301 research outputs found

    N-terminal proteomics assisted profiling of the unexplored translation initiation landscape in Arabidopsis thaliana

    Get PDF
    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well-and poorly-annotated genomes

    Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The accurate prediction of the initiation of translation in sequences of mRNA is an important activity for genome annotation. However, obtaining an accurate prediction is not always a simple task and can be modeled as a problem of classification between positive sequences (protein codifiers) and negative sequences (non-codifiers). The problem is highly imbalanced because each molecule of mRNA has a unique translation initiation site and various others that are not initiators. Therefore, this study focuses on the problem from the perspective of balancing classes and we present an undersampling balancing method, M-clus, which is based on clustering. The method also adds features to sequences and improves the performance of the classifier through the inclusion of knowledge obtained by the model, called InAKnow.</p> <p>Results</p> <p>Through this methodology, the measures of performance used (accuracy, sensitivity, specificity and adjusted accuracy) are greater than 93% for the <it>Mus musculus</it> and <it>Rattus norvegicus</it> organisms, and varied between 72.97% and 97.43% for the other organisms evaluated: <it>Arabidopsis thaliana</it>, <it>Caenorhabditis elegans</it>, <it>Drosophila melanogaster</it>, <it>Homo sapiens</it>, <it>Nasonia vitripennis</it>. The precision increases significantly by 39% and 22.9% for <it>Mus musculus</it> and <it>Rattus norvegicus</it>, respectively, when the knowledge obtained by the model is included. For the other organisms, the precision increases by between 37.10% and 59.49%. The inclusion of certain features during training, for example, the presence of ATG in the upstream region of the Translation Initiation Site, improves the rate of sensitivity by approximately 7%. Using the M-Clus balancing method generates a significant increase in the rate of sensitivity from 51.39% to 91.55% (<it>Mus musculus</it>) and from 47.45% to 88.09% (<it>Rattus norvegicus</it>).</p> <p>Conclusions</p> <p>In order to solve the problem of TIS prediction, the results indicate that the methodology proposed in this work is adequate, particularly when using the concept of acquired knowledge which increased the accuracy in all databases evaluated.</p

    Bacterial riboproteogenomics : the era of N-terminal proteoform existence revealed

    Get PDF
    With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome re-annotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms

    Representative transcript sets for evaluating a translational initiation sites predictor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Translational initiation site (TIS) prediction is a very important and actively studied topic in bioinformatics. In order to complete a comparative analysis, it is desirable to have several benchmark data sets which can be used to test the effectiveness of different algorithms. An ideal benchmark data set should be reliable, representative and readily available. Preferably, proteins encoded by members of the data set should also be representative of the protein population actually expressed in cellular specimens.</p> <p>Results</p> <p>In this paper, we report a general algorithm for constructing a reliable sequence collection that only includes mRNA sequences whose corresponding protein products present an average profile of the general protein population of a given organism, with respect to three major structural parameters. Four representative transcript collections, each derived from a model organism, have been obtained following the algorithm we propose. Evaluation of these data sets shows that they are reasonable representations of the spectrum of proteins obtained from cellular proteomic studies. Six state-of-the-art predictors have been used to test the usefulness of the construction algorithm that we proposed. Comparative study which reports the predictors' performance on our data set as well as three other existing benchmark collections has demonstrated the actual merits of our data sets as benchmark testing collections.</p> <p>Conclusion</p> <p>The proposed data set construction algorithm has demonstrated its property of being a general and widely applicable scheme. Our comparison with published proteomic studies has shown that the expression of our data set of transcripts generates a polypeptide population that is representative of that obtained from evaluation of biological specimens. Our data set thus represents "real world" transcripts that will allow more accurate evaluation of algorithms dedicated to identification of TISs, as well as other translational regulatory motifs within mRNA sequences. The algorithm proposed by us aims at compiling a redundancy-free data set by removing redundant copies of homologous proteins. The existence of such data sets may be useful for conducting statistical analyses of protein sequence-structure relations. At the current stage, our approach's focus is to obtain an "average" protein data set for any particular organism without posing much selection bias. However, with the three major protein structural parameters deeply integrated into the scheme, it would be a trivial task to extend the current method for obtaining a more selective protein data set, which may facilitate the study of some particular protein structure.</p

    PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration

    Get PDF
    An increasing amount of studies integrate mRNA sequencing data into MS-based proteomics to complement the translation product search space. However, several factors, including extensive regulation of mRNA translation and the need for three- or six-frame-translation, impede the use of mRNA-seq data for the construction of a protein sequence search database. With that in mind, we developed the PROTEOFORMER tool that automatically processes data of the recently developed ribosome profiling method (sequencing of ribosome-protected mRNA fragments), resulting in genome-wide visualization of ribosome occupancy. Our tool also includes a translation initiation site calling algorithm allowing the delineation of the open reading frames (ORFs) of all translation products. A complete protein synthesis-based sequence database can thus be compiled for mass spectrometry-based identification. This approach increases the overall protein identification rates with 3% and 11% (improved and new identifications) for human and mouse, respectively, and enables proteome-wide detection of 5'-extended proteoforms, upstream ORF translation and near-cognate translation start sites. The PROTEOFORMER tool is available as a stand-alone pipeline and has been implemented in the galaxy framework for ease of use

    METHODS FOR HIGH-THROUGHPUT COMPARATIVE GENOMICS AND DISTRIBUTED SEQUENCE ANALYSIS

    Get PDF
    High-throughput sequencing has accelerated applications of genomics throughout the world. The increased production and decentralization of sequencing has also created bottlenecks in computational analysis. In this dissertation, I provide novel computational methods to improve analysis throughput in three areas: whole genome multiple alignment, pan-genome annotation, and bioinformatics workflows. To aid in the study of populations, tools are needed that can quickly compare multiple genome sequences, millions of nucleotides in length. I present a new multiple alignment tool for whole genomes, named Mugsy, that implements a novel method for identifying syntenic regions. Mugsy is computationally efficient, does not require a reference genome, and is robust in identifying a rich complement of genetic variation including duplications, rearrangements, and large-scale gain and loss of sequence in mixtures of draft and completed genome data. Mugsy is evaluated on the alignment of several dozen bacterial chromosomes on a single computer and was the fastest program evaluated for the alignment of assembled human chromosome sequences from four individuals. A distributed version of the algorithm is also described and provides increased processing throughput using multiple CPUs. Numerous individual genomes are sequenced to study diversity, evolution and classify pan-genomes. Pan-genome annotations contain inconsistencies and errors that hinder comparative analysis, even within a single species. I introduce a new tool, Mugsy-Annotator, that identifies orthologs and anomalous gene structure across a pan-genome using whole genome multiple alignments. Identified anomalies include inconsistently located translation initiation sites and disrupted genes due to draft genome sequencing or pseudogenes. An evaluation of pan-genomes indicates that such anomalies are common and alternative annotations suggested by the tool can improve annotation consistency and quality. Finally, I describe the Cloud Virtual Resource, CloVR, a desktop application for automated sequence analysis that improves usability and accessibility of bioinformatics software and cloud computing resources. CloVR is installed on a personal computer as a virtual machine and requires minimal installation, addressing challenges in deploying bioinformatics workflows. CloVR also seamlessly accesses remote cloud computing resources for improved processing throughput. In a case study, I demonstrate the portability and scalability of CloVR and evaluate the costs and resources for microbial sequence analysis

    Extensive translation of circular RNAs driven by N6-methyladenosine

    Get PDF
    Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress

    prot4EST: Translating Expressed Sequence Tags from neglected genomes

    Get PDF
    BACKGROUND: The genomes of an increasing number of species are being investigated through generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. RESULTS: As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We show that this integrated approach goes a long way to overcoming the deficit in training data. CONCLUSIONS: prot4EST provides a portable EST translation solution and can be usefully applied to >95% of EST projects to improve downstream annotation. It is freely available from

    Developing a bioinformatics framework for proteogenomics

    Get PDF
    In the last 15 years, since the human genome was first sequenced, genome sequencing and annotation have continued to improve. However, genome annotation has not kept up with the accelerating rate of genome sequencing and as a result there is now a large backlog of genomic data waiting to be interpreted both quickly and accurately. Through advances in proteomics a new field has emerged to help improve genome annotation, termed proteogenomics, which uses peptide mass spectrometry data, enabling the discovery of novel protein coding genes, as well as the refinement and validation of known and putative protein-coding genes. The annotation of genomes relies heavily on ab initio gene prediction programs and/or mapping of a range of RNA transcripts. Although this method provides insights into the gene content of genomes it is unable to distinguish protein-coding genes from putative non-coding RNA genes. This problem is further confounded by the fact that only 5% of the public protein sequence repository at UniProt/SwissProt has been curated and derived from actual protein evidence. This thesis contends that it is critically important to incorporate proteomics data into genome annotation pipelines to provide experimental protein-coding evidence. Although there have been major improvements in proteogenomics over the last decade there are still numerous challenges to overcome. These key challenges include the loss of sensitivity when using inflated search spaces of putative sequences, how best to interpret novel identifications and how best to control for false discoveries. This thesis addresses the existing gap between the use of genomic and proteomic sources for accurate genome annotation by applying a proteogenomics approach with a customised methodology. This new approach was applied within four case studies: a prokaryote bacterium; a monocotyledonous wheat plant; a dicotyledonous grape plant; and human. The key contributions of this thesis are: a new methodology for proteogenomics analysis; 145 suggested gene refinements in Bradyrhizobium diazoefficiens (nitrogen-fixing bacteria); 55 new gene predictions (57 protein isoforms) in Vitis vinifera (grape); 49 new gene predictions (52 protein isoforms) in Homo sapiens (human); and 67 new gene predictions (70 protein isoforms) in Triticum aestivum (bread wheat). Lastly, a number of possible improvements for the studies conducted in this thesis and proteogenomics as a whole have been identified and discussed
    corecore