variable i . In order to obtain the matrix AB
h of

the system to solve associated with block B, we introduce the matrix VB representing the
projection operator from the vector of all unknowns to the vector of the unknowns involved
in the block, as the following block-diagonal matrix

VB =
⎛
⎜⎝
V 1
B

. . .

Vm
B

⎞
⎟⎠ . (46)

Here, each block V i
B is a (ni × Ni )−matrix, whose j th-row is the ki ( j)th-row of the identity

matrix of order Ni . In this way, matrix AB
h can be defined as

AB
h = VB Ah V

T
B . (47)

Therefore, this type of smoother results in a multiplicative Schwarz method with iteration
matrix

N B∏
B=1

(I − V T
B (AB

h )−1 VB Ah), (48)

where NB is the number of blocks or small systems to be solved in a relaxation step of the
iterative method. Very often in practice, instead of solving the local problems exactly, one
can replace AB

h with an approximation ÃB
h , obtaining the so-called multiplicative Schwarz

method with inexact local solver, with iteration matrix given by

N B∏
B=1

(I − V T
B ( ÃB

h )−1 VB Ah). (49)

Therefore, many variants of box-type smoothers can be considered. They can differ in the
choice of the subdomains which are solved simultaneously, and in the way in which the
local systems to be solved are built. Notice that the different subdomains can also be visited
in different orderings, for instance, they can also be treated with some patterning scheme,
yielding to a multicolored version of these relaxation schemes. All this makes wider the
variety of this type of relaxations.

This class of smoothers was introduced by Vanka in [41] to solve the finite difference dis-
cretization on rectangular grids of the Navier–Stokes equations. Since then, much literature
can be found about the application of this type of smoothers, mainly in the field of Computa-
tional Fluid Dynamics [16,17,40], but also in the context of Computational SolidMechanics,
for example in [44]. Here, we consider a Vanka smoother suitable for the stabilized P1–P1
discretization of poroelasticity problem on triangular grids, in which all unknowns appear-
ing in the discrete divergence operator in the pressure equation are simultaneously updated.
This way of building the blocks is very common in Vanka-relaxations used for Stokes and
Navier–Stokes problems. This approach implies that for the two-dimensional problem twelve
unknowns corresponding to displacements and one pressure unknown, see Fig. 9, are relaxed
simultaneously, making necessary to solve a 13 × 13−system for each grid point. Then, we

123



50 C. Rodrigo

Fig. 9 Unknowns simultaneously updated in point-wise box Gauss–Seidel smoother, and example of the
overlapping between two arbitrary blocks. Circles denote velocity unknowns whereas the square refers to
pressure degrees of freedom

iterate over all grid points in lexicographic order, and for each of them the corresponding
box is solved. In this full variant, all the unknowns in the system are considered coupled.
Therefore, the need of solving such systems makes these smoothers expensive. A simplified
variant can be considered by coupling each displacement unknown in the system only with
itself and with the corresponding pressure unknown. In this way, the solution of the resulting
systems becomes much cheaper, making the use of this diagonal version very appealing in
practice. However, it is observed that the diagonal version of the point-box smoother can be
less robust with respect to some applications. In our case, the multigrid based on the diagonal
Vanka smoother provides a very efficient solver for the poroelasticity equations.

On the other hand, it is well-known that the performance of multigrid methods strongly
depends on the interplay between the smoothing and the coarse-grid correction part of the
algorithm. This two principles can be combined by two basic approaches tomultigrid solvers.
In algebraic multigrid no information is used concerning the grid on which the governing
PDE is discretized, and therefore it is more suitable when unstructured grids are considered.
However, an alternative to this strategy is to consider a hierarchy of semi-structured grids, in
which a geometricmultigrid that takes advantage of the geometry of the grid, can be efficiently
implemented. An initial totally unstructured grid is then considered to represent the geometry
of the domain, and a regular refinement process is applied on each element of the input
grid, resulting in a hierarchy of globally unstructured grids composed of structured patches,
where the geometric multigrid can be implemented based on stencil-based operations. We
have proposed this strategy for example in [33] for other problems like elasticity equations.
This approach is also advantageous in the sense that the implementation uses stencil-based
operations, since the local nature of the multigrid operators and the semi-structured character
of the grid allow it, as well as it allows the use of low-cost memory storage of the discrete
operator based on stencil formulation. For poroelasticity equations, we presented the efficient
implementation of a multigrid finite element method on semi-structured grids in [11]. In this
paper, the implementation on semi-structured grids of the linear finite element scheme is
explained, focusing on the stencil-based implementation on each regular patch of the semi-
structured grid. Moreover, an efficient procedure to construct these stencils by means of a
reference hexagon is also described. Furthermore, due to the block-structure of the considered
grids, each triangle of the coarsest triangulation can be treated as a different block, and then
different components can be chosen on these patches. In particular, in [9], we have proposed
the use of different smoothers for triangles which have different geometries, but this choice
can be done in a very efficient way with the help of the local Fourier analysis.

123



Poroelasticity problem: numerical difficulties and efficient multigrid solution 51

5 Local Fourier analysis for Vanka smoother based multigrid

Local Fourier analysis (LFA, or local mode analysis) is a commonly used approach for
analyzing the convergence properties of geometric multigrid methods. In this analysis an
infinite regular grid is considered and boundary conditions are not taken into account. LFA
was introduced by Brandt in [4] and afterward extended in [5]. A good introduction can
be found in the paper by Stüben and Trottenberg [36] and in the books by Wesseling [42],
Trottenberg et al. [39], and Wienands and Joppich [43]. LFA was generalized to triangular
grids in [10], for discretizations based on linear finite element methods. Afterwards, we
extended this generalization to systems of partial differential equations [12,13].

Local Fourier analysis assumes that all the operations involved in the multigrid algo-
rithm are local processes, that is, the operations performed on each unknown only depend on
the information on nearby neighbors, what allows to neglect the effect of boundary condi-
tions. By imposing some assumptions on the discrete operator: linear differential operators
with constant coefficients, a basis of complex exponential eigenfunctions of the operator,
called Fourier components, can be obtained. Summarizing, this analysis mainly simplifies
the computation of the spectral radius of the k-grid iterationmatrix, by considering thematrix
representation of this operator with respect to such basis of eigenfunctions, which results in
a block-diagonal matrix.

To perform the LFA on the considered regular triangular grids, we establish a non-
orthogonal unitary basis of R

2, {e1, e2}, in the directions of two of the edges determining
the triangular grid. We also consider, for the frequency space, its reciprocal basis {e′

1, e
′
2},

i.e., (ei , e′
j ) = δi j , 1 ≤ i, j ≤ 2, where (·, ·) is the usual inner product in R

2 and δi j is the
Kronecker’s delta, see [12]. Considering that the coordinates of a point in the basis, {e1, e2}
are x = (x1, x2), we can extend our computational grid to a regular infinite grid,

Gh = {x = (x1, x2) | xi = ki hi , ki ∈ Z, i = 1, 2}, (50)

where h = (h1, h2) is a grid spacing in the coordinate system {e1, e2}. Considering the
scalar Fourier modes, ϕh(θ

′, x) = eiθ
′
1x1 eiθ

′
2x2 , their vector counterparts are ϕh(θ

′, x) :=
ϕh(θ

′, x) · 1, where 1 = (1, . . . , 1)t ∈ R
q , (with q equal to the number of variables)

x ∈ Gh, and θ ′ ∈ �h = (−π/h1, π/h1] × (−π/h2, π/h2]. They give rise to the Fourier
space,

F(Gh) = span{ϕh(θ
′, ·) | θ ′ ∈ �h}.

From the expression of the back Fourier transformation, it follows that each vector discrete
function uh(x) can be written as a formal linear combination of the Fourier modes, which
are linearly independent discrete functions.

By considering vector operators Lh defined on the infinite grid and satisfying the assump-
tions of the LFA, it is fulfilled that the Fourier modes ϕh(θ

′, x) are formal eigenfunctions of
Lh . More precisely, the following relation reads

Lhϕh(θ
′, x) = L̃h(θ

′)ϕh(θ
′, x), (51)

where L̃h(θ
′) is the so-called symbol of operator Lh , which denotes the representation of the

discrete operator on the Fourier space.
Most classical iterative methods can be expressed by means of a splitting of the operator

Lh of the form Lh = L+
h + L−

h , where L
−
h relates the part of the operator corresponding to

the unknowns which have been relaxed before the current approximation, and L+
h to those

that are going to be updated in the current or in the following steps. In this way, the iteration
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matrix of the smoothing operator is given by Sh = −(L+
h )−1L−

h , and it is easy to prove that
the Fourier modes are also its eigenvectors, satisfying a relation like in (51), with its Fourier
symbol denoted as S̃h(θ ′). However, the overlapping block smoothers considered here do
not come from such a decomposition of the discrete operator. The distinction with respect
to other smoothers is that they update some variable more than once, due to the overlapping
of the local subdomains which are simultaneously solved, and this fact has to be taken into
account in the analysis because it causes that some intermediate errors appear apart from the
initial and final errors. For this reason, Vanka smoothers require a special strategy to perform
the local Fourier analysis.
To our knowledge, there are only few papers dealing with local Fourier analysis for over-
lapping smoothers, all of them for discretizations on rectangular grids. This analysis was
performed in [35] for the staggered finite-difference discretizations of the Stokes equations,
and in [24] for a mixed finite element discretization of the Laplace equation. In [32] an LFA
for overlapping block smoothers on triangular grids is presented. This tool was applied to
linear finite element discretizations for poroelasticity problems. Later, in [22], the analysis
for such overlapping block smoothers is performed on rectangular grids for finite element
discretizations of the grad-div, curl-curl and Stokes equations. In [31], we present and extend
this analysis to general discretizations on triangular grids, including some special techniques
for the case of edge-based discretizations. Two model problems are chosen to show this
analysis, but we keep in mind that it can be carried over to a variety of other problems and
other overlapping smoothers. The considered problems are the discretization by stabilized
linear finite elements of the Stokes problem, and the low-order Nédélec’s edge elements
for the curl-curl equation. Since the analysis of the Vanka smoother considered here for the
poroelasticity problem in analogous to the one presented in [32] and similar to that explained
in [31] for Stokes equations, we refer to the reader to these works in order to avoid to include
here very technical and involved calculations. Instead, we present some results obtained with
this analysis for both the full and the diagonal versions of the Vanka smoother. From now

on, in all the results, for simplicity of notation we will denote k = τ
κ

η
.

We start presenting some results for equilateral triangular grids. In Table 2, the two-grid
convergence factors ρ2g are displayed together with the experimentally measured W-cycle
convergence factorsρh,usingnine refinement levels,which have beenobtainedwith a random
initial guess and a right-hand side zero to avoid round-off errors. For a value of k = 10−8,

the results obtained for different number of pre- and post-smoothing steps, ν1, ν2, are shown
for both full and diagonal point-wise box-smoothers. In this table, we can observe the good
correspondence between the experimentally measured factors and the predicted ones, what
indicates that the proposed analysis gives very accurate predictions of the convergence factors
of the box-relaxation based multigrid method. Also it is seen that the behavior of full and
diagonal box smoothers, in this case, is identical, giving rise to almost the same values.

Next, we analyze the influence of parameter k on the behavior of box-type smoothers. To
this end, two pre- and one post-smoothing steps are considered, and the two-grid convergence
factors ρ2g, predicted by LFA, together with those factors experimentally computed, ρh, are
displayed in Table 3, for different values of k, varying from 10−4 to 10−13, by using both
full and diagonal point-wise box-smoothers. The experimentally obtained and the predicted
results match perfectly for any value of parameter k and, although the obtained results are
not independent of k, they are very satisfactory for any value of such parameter.

Due to the fact that the obtained results for full and diagonal point-wise box-smoothers are
very similar, the latest is preferred for the computations since this approach is significantly
cheaper than the full variant, and results in a very good performance.
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Table 2 Local Fourier analysis
results for full and diagonal
point-wise box-smoothers for
different number of pre- and
post-smoothing steps on an
equilateral triangular domain

ν1, ν2 Full point-wise
box-smoother

Diagonal point-wise
box-smoother

ρ2g ρh ρ2g ρh

1, 0 0.323 0.320 0.323 0.320

1, 1 0.123 0.120 0.123 0.120

2, 1 0.069 0.070 0.069 0.070

2, 2 0.045 0.046 0.043 0.044

Table 3 Local Fourier analysis
results for full and diagonal
point-wise box-smoothers on an
equilateral triangular domain for
different values of parameter k

k Full point-wise
box-smoother

Diagonal point-wise
box-smoother

ρ2g ρh ρ2g ρh

10−13 0.127 0.124 0.146 0.145

10−10 0.113 0.112 0.132 0.130

10−7 0.070 0.069 0.070 0.069

10−4 0.070 0.069 0.070 0.069

β

α

Fig. 10 Spectral radius ρ(M2h
h ) for the diagonal point-wise box-smoother with two pre- and one post-

smoothing steps for different triangles in function of two of their angles, for poroelasticity problem with
parameter k = 10−10

Despite the good behavior of the diagonal-Vanka basedmultigrid for equilateral triangula-
tions, formeshes characterized by a small angle, the obtained convergence factors deteriorate,
as we can see in Fig. 10. It shows the spectral radius ρ2g = ρ(M2h

h ) for diagonal point-wise
box-smoother with two pre- and one post-smoothing steps, for a value of k equal to 10−10,

for a wide range of values of angles α and β, which are geometric parameters determining
the shape of the triangular grid.
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Table 4 Local Fourier analysis
results for line-wise and diagonal
point-wise box-smoothers for
different values of parameter k,
on an isosceles triangular domain
with smallest angle 10◦

k Diagonal point-wise
box-smoother

Line-wise
box-smoother

ρ2g ρ2g

10−13 0.762 0.137

10−10 0.762 0.137

10−7 0.816 0.045

10−4 0.836 0.088

X

Y

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fig. 11 Coarsest triangulation of the computational domain and obtained grid in the hierarchy after four
refinement levels

In order to improve the results obtained for a very anisotropic grid, it is possible to
consider the use of a line-wise Vanka smoother. This relaxation simultaneously updates all
the unknowns involved in the blocks corresponding to the pressure points in a whole line. It
is also possible to perform a local Fourier analysis for this line smoother, and some results are
presented here in order to show how these smoothers can improve the obtained convergence
factors. To this end, we consider an isosceles triangular domain with smallest angle of 10◦.
In Table 4, the predicted two-grid convergence factors, ρ2g by considering two pre- and one
post-smoothing steps, are shown for both line-wise and diagonal point-wise box-smoothers
and for different values of parameter k. It is observed how the behavior of the diagonal
point-wise box-smoother deteriorates whereas line-wise box-relaxation gives a significant
improvement.

Finally, in order to demonstrate the good behavior of the proposed box-relaxation based
multigrid, we present some results for the previously considered poroelastic problem on a
cylindrical shell. In order to apply the proposed box-relaxation based geometric multigrid,
a hierarchy of grids must be defined as in previous experiments. Then, for the unstructured
coarsest grid, we have chosen the triangulation shown in left Fig. 11, which is composed of
18 quite regular triangles. From this triangulation, a regular refinement process is applied
giving rise to a hierarchy of meshes. In particular, due to the curvature of the boundary, the
refinement is performed leading to a good fitting of the grid to the real domain boundary
as more refinement is made. For instance, the obtained grid after four refinement levels is
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Fig. 12 Convergence of multigrid based on the diagonal point-wise box-smoother for different numbers of
refinement levels

depicted in right Fig. 11, as an example, where it can be seen how well the refined grid
approximates the real boundary.

Then, this problem is solved by applying the proposed multigrid method, considering
the diagonal point-wise box-smoother, and by using an F-cycle with two pre- and one post-
smoothing steps. In Fig. 12, the obtained convergence of the multigrid algorithm for this
poroelastic problem for different numbers of refinement levels is displayed. Satisfactory
results are obtained, since for such complicated problem the residual is reduced to a value of
10−6 after about 16 iterations of the multigrid algorithm.
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