17,997 research outputs found

    Drive systems for operation on deep-sea ROVs

    Get PDF
    Power systems for thruster actuators and other auxiliaries employed on work-class deep-sea ROVs subject to 300bar ambient pressures, are considered. Emphasis on 3×3 matrix converters for thrusters and 3×2 matrix converters for system auxiliaries, is given, along with experimental results showing operation during pressure cycling consistent with typical operational duties

    An Integral Battery Charger with Power Factor Correction for Electric Scooter

    Get PDF
    This paper presents an integral battery charger for an electric scooter with high voltage batteries and interior-permanent-magnet motor traction drive. The battery charger is derived from the power hardware of the scooter, with the ac motor drive that operates as three-phase boost rectifier with power factor correction capability. The control of the charger is also integrated into the scooter control firmware that is implemented on a fixed-point DSP controller. Current-controlled or voltage-controlled charge modes are actuated according to the requirements of the battery management system, that is embedded into the battery pack. With respect to previous integrated chargers, the ac current is absorbed at unitary power factor with no harmonic distortion. Moreover, no additional filtering is needed since the pulsewidth modulation ripple is minimized by means of phase interleaving. The feasibility of the integral charger with different ac motors (induction motor, surface-mounted phase modulation motor) is also discussed, by means of a general model purposely developed for three-phase ac machines. The effectiveness of the proposed battery charger is experimentally demonstrated on a prototype electric scooter, equipped with two Li-ion battery packs rated 260 V, 20 A

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Multilevel Multiphase Feedforward Space-Vector Modulation Technique

    Get PDF
    Multiphase converters have been applied to an increasing number of industrial applications in recent years. On the other hand, multilevel converters have become a mature technology mainly in medium- and high-power applications. One of the problems of multilevel converters is the dc voltage unbalance of the dc bus. Depending on the loading conditions and the number of levels of the converter, oscillations appear in the dc voltages of the dc link. This paper presents a feedforward modulation technique for multilevel multiphase converters that reduces the distortion under balanced or unbalanced dc conditions. The proposed modulation method can be applied to any multilevel-converter topology with any number of levels and phases. Experimental results are shown in order to validate the proposed feedforward modulation technique.Ministerio de Ciencia e Innovación DPI2009-07004Ministerio de Eduación y Ciencia TEC2007-6187

    New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives

    Get PDF
    Star-connected multiphase AC drives are being considered for electromovility applications such as electromechanical actuators (EMA), where high power density and fault tolerance is demanded. As for three-phase systems, common-mode voltage (CMV) is an issue for multiphase drives. CMV leads to shaft voltages between rotor and stator windings, generating bearing currents which accelerate bearing degradation and produce high electromagnetic interferences (EMI). CMV effects can be mitigated by using appropriate modulation techniques. Thus, this work proposes a new Hybrid PWM algorithm that effectively reduces CMV in five-phase AC electric drives, improving their reliability. All the mathematical background required to understand the proposal, i.e., vector transformations, vector sequences and calculation of analytical expressions for duty cycle determination are detailed. Additionally, practical details that simplify the implementation of the proposal in an FPGA are also included. This technique, HAZSL5M5-PWM, extends the linear range of the AZSL5M5-PWM modulation, providing a full linear range. Simulation results obtained in an accurate multiphase EMA model are provided, showing the validity of the proposed modulation approach.This work has been supported in part by the Government of the Basque Country within the fund for research groups of the Basque University system IT978-16 and in part by the Government of the Basque Country within the research program ELKARTEK as the project ENSOL (KK-2018/00040)

    Guidelines for Weighting Factors Adjustment in Finite State Model Predictive Control of Power Converters and Drives

    Get PDF
    INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY () (.2009.VICTORIA, AUSTRALIA)Model Predictive Control with a finite control set has emerged as a promising control tool for power converters and drives. One of the major advantages is the possibility to control several system variables with a single control law, by including them with appropriate weighting factors. However, at the present state of the art, these coefficients are determined empirically. There is no analytical or numerical method proposed yet to obtain an optimal solution. In addition, the empirical method is not always straightforward, and no procedures have been reported. This paper presents a first approach to a set of guidelines that reduce the uncertainty of this process. First a classification of different types of cost functions and weighting factors is presented. Then the different steps of the empirical process are explained. Finally, results for several power converters and drives applications are analyzed, which show the effectiveness of the proposed guidelines to reach appropriate weighting factors and control performance

    Fuzzy Controller for Matrix Converter System to Improve its Quality of Output

    Full text link
    In this paper, Fuzzy Logic controller is developed for ac/ac Matrix Converter. Furthermore, Total Harmonic Distortion is reduced significantly. Space Vector Algorithm is a method to improve power quality of the converter output. But its quality is limited to 86.7%.We are introduced a Cross coupled DQ axis controller to improve power quality. The Matrix Converter is an attractive topology for High voltage transformation ratio. A Matlab / Simulink simulation analysis of the Matrix Converter system is provided. The design and implementation of fuzzy controlled Matrix Converter is described. This AC-AC system is proposed as an effective replacement for the conventional AC-DC-AC system which employs a two-step power conversion.Comment: 11 page

    Maximum Torque Per Ampere Control Strategy of a 5-phase PM Generator in healthy and faulty modes for tidal marine turbine application

    Get PDF
    The work presented in this paper aims to propose a control strategy being able to extract efficiently energy from a fixed-pitch marine current turbine associated with a 5–phase Permanent Magnet Synchronous Generator (PMSG) in healthy mode and in faulty mode. The considered faults are opened phases. For each tidal current speed, the control strategy aims to extract the maximum power with respect of the maximum values of currents and voltages related to the converter. The maximum power is directly related to the Maximum Torque per Ampere (MTPA) control strategy characteristics (all the points which are below the MTPA torque VS rotating speed characteristic can be reached by the converter/generator set). This paper proposes a methodology to establish MTPA characteristics and calculate the corresponding current references in healthy mode and in faulty mode (one or two opened phases) for a 5-phase generator. The studied strategy includes flux weakening operations in the both modes.financement CIFRE Jeumont-Electric Altawes
    corecore