430 research outputs found

    Numerical Simulations of Shock and Rarefaction Waves Interacting With Interfaces in Compressible Multiphase Flows

    Full text link
    Developing a highly accurate numerical framework to study multiphase mixing in high speed flows containing shear layers, shocks, and strong accelerations is critical to many scientific and engineering endeavors. These flows occur across a wide range of scales: from tiny bubbles in human tissue to massive stars collapsing. The lack of understanding of these flows has impeded the success of many engineering applications, our comprehension of astrophysical and planetary formation processes, and the development of biomedical technologies. Controlling mixing between different fluids is central to achieving fusion energy, where mixing is undesirable, and supersonic combustion, where enhanced mixing is important. Iron, found throughout the universe and a necessary component for life, is dispersed through the mixing processes of a dying star. Non-invasive treatments using ultrasound to induce bubble collapse in tissue are being developed to destroy tumors or deliver genes to specific cells. Laboratory experiments of these flows are challenging because the initial conditions and material properties are difficult to control, modern diagnostics are unable to resolve the flow dynamics and conditions, and experiments of these flows are expensive. Numerical simulations can circumvent these difficulties and, therefore, have become a necessary component of any scientific challenge. Advances in the three fields of numerical methods, high performance computing, and multiphase flow modeling are presented: (i) novel numerical methods to capture accurately the multiphase nature of the problem; (ii) modern high performance computing paradigms to resolve the disparate time and length scales of the physical processes; (iii) new insights and models of the dynamics of multiphase flows, including mixing through hydrodynamic instabilities. These studies have direct applications to engineering and biomedical fields such as fuel injection problems, plasma deposition, cancer treatments, and turbomachinery.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133458/1/marchdf_1.pd

    Development of a Pseudo Non-LTE model for Z-pinch simulations

    No full text
    Predicting the energetic and spectral characteristics of Z-pinch sources is a very delicate task. Z-pinch plasmas conditions are spread across a wide range of parameter space and often far from Local Thermodynamic Equilibrium (LTE). In addition, the increasing optical depth of the plasma at stagnation can have a strong influence on its own dynamics, suggesting that simultaneous solution of both the magnetohydrodynamic (MHD) and radiative response is required. Unfortunately, the estimation of the frequency and time dependent radiative properties of Z-pinches is computationally challenging and the recent improvements made to the parallel architecture of the 3D resistive Eulerian MHD code GORGON have only reinforced the strong emphasis already placed on optimizing the physics solvers used in Z-pinch simulations. To address these issues, we have developed a simple and fast pseudo NLTE code based on a Screened Hydrogenic Model (SHM) that can be run in-line with GORGON or as a post processing tool with synthetic spectra capabilities. Making use of a computationally inexpensive modification of the Saha equation, this highly optimized code has demonstrated a good ability to represent Non-LTE plasma conditions. In order to handle the amount of data generated by the spectral treatment of the billions of numerical cells constituting the simulation grids, an original data structure derived from a self-balancing binary search tree has been developed, enabling the use of Non-LTE DCA calculations in a large scale three dimensional environment for the first time. The implementation of this model is described in detail and comparisons with a commercial package are offered. Results from Z-pinch simulations performed with the new code are discussed and possible future improvements are presented

    ISCR Annual Report: Fical Year 2004

    Full text link

    Multi-physics simulations with Octopus

    Get PDF

    Twisted bilayer systems

    Get PDF

    Quantum Computing for Fusion Energy Science Applications

    Full text link
    This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron-Frobenius evolution operator, and the Koopman-von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendices. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.Comment: 42 pages; 12 figures; invited paper at the 2021-2022 International Sherwood Fusion Theory Conferenc

    Large Scale Computing and Storage Requirements for High Energy Physics

    Get PDF
    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans

    Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991
    • …
    corecore