240 research outputs found

    Efficient algorithms for the fast computation of space charge effects caused by charged particles in particle accelerators

    Get PDF
    In this dissertation, a Poisson solver is improved with three parts: the efficient integrated Green's function; the discrete cosine transform of the efficient integrated Green's function values; the implicitly zero-padded fast Fourier transform for charge density. In addition, the high performance computing technology is utilized for the further improvement of efficiency, such as: OpenMP API, OpenMP+CUDA, MPI, and MPI+OpenMP parallelizations. The examples and simulation results are matched with the results of the commonly used Poisson solver to demonstrate the accuracy performance

    The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on the BG/Q

    Full text link
    Remarkable observational advances have established a compelling cross-validated model of the Universe. Yet, two key pillars of this model -- dark matter and dark energy -- remain mysterious. Sky surveys that map billions of galaxies to explore the `Dark Universe', demand a corresponding extreme-scale simulation capability; the HACC (Hybrid/Hardware Accelerated Cosmology Code) framework has been designed to deliver this level of performance now, and into the future. With its novel algorithmic structure, HACC allows flexible tuning across diverse architectures, including accelerated and multi-core systems. On the IBM BG/Q, HACC attains unprecedented scalable performance -- currently 13.94 PFlops at 69.2% of peak and 90% parallel efficiency on 1,572,864 cores with an equal number of MPI ranks, and a concurrency of 6.3 million. This level of performance was achieved at extreme problem sizes, including a benchmark run with more than 3.6 trillion particles, significantly larger than any cosmological simulation yet performed.Comment: 11 pages, 11 figures, final version of paper for talk presented at SC1

    Optimization Techniques for Mapping Algorithms and Applications onto CUDA GPU Platforms and CPU-GPU Heterogeneous Platforms

    Get PDF
    An emerging trend in processor architecture seems to indicate the doubling of the number of cores per chip every two years with same or decreased clock speed. Of particular interest to this thesis is the class of many-core processors, which are becoming more attractive due to their high performance, low cost, and low power consumption. The main goal of this dissertation is to develop optimization techniques for mapping algorithms and applications onto CUDA GPUs and CPU-GPU heterogeneous platforms. The Fast Fourier transform (FFT) constitutes a fundamental tool in computational science and engineering, and hence a GPU-optimized implementation is of paramount importance. We first study the mapping of the 3D FFT onto the recent, CUDA GPUs and develop a new approach that minimizes the number of global memory accesses and overlaps the computations along the different dimensions. We obtain some of the fastest known implementations for the computation of multi-dimensional FFT. We then present a highly multithreaded FFT-based direct Poisson solver that is optimized for the recent NVIDIA GPUs. In addition to the massive multithreading, our algorithm carefully manages the multiple layers of the memory hierarchy so that all global memory accesses are coalesced into 128-bytes device memory transactions. As a result, we have achieved up to 375GFLOPS with a bandwidth of 120GB/s on the GTX 480. We further extend our methodology to deal with CPU-GPU based heterogeneous platforms for the case when the input is too large to fit on the GPU global memory. We develop optimization techniques for memory-bound, and computation-bound application. The main challenge here is to minimize data transfer between the CPU memory and the device memory and to overlap as much as possible these transfers with kernel execution. For memory-bounded applications, we achieve a near-peak effective PCIe bus bandwidth, 9-10GB/s and performance as high as 145 GFLOPS for multi-dimensional FFT computations and for solving the Poisson equation. We extend our CPU-GPU based software pipeline to a computation-bound application-DGEMM, and achieve the illusion of a memory of the CPU memory size and a computation throughput similar to a pure GPU
    • …
    corecore