11 research outputs found

    Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment

    Full text link
    The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart gridComment: 5 pages, 2 figure

    Robustness: A New US Cyber Deterrence Strategy

    Get PDF
    The growing trend of computer network attacks provokes the necessity for a comprehensive cyber deterrence strategy to deter aggressors from attacking U.S. critical infrastructure. The current U.S. cyber deterrence strategy based on punishment is ineffective in deterring aggressors as evidenced by the increasing number of computer network attacks against U.S. critical infrastructure. Therefore, the U.S. should look towards an alternative strategy based on robustness to deny enemy objectives and absorb attacks. To identify the superior cyber deterrence strategy, this study uses a qualitative assessment based on open-sourced information to evaluate the effectiveness of each strategy. The findings of this study show that a deterrence strategy centered on robustness can be more effective in deterring aggressors. As a result, the United States would be better served to reform its cyber deterrence strategy by establishing a capability to absorb computer network attacks and deny enemy objectives as a deterrent

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    Multiscale design for system-wide peer-to-peer energy trading

    Get PDF
    The integration of renewable generation and the electrification of heating and transportation are critical for the sustainable energy transition toward net-zero greenhouse gas emissions. These changes require the large-scale adoption of distributed energy resources (DERs). Peer-to-peer (P2P) energy trading has gained attention as a new approach for incentivizing the uptake and coordination of DERs, with advantages for computational scalability, prosumer autonomy, and market competitiveness. However, major unresolved challenges remain for scaling out P2P trading, including enforcing network constraints, managing uncertainty, and mediating transmission and distribution conflicts. Here, we propose a novel multiscale design framework for P2P trading, with inter-platform coordination mechanisms to align local transactions with system-level requirements, and analytical tools to enhance long-term planning and investment decisions by accounting for forecast real-time operation. By integrating P2P trading into planning and operation across spatial and temporal scales, the adoption of large-scale DERs is tenable and can create economic, environmental, and social co-benefits

    BVS: A Lightweight Forward and Backward Secure Scheme for PMU Communications in Smart Grid

    Get PDF
    In smart grid, phaser measurement units (PMUs) can upload readings to utility centers via supervisory control and data acquisition (SCADA) or energy management system (EMS) to enable intelligent controlling and scheduling. It is critical to maintain the secrecy of readings so as to protect customers' privacy, together with integrity and source authentication for the reliability and stability of power scheduling. In particular, appealing security scheme needs to perform well in PMUs that usually have computational resource constraints, thus designed security protocols have to remain lightweight in terms of computation and storage. In this paper, we propose a family of schemes to solve this problem. They are public key based scheme (PKS), password based scheme (PWS) and billed value-based scheme (BVS). BVS can achieve forward and backward security and only relies on hash functions. Security analysis justifies that the proposed schemes, especially BVS, can attain the security goals with low computation and storage cost

    Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    Get PDF
    International audienceBiofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. We show, through 3D numerical simulations, that our approach is capable of discriminating between situations where the paddle wheel is rapidly moving water or slowly agitating the process. Moreover, the simulated velocity fields can provide lagrangian trajectories of the algae. The resulting light pattern to which each cell is submitted when travelling from light (surface) to dark (bottom) can then be derived. It will then be reproduced in lab experiments to study photosynthesis under realistic light patterns

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    Smart Grid communications in high traffic environments

    Get PDF
    The establishment of a previously non-existent data class known as the Smart Grid will pose many difficulties on current and future communication infrastructure. It is imperative that the Smart Grid (SG), as the reactionary and monitory arm of the Power Grid (PG), be able to communicate effectively between grid controllers and individual User Equipment (UE). By doing so, the successful implementation of SG applications can occur, including support for higher capacities of Renewable Energy Resources. As the SG matures, the number of UEs required is expected to rise increasing the traffic in an already burdened communications network. This thesis aims to optimally allocate radio resources such that the SG Quality of Service (QoS) requirements are satisfied with minimal effect on pre-existing traffic. To address this resource allocation problem, a Lotka-Volterra (LV) based resource allocation and scheduler was developed due to its ability to easily adapt to the dynamics of a telecommunications environment. Unlike previous resource allocation algorithms, the LV scheme allocated resources to each class as a function of its growth rate. By doing so, the QoS requirements of the SG were satisfied, with minimal effect on pre-existing traffic. Class queue latencies were reduced by intelligent scheduling of periodic traffic and forward allocation of resources. This thesis concludes that the SG will have a large effect on the telecommunications environment if not successfully controlled and monitored. This effect can be minimized by utilizing the proposed LV based resource allocation and scheduler system. Furthermore, it was shown that the allocation of periodic SG radio channels was optimized by continual updates of the LV model. This ensured the QoS requirements of the SG are achieved and provided enhanced performance. Successful integration of SG UEs in a wireless network can pave the way for increased capacity of Renewable and Intermittent Energy Resources operating on the PG

    Desempenho de Topologias de Redes de Comunicações aplicado ao monitoramento de Sistema Elétrico de Potência simulado em tempo real.

    Get PDF
    Esta tese apresenta a integração de um sistema elétrico de potencia simulado em tempo real a um programa externo caracterizando uma aplicação de monitoramento do perfil de tensão eficaz em um centro de controle do sistema elétrico. É apresentada uma breve descrição do conceito de redes elétricas inteligentes que visa a integração de diferentes aplicações ao legado e tradicional sistema elétrico de potencia, dando enfoque quanto a diferentes requisitos de desempenho disponibilizados pela literatura. Ao contrário do gerenciamento tradicional e unidirecional do fluxo de potência, as redes elétricas inteligentes apresentam novas formas de geração e modelos de negócios que obrigatoriamente dependem de uma infraestrutura de comunicação que contemple não somente os grandes geradores, linhas de transmissão e subestações de interconexão, mas também permita controle de cargas individuais de consumidores. Diferentes topologias e tecnologias de telecomunicações podem ser empregadas pelo setor elétrico e nesta tese foram empregadas tecnologias disponíveis aos consumidores de telecomunicações tradicionais de forma a integrar um simulador hospedado no CERIn e uma aplicação que pode empregar acesso a rede de dados interna ou externa à infraestrutura do CERIn. Para cada requisição enviada em diferentes redes e distancias pela aplicação externa, é monitorado o tempo de comunicação para se analisar quais das aplicações para redes elétricas inteligentes apresentadas no corpo desta tese é adequada e também definir parâmetros mais restritos quanto ao atraso admissível para diferentes aplicações
    corecore