15,105 research outputs found

    H.264 motion estimator design

    Get PDF
    Recently, a new international standard for video compression named H.264 / MPEG-4 Part 10 is developed. This new standard offers significantly better video compression efficiency than previous international standards. The variable block size motion estimation is the most compute-intensive part of an H.264 video encoder. The full search method is impractical for real-time implementations since it requires a high computational complexity. Therefore, many fast motion estimation algorithms have been developed for real-time implementations. In this thesis, we used an SAD reuse based hierarchical motion estimation algorithm for real-time H.264 / MPEG-4 Part 10 video coding. This algorithm uses the Lagrangian cost parameter (SAD+λR) for selecting the best motion vector. We designed a high performance and low cost hardware architecture for real-time implementation of this algorithm. We have considered several alternative designs and decided on this architecture based on a cost/performance analysis. This architecture uses a novel data flow resulting in a low cost and high performance hardware. This hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 63 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 25 VGA frames (640x480) or 76 CIF frames (352x288) per second

    A High permormance hardware architecture for an sad reuse based hierarchical motion estimation algorithm for H.264 video coding

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of an SAD reuse based hierarchical motion estimation algorithm for H.264 / MPEG4 Part 10 video coding. This hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 68 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 27 VGA frames (640x480) or 82 CIF frames (352x288) per second

    Semi-hierarchical based motion estimation algorithm for the dirac video encoder

    Get PDF
    Having fast and efficient motion estimation is crucial in today’s advance video compression technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 Ă— 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    High performance hardware architecture for half-pixel accurate H.264 motion estimation

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of half-pel accurate variable block size motion estimation for H.264 / MPEG4 Part 10 video coding. The proposed architecture includes a novel half-pel interpolation hardware that is shared by novel half-pel search hardwares designed for each block size. This half-pel accurate motion estimation hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 85 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 30 HDTV frames (1280x720) per second
    • …
    corecore