8,734 research outputs found

    Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data

    Full text link
    The conventional CNN, widely used for two-dimensional images, however, is not directly applicable to non-regular geometric surface, such as a cortical thickness. We propose Geometric CNN (gCNN) that deals with data representation over a spherical surface and renders pattern recognition in a multi-shell mesh structure. The classification accuracy for sex was significantly higher than that of SVM and image based CNN. It only uses MRI thickness data to classify gender but this method can expand to classify disease from other MRI or fMRI dataComment: 29 page

    Topological exploration of artificial neuronal network dynamics

    Full text link
    One of the paramount challenges in neuroscience is to understand the dynamics of individual neurons and how they give rise to network dynamics when interconnected. Historically, researchers have resorted to graph theory, statistics, and statistical mechanics to describe the spatiotemporal structure of such network dynamics. Our novel approach employs tools from algebraic topology to characterize the global properties of network structure and dynamics. We propose a method based on persistent homology to automatically classify network dynamics using topological features of spaces built from various spike-train distances. We investigate the efficacy of our method by simulating activity in three small artificial neural networks with different sets of parameters, giving rise to dynamics that can be classified into four regimes. We then compute three measures of spike train similarity and use persistent homology to extract topological features that are fundamentally different from those used in traditional methods. Our results show that a machine learning classifier trained on these features can accurately predict the regime of the network it was trained on and also generalize to other networks that were not presented during training. Moreover, we demonstrate that using features extracted from multiple spike-train distances systematically improves the performance of our method

    Fractional norms and quasinorms do not help to overcome the curse of dimensionality

    Full text link
    The curse of dimensionality causes the well-known and widely discussed problems for machine learning methods. There is a hypothesis that using of the Manhattan distance and even fractional quasinorms lp (for p less than 1) can help to overcome the curse of dimensionality in classification problems. In this study, we systematically test this hypothesis. We confirm that fractional quasinorms have a greater relative contrast or coefficient of variation than the Euclidean norm l2, but we also demonstrate that the distance concentration shows qualitatively the same behaviour for all tested norms and quasinorms and the difference between them decays as dimension tends to infinity. Estimation of classification quality for kNN based on different norms and quasinorms shows that a greater relative contrast does not mean better classifier performance and the worst performance for different databases was shown by different norms (quasinorms). A systematic comparison shows that the difference of the performance of kNN based on lp for p=2, 1, and 0.5 is statistically insignificant

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ā€˜shotā€™ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ā€˜broadcastā€™ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    ELM regime classification by conformal prediction on an information manifold

    Get PDF
    Characterization and control of plasma instabilities known as edge-localized modes (ELMs) is crucial for the operation of fusion reactors. Recently, machine learning methods have demonstrated good potential in making useful inferences from stochastic fusion data sets. However, traditional classification methods do not offer an inherent estimate of the goodness of their prediction. In this paper, a distance-based conformal predictor classifier integrated with a geometric-probabilistic framework is presented. The first benefit of the approach lies in its comprehensive treatment of highly stochastic fusion data sets, by modeling the measurements with probability distributions in a metric space. This enables calculation of a natural distance measure between probability distributions: the Rao geodesic distance. Second, the predictions are accompanied by estimates of their accuracy and reliability. The method is applied to the classification of regimes characterized by different types of ELMs based on the measurements of global parameters and their error bars. This yields promising success rates and outperforms state-of-the-art automatic techniques for recognizing ELM signatures. The estimates of goodness of the predictions increase the confidence of classification by ELM experts, while allowing more reliable decisions regarding plasma control and at the same time increasing the robustness of the control system
    • ā€¦
    corecore