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ABSTRACT 

In the last 15 years, since the human genome was first sequenced, genome sequencing 

and annotation have continued to improve. However, genome annotation has not kept 

up with the accelerating rate of genome sequencing and as a result there is now a large 

backlog of genomic data waiting to be interpreted both quickly and accurately. Through 

advances in proteomics a new field has emerged to help improve genome annotation, 

termed proteogenomics, which uses peptide mass spectrometry data, enabling the 

discovery of novel protein coding genes, as well as the refinement and validation of 

known and putative protein-coding genes. 

The annotation of genomes relies heavily on ab initio gene prediction programs 

and/or mapping of a range of RNA transcripts. Although this method provides insights 

into the gene content of genomes it is unable to distinguish protein-coding genes from 

putative non-coding RNA genes. This problem is further confounded by the fact that 

only 5% of the public protein sequence repository at UniProt/SwissProt has been 

curated and derived from actual protein evidence. 

This thesis contends that it is critically important to incorporate proteomics data 

into genome annotation pipelines to provide experimental protein-coding evidence. 

Although there have been major improvements in proteogenomics over the last decade 

there are still numerous challenges to overcome. These key challenges include the loss 

of sensitivity when using inflated search spaces of putative sequences, how best to 

interpret novel identifications and how best to control for false discoveries. 

This thesis addresses the existing gap between the use of genomic and proteomic 

sources for accurate genome annotation by applying a proteogenomics approach with a 

customised methodology. This new approach was applied within four case studies: a 

prokaryote bacterium; a monocotyledonous wheat plant; a dicotyledonous grape plant; 
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and human. The key contributions of this thesis are: a new methodology for 

proteogenomics analysis; 145 suggested gene refinements in Bradyrhizobium 

diazoefficiens (nitrogen-fixing bacteria); 55 new gene predictions (57 protein isoforms) 

in Vitis vinifera (grape); 49 new gene predictions (52 protein isoforms) in Homo sapiens 

(human); and 67 new gene predictions (70 protein isoforms) in Triticum aestivum 

(bread wheat). Lastly, a number of possible improvements for the studies conducted in 

this thesis and proteogenomics as a whole have been identified and discussed. 
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1 INTRODUCTION 

Proteogenomics is a multi-omics approach for genome annotation, integrating 

proteomics and genomics, as well as evidence from transcriptomics. Over the last 

decade proteogenomics has become a popular field of research, and is becoming a key 

player in global genome annotation efforts at an accelerating rate. Advances in 

proteogenomics have been driven by the demand to meet the ever-advancing rate of 

genome sequencing technologies, as many diverse species from the tree of life are 

sequenced [1, 2]. Proteogenomics, and other related approaches such as RNA-seq 

technology, are now increasingly being employed in genome annotation efforts. As a 

result, the impact of the “non-model” organism will be significantly reduced or non-

existent in the not too distant future [3], as every genomics study begins to meet the 

same level of annotation as that of model organisms. 

Genome annotation often uses public curated protein sequence repositories such 

as UniProt/SwissProt, however only 5% of the entries are derived from actual protein 

evidence, while the remaining 95% have been inferred from genomics. There are a 

number of challenges that need to be addressed in order to enable proteogenomics to 

resolve such an anomaly and to provide genome annotation with direct protein-coding 

evidence. 

This thesis provides an in-depth review of the main challenges in 

proteogenomics and through the course of this thesis a new methodology evolved to 

improve the peptide identification rate from MS-experiments on large genome and 

transcriptome sequence data. The viability of the new methodology was demonstrated 

through four case studies: Bradyrhizobium diazoefficiens (nitrogen-fixing bacteria), 

Vitis vinifera (grape), Homo sapiens (human) and Triticum aestivum (bread wheat). 

Lastly, from insights gleaned from this thesis, there were considerations for how 

proteogenomics could be conducted in the future, such as using technologies to 
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supplement the database with sequence variants to account for sequence variations 

between the MS/MS spectra and target genome, considerations with the use of top-

down proteomics and multiplexed data-independent acquisition (DIA) to improve depth 

and breadth of coverage, and spectral archives to improve specificity, sensitivity and 

enable a comprehensive screening of annotation events. 

In Chapter 2, an overview of molecular biology, genomics, MS-based 

proteomics, and proteogenomics and bioinformatics workflow environments is 

presented. Within Section 2.1, the basics of molecular biology are covered in detail; 

Section 2.2 encompasses genomics, including the current methods employed in genome 

sequencing and genome annotation; Section 2.3 details MS-based proteomics, which 

includes technologies and tools involved in bottom-up proteomics, top-down 

proteomics, methods of MS/MS spectral interpretation, MS/MS spectral pre-processing 

procedures, database searching and statistical analyses involved in MS/MS spectral and 

peptide identifications, as well as outlining the latest emerging proteomics technologies; 

Section 2.4 provides an in-depth coverage of proteogenomics, which includes current 

trends in methodology, statistical analysis, the level of annotation which can be applied 

in proteogenomics, and the current tools which are available; and lastly in Section 2.5, 

bioinformatics workflow environments are discussed in terms of how they could impact 

analysis across a wide variety of -omics platforms, including proteogenomics, and 

include a range of the current popular workflow environments. 

In Chapter 3, the methodologies employed within the thesis are described in 

detail, which includes pre-processing of datasets, conversion of data formats, RNA-seq 

alignments, database preparation, database searching, optimisation steps, the 

proteogenomics workflow and parameters used, different strategies applied in false 

discovery rate (FDR) filtering, screening of events, and gene prediction. 
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 In Chapter 4, the proteogenomics analysis of Bradyrhizobium diazoefficiens, a 

nitrogen-fixing bacterium, was conducted using the current NCBI genome annotation 

and MS/MS spectra from the studies conducted by Delmotte et al. [4] and Koch et al. 

[5]. A total of 259 novel peptides were identified, contributing to 155 novel annotation 

events consisting of 9 frame shifts, 22 exon boundaries, 19 gene boundaries, 45 reverse 

strands, and 60 novel genes, annotating a total of 145 genes. A two-pass search 

approach to improve on sensitivity of the analysis was also investigated and a possible 

sequencing error was identified. This analysis contributed to a publication in the journal 

Proteomics [6]. 

 In Chapter 5, the proteogenomics analysis of Vitis vinifera (grape) was 

conducted, improving on the current 12Xv2.1 genome annotation from the study 

conducted by Vitulo et al. [7] representing the variety Pinot Noir, an extension of the 

dissertation author’s previous proteogenomics study [8]. A number of datasets were 

utilised, including a large MS/MS spectral dataset from [9], derived from Cabernet 

Sauvignon shoot tips and berry skins from the study in [8], while RNA-seq data was 

obtained from a variety of tissues [10], as well as a large, currently unpublished RNA-

seq dataset from the berry skins of a range of grape varieties. A total of 133 novel 

peptides were identified, contributing to 341 novel annotation events, consisting of 5 

frame shifts, 37 translated UTRs, 16 exon boundaries, 1 novel splice, 9 novel exons, 

160 gene boundaries, 112 reverse strands and 1 novel gene event, annotating a total of 

216 genes and 326 protein isoforms. These annotations led to a total of 110 novel 

peptides which contributed to validate 57 Augustus predicted proteins. In addition, a 

possible over-assembly of the genome and a reduction in sensitivity of analysis 

compared to smaller genomes was identified, indicating a need to further refine the 

method of FDR filtering. 
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 In Chapter 6, the proteogenomics analysis of Homo sapiens (Human) was 

conducted, improving on the GENCODE v19 annotation. A large MS/MS spectral 

dataset from the ENCODE study in [11], derived from lymphoblastoid cell line 

GM12878, and RNA-seq data obtained from NCBI GEO accession GSE30567 were 

utilised. A total of 77 novel peptides were identified, contributing to 617 novel 

annotation events, consisting of 7 frame shifts, 4 translated UTRs, 27 exon boundaries, 

23 novel exons, 289 gene boundaries, 262 reverse strands, and 5 novel gene events, 

annotating a total of 147 genes and 609 protein isoforms. These annotations led to a 

total of 66 novel peptides which supported 52 Augustus predicted proteins. In addition, 

a two-pass search approach with improved two-stage FDR strategy was established, 

which was able to identify 35 more novel peptides compared to previous established 

methods, and identified 15,020 more peptides than the previous ENCODE study [11]. 

 In Chapter 7, the proteogenomics analysis of Triticum aestivum (bread wheat) 

was conducted, improving on the Wheat MIPS v2.2 genome annotation and also 

extending the proteogenomics analysis conducted by the dissertation author within the 

study by Mayer and colleagues [12]. A range of MS/MS spectra derived from different 

tissues and protease digests were derived from Wheat flour from cultivar Butte 86 in the 

study from Dupont and colleagues [13], digested with trypsin, chymotrypsin and 

thermolysin and meiotically developing anthers from a cross between rye (Secale 

cereale cultivar Petkus) and wheat (Triticum aestivum cultivar Chinese Spring), 

digested with trypsin and AspN [14]. RNA-seq data were also utilised, derived from 

Chinese Spring from [12, 15], including a range of other cultivars downloaded from the 

Sequence Read Archive (SRA). A total of 290 novel peptides were identified, 

contributing to 189 novel annotation events, consisting of 46 frame shifts, 9 translated 

UTRs, 17 exon boundaries, 39 novel exons, 17 gene boundaries, 24 reverse strands, and 

37 novel gene events, annotating a total of 96 genes and 189 protein isoforms. These 
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annotations identified a total of 180 novel peptides which validated 70 Augustus 

predicted proteins. In addition, a two-pass search approach with improved two-stage 

FDR strategy was also applied, reducing the impact of the inflated search space. Based 

on the methodology applied, and comparing the same dataset, there was an ~8x 

improvement in sensitivity compared to the study reported in [12]. The benefits of 

merging proteogenomics results derived from multiple protease digests was also 

highlighted, as well as the negative impact and resulting difficulties that the highly 

fragmented wheat genome had on the accuracy of proteogenomics analysis. 

 In Chapter 8, the general conclusions outline the findings, caveats and 

conclusions drawn from the case studies, and provide suggestions to revisit some of 

these case studies in the future with more datasets and new methodologies, as well as 

provide suggestions for improvements and future directions that proteogenomics will 

likely take. These new methodologies and suggestions take the form of: 1) improving 

the accuracy of defining annotation events; 2) further refining the search space; 3) the 

addition of multiple other types of annotation events; 4) the use of variant information 

in splice graphs; 5) accounting for missing genomic regions in highly fragmented 

genomes using homologous sequences; 6) leveraging N-terminomics to help define 

events and confidently identify translation initiation start (TIS) sites; 7) ways to more 

accurately discriminate peptides as known and novel; 8) ways to improve the sensitivity 

of event identification with little or no impact to the false positive rate; 9) ways to 

improve the functionality of the proteogenomics workflow; 10) implement new 

technologies such as top-down proteomics and multiplexed data-independent 

acquisition (DIA) to improve depth and breadth of coverage; and finally 11) the use of 

highly specific MS/MS search tools such as spectral library search tools or spectral 

archives to bring proteogenomics into the domain of spectrum-spectrum matching, to 

vastly improve specificity and discrimination between true and false positives. 
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2 LITERATURE REVIEW 

2.1 MOLECULAR BIOLOGY: A PRIMER 

All organisms have a genome, which contains information to construct the 

building blocks of an organism. The genome itself is made up of deoxy-ribose nucleic 

acid (DNA) sequences, which is comprised of Adenine (A), Thyamine (T), Cytosine 

(C), and Guanine (G) nucleotides. Shorter stretches of sequences contained within are 

called genes and are categorized as protein coding and non-protein-coding, which lead 

to the construction of proteins and functional Ribonucleic acid (RNA) molecules, 

respectively. 

The general model of protein production is the same for both eukaryotic and 

prokaryotic organisms, but the structure and organization of genes are quite different. 

Firstly, the genic region of DNA is transcribed or copied into messenger RNA (mRNA), 

also called a transcript, as it is ‘transcribed’ from the gene, and then each transcript is 

‘translated’ by ribosomes into proteins, the functional building blocks of an organism. 

Each gene is also in proximity to a regulatory region, termed ‘enhancer’, ‘promoter’, 

and ‘repressor’ regions, which contain sequences responsible for the regulation of 

transcription of the gene and by extension regulation of the expression of proteins. This 

standard model of molecular biology is also referred to as the “central dogma of 

molecular biology” [16, 17], the fundamentals of which are summarized in Figure 2.1. 
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Figure 2.1 Central dogma of molecular biology 

Genes are transcribed into pre-mRNA, processed by splicesomes into a variety of mature mRNA, which 

are then transported to the cytoplasm where the transcripts are translated into polypeptides, later forming 

into complex protein structures (image courtesy of the Online Computational Biology Textbook at 

PBWorks (http://compbio.pbworks.com/f/central_dogma.jpg)). 

A more detailed examination of the processes highlighted in Figure 2.1, reveals 

a web of complex interactions involving RNA transcription and protein translation. 

These processes differ significantly between eukaryotes and prokaryotes. The protein-

coding genes of eukaryotes are transcribed to a primary transcript or precursor 

messenger RNA (pre-mRNA), which takes place in the nucleus of the cell and is 

produced by an enzyme called RNA polymerase, which synthesizes an RNA strand in a 

5’ to 3’ direction complementary to the DNA strand. The pre-mRNA then has its 5’ end 

http://compbio.pbworks.com/f/central_dogma.jpg)
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capped with 7-methylguanosine by the enzyme guanylyltransferase which prevents 

degradation during translation, regulates exportation from the nucleus, promotes 

translation and 5’ proximal intron excision [18, 19]. Multiple adenosine 

monophosphates are then added to its 3’ end (poly(A) tail), through a process called 

polyadenylation, catalysed by polyadenylate polymerase. The addition of a poly(A) tail 

to mRNA, occurs in both eukaryotes and prokaryotes, and assists with a number of 

functions, which include transportation from the nucleus into the cytoplasm [20], 

translation [21], stability [22, 23], and conversely, its degradation [24]. 

The resulting polyadenylated RNA strand or premature mRNA consists of long 

stretches of both exons and introns and in eukaryotes the exons are spliced out by an 

enzyme called a spliceosome, which cuts out the introns at specific donor sites at the 5’ 

end of the transcript and at the acceptor site of the 3’ end of the transcript. Donor and 

acceptor sites are commonly of the GU-AG (donor-acceptor) variety, although more 

rarer versions do exist [25]. 

The resulting exons are then reassembled into a variety of different mature 

mRNAs containing one or many exons and in some rare cases introns are retained. The 

final structure of mRNA contains a 5’ un-translated region (UTR) upstream and a 3’ 

untranslated region downstream, flanking a region called an open reading frame (ORF). 

This entire process from precursor mRNA to the wide variety of mature mRNAs, is 

called alternative splicing (AS) [26, 27]. The mature mRNAs are then transported from 

the nucleus into the cytoplasm, in which their ORFs are translated into the final protein 

products. This step is accomplished by the ribosomes, composed of protein and RNA, 

which reads the ORF, three nucleotides at a time, referred to as a triplet codon, and 

translates the codon into an amino acid using different transfer RNAs (tRNAs) 

containing different bound amino acids. The tRNAs bind to three complementary bases 

or the anticodon as they pass through the ribosome, at which point the amino acids 
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ligate, forming a growing polypeptide chain which when complete folds into its 

functional three-dimensional structure and final protein product (Figure 2.1). The 

resulting functional proteins, which originate from the same gene, but are translated 

from different spliced mRNAs are known as protein isoforms, which can differ 

significantly in their sequence structure and biological functions [26]. In the case of 

non-protein coding RNA genes, the protein translations are skipped, and they are simply 

transcribed to RNA molecules. These non-protein-coding RNA molecules have been 

found to outnumber the protein-coding variety by a significant amount in vertebrate 

genomes [28] and are involved in regulatory processes, such as tRNAs important in the 

synthesis of proteins mentioned above and in higher eukaryotes micro RNAs 

(miRNAs), which are involved in the regulation of gene expression through the 

suppression of mRNA translation [29]. The distinction between protein-coding and non-

protein-coding RNA was further explained by the recently completed ENCODE human 

genome project [30], which found that 80% of the human genome which was previously 

classified as “junk DNA”, actually plays a functional role [31]. However, the exact 

proportion, which is functional, is highly debatable and would require further 

investigative analysis. 

In complex organisms, such as humans, AS is clearly the source of such 

complexity and a dominant factor in regulation and function, as well as a source of 

protein diversity and organism complexity in higher eukaryotes [26, 32, 33]. The role 

that AS plays in protein diversity and complexity is illustrated when comparing the 

relatively few genes discovered in the human genome (~23,000 genes), where there are 

approximately 6 or more protein coding transcripts expressed per gene [34-36], to the 

similar number of genes in a simpler organism such as C. elegans (~20,000 genes), 

where there are 1 to 2 protein coding transcripts expressed per gene [37]. 
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In the case of prokaryotes (bacteria), transcription and translation is much 

simpler because AS does not take place, each gene contains only one exon and there is 

no 5’ capping and polyadenylation, with the flow of information from gene, to mRNA, 

to protein being significantly more direct and linear. The differences between the 

‘central dogma’ of a bacterium and a eukaryote are quite apparent (Figure 2.2). 

Figure 2.2 Comparative molecular machinery of a eukaryote and prokaryote 

The differences between the ‘central dogma’ of a prokaryote (bacterium) (A) and a eukaryote (B), 

illustrates the clearer linear relationship between gene and protein product in bacteria, whereas a gene in 

eukaryotes can represent many multiples of protein products (image courtesy of PJ Russell, iGenetics 3rd 

edition [38] (http://www.mun.ca/biology/scarr/iGen3_05-09.html)). 

The genome is considered a relatively static and unchanging component of an 

organism (apart from random mutation and somatic recombination of immunoglobulin 

genes [39]), which comprises all genes (protein and non-protein coding) and regulatory 

micro RNAs, promoter, suppressor, and enhancer regions. The proteome of an organism 

on the other hand is very dynamic, as it represents the complement of all protein-coding 

genes being expressed across different environmental conditions and developmental 

time-points over the organism’s life cycle. 

http://www.mun.ca/biology/scarr/iGen3_05-09.html)
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Different fields of research have developed around the understanding of each 

step of this “central dogma of molecular biology”, resulting in the field of genomics, 

transcriptomics and proteomics, all of which can feed into each other to provide a better 

understand of the underlying biochemical mechanisms and biological functions of 

genes. It is the interplay between genomics, transcriptomics and proteomics, and how 

they can be combined using cutting edge bioinformatics tools to further genomic 

annotation, which is the focus of this thesis. 

2.2 GENOMICS 

This section provides an in-depth background on genomics, covering genome 

sequencing and genome annotation as in the context of proteogenomics. 

2.2.1 Genome sequencing 

The field of genome sequencing experienced a surge of technological advancement in 

the late 1990s, with the first genome being sequenced, a bacterium called Haemophilus 

influenzae Rd. [40], which was rapidly succeeded by the sequencing of further bacterial 

genomes [41, 42], yeast [43], worm [44], fruit fly [45], plant [46], mouse [47], rat [48] 

and culminated with the sequencing of the complete human genome [35, 49]. Since that 

time many more organisms have been sequenced. 

As of September 2015, 7,256 genome-sequencing projects have been completed 

and 25,173 have permanent drafts, with 32,633 genomes still pending completion 

(http://www.genomesonline.org/). These numbers will continue to increase at an 

exponential rate as more genome sequencing projects begin and as the technologies 

improve to sequence them. 

Sequencing technologies have advanced significantly over the last 38 years 

(Table 2.1). Frederick Sanger pioneered the first technology in 1977, which used a 

chain-termination method (Sanger sequencing) and in that same year Walter Gilbert 

http://www.genomesonline.org/
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developed a different technology using chemical modification of DNA sequences and 

subsequent cleavage at specific bases. Sanger sequencing was ultimately adopted as the 

universal standard for DNA sequencing due to its ease of use, efficiency, and its 

capacity to reach sequence lengths of 600 bp with an error rate of only 0.001% and 

yield of 1.9 - 84 Kbp per run [50]. Many automated Sanger sequencers were introduced 

over the years to improve the sequencing speed, and ultimately they were used in the 

sequencing of the human genome [51]. However, it wasn’t until 2005 and later that the 

genome sequencing landscape dramatically changed with the introduction of the 2nd 

generation of sequencing technology, termed “next generation sequencing” (NGS) 

technologies. The first of the NGS technologies to arrive was 454 in 2005 (now Roche 

454), which was initially capable of reaching read lengths of 100 - 150 bp and then later 

upwards of 700 bp with an error rate of 0.1%, but with higher error rates observed with 

polybases of over 6 bp and with a yield of 0.7 Gbp per run [50]. The technology is 

based on pyrosequencing, which detects the pyrophosphate released (detected as light) 

during nucleotide incorporation, as opposed to Sanger sequencing which uses 

dideoxynucleotides to terminate chain amplification. The following year saw the release 

of the Genome Analyzer (GA) by Solexa (now Illumina GA/HiSeq/MiSeq) with a large 

improvement in throughput and yield compared to previous technologies, capable of 

reaching read lengths of 150 bp with <2% error rate and a yield of 30 Gbp per run [50, 

52]. The technology uses a technique termed sequence by synthesis (SBS), which uses a 

library with fixed adapters, denatures them into single strands and attaches them to a 

flowcell, where bridge amplification occurs to create clusters containing clonal DNA 

fragments. The library is then spliced into single fragments using a linearization 

enzyme, dideoxynucleotides (ddATP, ddGTP, ddCTP, ddTTP) containing different 

cleavable fluorescent dyes and a removable blocking group which anneals to a template 

one base at a time, detected by a charge-coupled device (CCD). The same year also saw 
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the development of SOLiD (Sequencing by Oligo Ligation Detection) (now Applied 

Biosystems (AB) SOLiD), initially capable of reaching read lengths of 35 bp and later 

upwards of 85 bp with a 0.01% error rate and a yield of 120 Gbp per run. The 

technology uses a technique termed ligation sequencing, which is a two-base 

sequencing technology. Once the libraries attached to a flowcell they were then 

sequenced by an 8 base-probe ligation, incorporating a fluorescent dye, which produces 

a signal when annealing the last few bases to the template. Collectively these 

technologies, now termed 1st generation NGS technologies have shown improvements 

over the years in throughput, accuracy and cost compared to the now dated Sanger 

technologies [50]. 

A few years later, in 2010 and 2011, saw the arrival of more advanced genome 

sequencing technologies, which straddled the divide between 2nd and 3rd generation 

genome sequencing technologies. The Helicos Genetic Analysis System developed by 

Helicos BioSciences [53] was capable of reaching read lengths of 15 - 50 bp with a 

variable error rate depending on read length: an error rate of 0.60% was achieved at a 

read length of 30 bp and an achieved yield of 35 Gbp per run [54]. The other new 

genome sequencing technology was the Ion Personal Genome Machine (PGM) 

developed by Illumina and Ion Torrent [55] which was capable of reaching read lengths 

of 200 bp, with an error rate of 1.71% [52]. Unfortunately, the Helicos Genetic Analysis 

System was never commercially realised, as Helicos BioSciences was delisted in April 

2010. 

The two main differences in these technologies compared with the previous 

NGS technologies were, in the case of Helicos Genetic Analysis System, the use of a 

form of Single Molecule Sequencing (SMS) called Single Molecule Florescent 

Sequencing (SMFS), which obviated the need for DNA amplification through the 

Polymerase Chain Reaction (PCR) along with its inherent errors and biases’, and in the 
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case of Ion PGM, real time signal detection which provided faster sequencing and 

significantly lower upfront costs [56, 57]. With Ion PGM, each time a nucleotide was 

incorporated onto the end of a DNA strand during DNA synthesis by DNA polymerase, 

a proton was released which altered the pH of the solution, and was subsequently 

detected by a semiconductor [55]. With the Helicos Genetic Analysis System on the 

other hand, DNA molecules were hybridized to a primer and each time a Virtual 

Terminator nucleotide [54] with fluorescent dye was incorporated and the 

complementary strand extended by DNA polymerase an image was taken. The 

fluorescent dye was then cleaved off followed by the addition of another Virtual 

terminator nucleotide with fluorescent dye and DNA polymerase and the process would 

repeat. The process can also be produced in parallel across many different DNA 

fragments, significantly improving the throughput and overall yield compared to 

previous NGS technologies [53]. 

In recent years a number of newer technologies have emerged, termed 3rd 

generation technologies, which were a technological leap forward compared to all the 

previously mentioned NGS technologies. These 3rd generation technologies provide 

both real time sequencing, measuring the incorporation of each nucleotide along the 

strand one at a time, and single molecule sequencing where DNA amplification through 

PCR is not needed. In early 2009 Pacific Bioscience (PacBio) first published their work 

on a single molecule, real time sequencing (SMRT) technology, which could reach read 

lengths ≥3,000 bp, however these were plagued with error rates of around 13% and the 

technology could achieve a yield of 100 Mbp per run [52]. The SMRT technology was 

capable of measuring the incorporation of each fluorescently labelled 

deoxyribonucleoside triphosphate (dNTP) along a template bound DNA fragment. A 

SMRT cell comprises millions of 50 nm wells called zero-mode waveguides (ZMWs), 

consisting of a set of enzymes, a single DNA fragment and a template bound to the 
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bottom. The ZMW allowed for precise detection of nucleotide incorporation each time a 

single fluorophore (fluorescent dye) was excited by a laser by preventing no other 

sources of light into the well. The fluorescent signal was then detected in real-time by a 

camera. The millions of ZMWs running in parallel allowed for very high throughputs 

[50, 58, 59]. 

Another 3rd generation technology, called Nanopore sequencing has been in 

development for most of a decade [60-62] and has matured with the release of the first 

working machine developed by Oxford Nanopore Technologies in 2012 [63], capable of 

reaching read lengths >5,000 bp with speeds of 1 bp per 10 nanoseconds [62]. The 

technology relies on passing a DNA sequence through a nanopore, a biopore with a 

diameter on the nanoscale, in which the sequence is then deduced by measuring changes 

in the ion current as each nucleotide (A, G, C, T) passes through the narrowest 

constriction of the pore. The technology negates the previous requirements for DNA 

amplification by PCR, fluorescent labelling and optical measurements. A number of 

challenges still need to be overcome with this exciting new technology with further 

likely improvements in the foreseeable future [50, 64]. 

Table 2.1 Genome sequencing technologies 

Sequencing 
technology 

Sequence 
length (bp) 

Sequencing 
time 

Error rate (%) Yield per run 
Cost per 
Mbp* 

Year of 
emergence 

Sanger 600 
20 min - 3 
hours 

0.001 1.9-84 Kbp $2400 1977 

454 100-700 10 hours 0.1 0.7 Gbp $13 2005 

Illumina Genome 
Analyzer 

150 10 days <2.0 30 Gbp $0.02 2006 

SOLiD 85 7 days 0.01 120 Gbp $0.04 2006 

Helicos 15-50 
5 hours - 1 
day 

0.60 35 Gbp NA 2011-2012 

Ion Torrent 100 2 hours 1.70 
0.02 – 1 Gbp 
(depends on 
chip format) 

$1 2011-2012 

PacBio ≥3,000 2 hours 13.0 0.1 Gbp $2 2009 

Nanopore ≥5,000 
1 bp per 10 
nanoseconds 

NA NA NA 2010-2012 

* All costs based on sequencer manufacturer and sequencing provider [50, 52]. 

NA: Not available 
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In recent years, the throughput of next generation sequencing has surpassed the 

speed and cost-benefit barrier, with the sequencing of more than 2 human genomes per 

day, during the 1,000 Genome Project, which sequenced and compared 1,092 human 

genomes [65]. 

Together, these technologies highlight the incredible rate at which genome 

sequencing is progressing. With this progress in mind, the question then needs to be 

posed as to how to process and understand the level of information produced. 

2.2.2 Genome annotation 

The speed at which genomes are now being sequenced and their reduced costs poses a 

problem of how to deal with the large quantities of data being generated. Genomic 

assembly and annotation significantly lags behind the progress that the field of genome 

sequencing has obtained. Many genomes over the last decade have been assembled 

from reads generated using 2nd generation technology, using shorter reads (e.g. 

Illumina), often leading to highly fragmented assemblies, particularly in genomic 

regions containing large numbers of repeat elements [66] or high/low GC content due to 

PCR bias [67, 68]. Depending on the size of the genome, this can result in a highly 

fragmented genome, and in the case of de novo assembly, chimeric scaffolds and 

contigs can form where the de novo algorithm used for the assembly is unable to resolve 

large repeat regions when the read length is equal to or less than the repeat length [69, 

70]. In recent studies it has been shown that using mate-pair information (where a reads 

location is known in relation to another read), can be used to improve the assemblies 

and resolve repeat regions (as long as the insert size between reads is longer than the 

repeat region) [71], and in addition a concept called path extension is able to resolve 

longer repeat regions where the insert sizes are inadequate [72]. Fortunately, smarter 

ways to use short reads is not the only solution, as many of these problems will 

disappear in the coming years as the 3rd generation technologies mature, with longer 
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reads being obtainable (easier to assemble), and with no PCR bias (see previous Section 

2.2.1). 

 As a consequence from the use of shorter sequence reads over the last decade 

and with many larger genomes being sequenced and assembled, genomic annotation, 

which is the act of finding the locations of genes and annotating them with structural 

and biological functional information, has now become more difficult than it has been 

in the past [73]. This is mainly due to the highly fragmented genomes that are now 

being assembled, as a result of short reads and large repeat regions in some genomes, 

such as with the early genome projects, Drosophila melanogaster [74, 75] and the 

human genome project [35, 76]. Additionally, gene finding and annotation isn’t a clear-

cut process, and can often lead to false positives, misannotations or completely missed 

genes [77-84]. In addition, our understanding of what defines a gene is not clear-cut, 

especially since the conclusion on the ENCODE project [30] where it is now understood 

that the boundaries of a gene are poorly defined due to overlapping protein products 

[85]. 

The statement that a genome is “complete” is often misleading, when there is no 

certainty that a genome annotation is truly complete in its entirety. This is certainly 

more true with eukaryotes, due to their complex gene structure as a result of AS. 

Consequently, misannotations are more often found in bacterial genomes where the 

error can be more readily detected. Additionally, misannotations can propagate errors in 

the annotations of other genomes in comparative genomics studies. Using comparative 

genomics to assign annotations to other genomes should be undertaken with caution, as 

errors can be introduced from sequencing errors, alignment errors, and changes in 

nucleotide function and differing biological functions between features such as splice 

donor sites. Iteratively using more genomes in such as study can lead to more noise 

from such errors [86], transferring the error to other genome annotations, termed 
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’transitive disaster’. Therefore, it is best to use at best only a few closely related 

genomes, or one that is much more highly conserved, with the genome of interest. 

 To correct all these genomic misannotations and prevent the scenarios as 

outlined above would be a very large undertaking, incurring high costs and time 

involved. Better genomic annotation practices and standards would result [87-89], but 

the end-product could not completely ensure further errors would not occur, or assist in 

speeding up the annotation process. Therefore, a highly accurate, faster and automated 

approach is needed. 

A number of gene prediction tools have been developed over the years, which 

apply various approaches, classified as: ‘ab initio’, ‘combiner’, and ‘similarity and 

homology’. Ab initio gene prediction tools identify genes by following established 

rules, such as imposed limits on gene size, GC content, transcription start and stop sites 

and also apply mathematical models. A number of approaches include the Generalised 

Hidden-Markov Models (GHMM) [90, 91], machine-learning techniques such as 

support vector machines (SVMs) [92], which were one of the first types of gene 

prediction tools made available [93-96] and a more recent mathematical approach called 

conditional random field (CRF) [97-100]. 

The ab initio tools can provide a fast and easy means to obtain gene predictions 

and their exon-intron structures without necessarily needing any external evidence, 

apart from the use of training parameters to improve the prediction for each specific 

genome, like codon frequency and the distributions of exon-intron lengths, which can 

often be obtained from closely related genomes if available. Ab initio gene predictors 

however only predict the most likely locations of coding DNA sequences (CDS) and are 

unable to detect the locations of untranslated regions (UTRs), sites of AS and they have 

limited accuracy with exon-intron boundaries. A number of ab initio gene prediction 
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tools also include evidence-driven predictions, such as outlined in Table 2.2. By 

providing weighted (i.e. ranking some evidence higher than others) external sources of 

evidence to the ab initio prediction tools, such as sequence alignments from expressed 

sequence tags (ESTs), protein alignments, and RNA-seq alignments, the accuracy of the 

ab initio predictions can be improved. Unfortunately, this requires a great deal of work 

and pre-processing of the data, such as alignment to genomic regions, before being 

presented to the ab initio gene prediction tool. The ‘combiner’-based gene prediction 

tools simply take evidence from multiple different sources, including predictions from 

other prediction tools, and select a prediction based on a consensus of intron-exon 

structure. Examples of such tools are outlined in Table 2.2. The ‘similarity and 

homology’ based gene prediction tools, as the name suggests use similarity and 

homology sequence alignments with known gene sequences from other closely related 

genomic regions, preferentially between conserved genomic regions, potentially 

identifying genes with identical function with the aim of predicting the sites of genes in 

the genome of interest. Examples of such tools are outlined in Table 2.2, all of which 

can also be used to generate evidence for the previously mentioned evidence-driven ab 

initio gene prediction tools. 
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Table 2.2 Types of gene prediction tools and their employed method of prediction 

Gene prediction method  Gene prediction tool Reference(s) 

Ab initio 
(evidence-driven) 

Augustus [101, 102] 

TwinScan [103] 

FGENESH  [104] 

Gnomon  [105] 

SNAP [106] 

mGene [107] 

Combiner 

JIGSAW, and  [108] 

EVidenceModeler (EVM) [109] 

GAZE  [110] 

Genomix  [111] 

GLEAN  [112] 

Evigan  [113] 

EGPred [114] 

Similarity and homology 

SIM4 [115] 

EST2Genome [116] 

Procrustes  [117] 

Spidey  [118] 

GeneSeqer [119] 

AGenDA [120] 

BLAST [121] 

BLAT [122] 

GeneWise [123, 124] 

Exonerate [125] 

Bowtie2-TopHat2 [126] 

STAR [127] 

GIGOgene [128] 

GMAP [129] 

GSNAP [130] 

Many of the above mentioned gene prediction tools are often incorporated into 

genome annotation pipelines, which can be broken down into a number of different 

types, based on the level of automation: manual, semi-automated, automated and high-

throughput automated. The manual approaches tend towards being highly accurate, 

costly and slow processes, and by contrast, as the annotation pipeline becomes further 

automated with a magnitude of throughput increase, there is often a trade off in the 

accuracy of the annotation, depending on how the annotation pipeline is automated and 

the level of evidence supplied or lack thereof.  
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Sometimes multiple gene predictions tools can be used together, building on 

each of their strengths, with the pipeline taking the consensus predictions, which are 

supported by external evidence from genomic alignments from RNA-seq, ESTs and 

proteins. Other approaches such as combiners, as mentioned above, incorporate multiple 

gene predictions. 

A number of well-known manual, semi-automated, automated and high-

throughput automated genome annotation pipelines, which utilise many of the above 

gene prediction strategies, are pipelines such as those listed in Table 2.3, some of which 

target specific classes of genomes, such as bacterial (IMG, Prokka and RAST) or larger 

complex eukaryotic genomes (NCBI, Ensembl and MIPS), and specifically tailored for 

niche genomes such as large complex plant genomes (TriAnnot and PlandSEED). Other 

genome annotation pipelines are manual efforts, like the HAVANA group who curated 

the human genome and who make their annotations available through the Vertebrate 

Genome Annotation Database (VEGA) [131]. 

The outputs from these pipelines can be used to train and improve the accuracy 

of gene prediction tools, which themselves can be re-used in the pipeline. For example, 

Maker2 can streamline gene prediction tool training, allowing for easy incorporation 

into tools such as Augustus or SNAP. A comprehensive overview of genome annotation 

can be found in [73] and [86]. 
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Table 2.3 Genome annotation pipelines 

Level of automation Annotation pipeline References 

Semi-Automated MIPS [132] 

Semi-Automated IMG [133] 

Automated RAST [134] 

High throughput automated TriAnnot [135] 

High throughput automated PlantSEED [136] 

High throughput automated Maker2 [137] 

High throughput automated Prokka [138] 

Automated AutoFACT [139] 

Automated PASA [140] 

Automated Ensembl [141] 

Automated NCBI [142] 

Manual HAVANA [143] 

Because the genome annotation process often uses ab initio approaches, based 

on pre-defined rules, and consequently due to a limited understanding of gene structure, 

which can vary widely between organisms, such approaches are prone to errors and 

inconsistencies [144]. Even in cases where the evidence is available it may be 

incomplete, such as with transcript-based annotation with un-spliced mRNA or 

nonsense transcripts. The few errors that can be detected are painstakingly corrected 

through manual annotation. As genomic sequencing costs reduce and the rates at which 

they are sequenced increases, the use of a number of genome annotation approaches 

becomes impractical. Therefore, there is now an urgency to produce high throughput 

automated annotation pipelines of higher quality and throughput than before, accepting 

multiple lines of evidence before an annotation is considered “complete” and 

significantly reducing the amount of time and manual annotation required to still 

achieve a high quality level of curation.   

2.3 MASS SPECTROMETRY-BASED PROTEOMICS 

This section provides an in-depth background on MS-based proteomics, covering 

current trends in mass spectrometry technology, proteomics techniques and algorithmic 

approaches to interpret and statistically validate MS/MS spectra. In relevance to 

proteogenomics, of particular interest will be given towards the types of mass 
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spectrometers currently employed in proteomics, as well as the database searching 

methods used in MS/MS spectral interpretation and statistical validation; as such 

strategies are employed throughout this thesis. 

The field of proteomics is focused primarily on the identification of proteins, the 

identification of signal pathways, cellular localization, quantification, their interaction 

in protein-protein networks and complexes and to understand the roles that post-

translational modifications (PTMs) play in these complex networks [145]. 

Mass spectrometry (MS) has been continually improving in throughput, 

specificity, sensitivity, and dynamic range [146] for well over a century since its 

inception, and it has been increasingly used for proteomics, to quantify and identify 

proteins [147-151]. Mass spectrometry has also benefitted greatly from improvements 

in sample handling (generally a clean, dust-free work environment and good sterile 

techniques) and separation techniques (forms of Liquid Chromatography (LC)) and the 

high performance of various MS instruments. 

There are a wide variety of mass spectrometers available, ranging in sensitivity 

and throughput. The most commonly and currently used MS instruments in the field of 

proteomics are ion trap mass spectrometers [152]. These mass spectrometers have high 

data acquisition rates and are known to generate enormous amounts of data of low 

resolution and of low mass accuracy, which affects the level of confidence assigned to 

peptide sequences, with just 10-15% of peptide assignments being regarded as correct 

[153, 154]. An example of a mass spectrometer and its general workflow can be seen in 

Figure 2.3. 
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Figure 2.3 General workflow of MS-based proteomics 

The workflow applied in MS-based proteomics, in this example, with a Quadrupole Time-of-Flight 

(QTOF) mass spectrometer, generally takes the form of: (A) preparing the sample and forming technical 

replicates, running on a SDS-page gel (or taking whole cell lysates); (B) digesting the proteins with a 

protease such as trypsin; (C) followed by injection of the sample onto an LC column followed with 

electro-spray ionisation (ESI) (alternatives being MALDI, with ionisation in a matrix compound), with 

MS1 taking place in the first quadrupole (q1), and MS2 (MS/MS) taking place in the second quadrupole 

(q2), entering the TOF chamber, followed by; (D) detection of the precursor peptide ion mass and; (E) 

fragmented ions masses, where de novo sequencing can take place (modified from [147]). 

A more advanced range of mass spectrometers called hybrid-fourier transform 

(hybrid-FT) mass spectrometers [155, 156] are capable of high mass resolutions of 30-

500 kilodaltons (kDa) and very high mass accuracy within a few parts per million 

(ppm). The throughput and sensitivity is maximized on these mass spectrometers by 

collecting MS data at a higher resolution and accuracy, and recording the MS/MS data 

at a higher speed, but at a lower resolution and accuracy [157]. A higher resolution of 

MS/MS spectra allows for precursor mass ions to have their charge states determined 

[158, 159]. This allows for the detection of higher mass ranges at higher charge states 

and lower cost, with each mass peak having a m/z (mass to charge) ratio, and with a 

higher mass accuracy, coupled with stricter mass tolerance windows allows search 

algorithms to narrow down the number of possible peptide candidates, consequently 

improving the confidence level for peptide matches [160, 161]. 



 

 25 

2.3.1 Bottom-up proteomics and strategies 

In an MS-based proteomics experiment a number of approaches can be applied 

depending on the desired outcomes. In one approach a protein mixture is first 

fractionated via two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), 

which separates the proteins in two dimensions, by their isoelectric point (pI) and 

molecular mass (MW) [162]. What follows is termed bottom-up proteomics, whereby 

each spot on the gel is excised and the proteins within are then enzymatically digested 

by a protease such as trypsin, chymotrypsin, thermolysin or endopeptidase V8 (Glu-C), 

each of which cleaves proteins at various specific sites. Trypsin is used in most cases, 

producing peptides with a median length of 15 residues with a basic C-terminal end that 

can trap a charge [163] and is approximately 1,600 Daltons (Da) in size, which is well 

within the detectable mass range of most mass spectrometers. 

Once the peptides are ready for analysis, there are a number of options from 

which to choose. Often if all that is desired is protein identification, a technique called 

peptide mass fingerprinting (PMF) can be applied which looks at intact peptides. The 

common approach is to use a time-of-flight mass spectrometer (TOF-MS), which can 

have a High Performance Liquid Chromatography (HPLC) setup with what is termed 

electrospray ionization (ESI). This approach separates peptides according to their 

molecular weight (MW) with a C18 column before the peptides elute off and are ionized 

in a fine spray with an applied electric charge, before entering into a gas phase and 

passing into the mass spectrometer. Alternatively, the TOF-MS can use a Matrix-

assisted laser desorption/ionization (MALDI) setup. Following the extraction of 

digested peptides from the gel pieces, a compound called a matrix is applied to the 

sample, which assists with ionization. This method utilizes a laser to ionize the peptides, 

which then enter the mass spectrometer for analysis. Regardless of the ionization 

method used, the samples now entering the TOF-MS fly to the end of a long cylinder, 
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assisted by large electric fields within a vacuum. The time taken to reach the detector 

and the electric field applied is proportional to the mass of each ionized peptide. The 

larger the electric field, the larger the flight path of each ionized peptide. This 

essentially increases the resolving power of the machine. The process is analogous to 

the length of a C18 column in HPLC: the longer the column, the greater the resolution of 

each mass peak. A similar approach is illustrated in Figure 2.3, applying the use of a 

TOF, however in PMF only the detection of MS1 is carried out with intact peptide ions 

detected. 

The peptide masses obtained from PMF can then be matched to a database with 

a list of peptide masses from known proteins, using search tools such as MOWSE [164], 

Mascot [165], MS-Fit [166], PeptIdent [167], ProFound [168] and Aldente [169]. These 

peptide masses are calculated from protein sequences, digested in silico using a specific 

software program, which cuts the protein sequences at specific cleavage sites based on 

the known specificity of different proteases such as trypsin. However, the actual 

sequences of the peptides in the sample themselves remain unknown. 

Apart from protein identification by PMF, other applications include the varietal 

typing of wheat and barley using pattern matching techniques, where the distinct peaks 

from a PMF between a number of different varieties can readily be identified [170, 

171]. Other applications include a similar concept, using peptide mass values from 

many known samples to train a naïve Bayes classification algorithm, to classify 

unknown samples [172], an analogous concept to biomarker discovery in medicine 

[173], among other similar studies using bottom-up proteomics for understanding 

disease [174-176]. 

The use of a 2D gel at the initial stages, followed by HPLC or MALDI, is 

effective in reducing the sample complexity and purifying the proteins. This method can 
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be relatively low in throughput and the coverage of the resulting proteome also is 

relatively poor. However, the MADLI-TOF stage itself can be quite sensitive and of 

high-throughput, but the use of 2D gel and peptide separation significantly reduces the 

overall proteome coverage and throughput. To overcome this limitation another method 

is available called Multidimensional Protein Identification Technology (MudPIT) [151], 

which makes use of multi-dimensional HPLC and replaces the use of a 2D gel. The 

technique combined with another approach called shotgun proteomics, where whole 

protein samples are first digested by a protease, can significantly improve proteome 

coverage and throughput. Shotgun proteomics is not unlike shotgun genome 

sequencing, in that fragments of the original sequence are created and then reassembled. 

Following protease digestion of the protein the peptide mixture is then separated by 

multidimensional HPLC (2D HPLC), where the peptides are separated by their pI and 

MW using a HPLC column packed with Strong Cation Exchange (SCX) resin and C18 

Reverse Phase (RP) material [151, 154]. The peptides are then eluted off the column 

and ionized, usually by ESI, passed through the mass spectrometer and subsequently 

analysed by the detector. 

Following 2D HPLC in a MudPIT setup, the mass spectrometer normally used is 

a tandem mass spectrometer (MS2 or MS/MS), which can be designed in many formats 

including, but are not limited to quadrupole TOF (QTOF) (Figure 2.3) and quadrupole 

ion trap (QIT), as well as variations on these with additional mass analysers above the 

MS2. For example, TripleTOF or triple quadrupole (QqQ) also referred to as MS3 or 

MS/MS/MS and provides further separation of peptide fragment ions and higher 

resolution. 

Such tandem mass spectrometers are becoming a common method for 

identifying peptides and proteins with high sensitivity, specificity and high throughput 

[177]. Through this method, the precursor ions obtained by the first pass of MS (MS1) 
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at low energy collision-induced dissociation (CID) are fragmented, most commonly 

along the peptide bonds during the second pass of MS (MS2, MS/MS). The resulting 

fragments of a peptide are measured as a mass over charge ratio (m/z), which mirrors 

the overall structure of the peptide ion [178, 179]. According to Roepstorff’s 

nomenclature [179], within the MS/MS spectra at around 10-50 electron volts (eV) 

collision energy the peptide ions are denoted as a, b and c when the charge is on the N-

terminal side of the fragmented peptide, and x, y, z when the charge is on the C-terminal 

side. When the collision energies involved in fragmentation are of orders of magnitude 

greater than around 1 kilo electron volt (keV), the peptide side-chains are broken 

generating side-chain ions, denoted as d, v and w, which can be formed by the loss of 

some or all side-chains [180]. 

The sequence of the fragmented peptides can be calculated through de novo 

sequencing, which uses first principles to determine the amino acid sequence of a 

protein from the MS/MS spectra by looking at the mass differences between peaks [181, 

182]. This was previously conducted manually using a technique called Edman 

degradation [183], requiring chemical labelling of amino acids and the cleavage of each 

amino acid in succession to form amino acid derivatives, followed by electrophoresis to 

identify the amino acids. The procedure was expensive and slow by today’s standards 

using mass spectrometry-based technology which can sequence many hundreds of 

thousands of peptide sequences simultaneously, mapping out the entire proteome within 

a fraction of the time. In addition, the MS/MS spectra can also be matched directly to 

known sequences through the use of MS/MS database search algorithms, discussed in 

detail later on. 

A number of alternatives to the above mentioned MudPIT setup using 2D HPLC 

with SCX and RP, can include other alternative fractionation methods, such as size 

exclusion liquid chromatograph (SEC) [184, 185], capillary electrophoresis (CE) [186, 
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187], capillary isoelectric focusing (CIEF) [188], and gel-based isoelectric focusing 

[189] in the 1st dimension, followed by RP chromatography in the 2nd dimension. 

Another approach called gas-phase fractionation (GPF) [190, 191] can also be applied 

which uses the mass spectrometer to resolve and separate out the different precursor 

ions over a set number of m/z ranges before fragmentation by mass [192, 193] and ion 

intensity (a measure of the number of detected fragments) [194, 195], using iteration 

from different fractions of the same sample by RP chromatography. The proteome 

coverage obtainable with this approach is limited to the number of fractions (m/z 

ranges) applied and the amount of sample available. 

A cost-effective approach to improving proteome coverage is to use a range of 

proteases to digest the sample. In tandem mass spectrometry, peptides of around 7-35 

amino acids (aa), protonated, low charge state (z) and high mass-to-charge ratio (m/z) 

are ideal. Trypsin meets many of these requirements and so has been successful as a 

protease, becoming the common choice. Trypsin cleaves specifically after arginine (R) 

and lysine (K), but not before proline [196] although an absence of proline has recently 

been identified [197]. However, trypsin does have some disadvantages, such as 

autolysis in alkaline pH, requiring that lysine and arginine to be evenly distributed 

across a proteome, which is often not the case, and its thermostability is poor. The use 

of other proteases in conjunction with trypsin would ensure much better coverage of the 

proteome [198]. 

Another approach to improve proteome coverage can be found in the way in 

which mass spectrometry works at the level of precursor ion fragmentation. 

Historically, the majority of MS-based proteomics work has used one fragmentation 

mode, namely CID to derive the MS/MS spectra due to the limitations of the technology 

at the time, and subsequently many MS/MS search tools were optimized solely for CID 

MS/MS spectra. A number of alternative fragmentation methods are now becoming 
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utilized by newer mass spectrometers, such as electron transfer dissociation (ETD), 

higher-energy collisional dissociation (HCD), CID/ETD or HCD/ETD paired MS/MS 

spectra and the less frequently used electron capture dissociation (ECD), used only by a 

few mass spectrometers. The quality and usability of MS/MS spectra depends on the 

fragmentation method used for each precursor ion, which is highly dependent on 

various properties; for example, ETD is more suitable for precursor charge states of >2 

[199-202], acidity due to PTMs such as phosphorylation [203-205], and is more suitable 

for de novo sequencing due to its high levels of fragmentation [206, 207]. Since the 

introduction of hybrid MS/MS machines (QTOF, QIT, TripleTOF etc), which can 

implement a number of fragmentation methods in parallel, an opportunity has arisen to 

use these different methods in a complementary way. The advantages and disadvantages 

of using various fragmentation methods on different precursor ions have been 

thoroughly investigated by Frese et al. 2011 [208]. The combination of these various 

methods has been shown particularly with CID and ETD, which could be used to 

significantly improve proteome sequence coverage [201-203, 205, 206, 209-211]. 

Another approach which leverages mixed CID/ETD MS/MS spectra uses data-

dependent decision tree logic during MS analysis and before MS/MS, while the mass 

spectrometer is running, to determine which fragmentation method is the most 

appropriate to use based on the precursor ion charge state (z) and m/z value. This 

method significantly improves the number of peptide identifications significantly over 

the use of single fragmentation methods alone [206]. 

Shotgun proteomics, which employs a bottom-up proteomics approach, has 

often used a data-dependent acquisition (DDA) method for the selection of precursor 

and fragment ions for analysis.  Briefly, the DDA approach scans for precursor ions 

above certain thresholds for intensity, charge state etc at MS1. The selected precursor 

ions are then sequenced by product ion fragmentation at MS2. Through shotgun 
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proteomics, enough of the sample can be supplied for analysis to improve the number of 

precursor ions passing the selected thresholds, thus improving the overall proteome 

coverage. However this is not ideal and the approach has a number of drawbacks, 

including slow speed [212], random selection of precursor ions, and poor 

reproducibility [213], narrow dynamic range [214], problems with mixture or 

multiplexed MS/MS spectra (co-fragmentation of ≥2 precursor ions within the same 

MS/MS spectra) [215, 216], low reproducibility and others. 

Mass spectrometry has allowed improvements in throughput, the identification 

of proteins, and reliability of inferring protein expression levels, however achieving 

proteome-wide coverage has remained a problem [146, 217]. This is due to different 

protein extraction techniques and the varying conditions under which proteins are 

expressed, as well as the difficulty of detecting lowly expressed proteins in a sea of 

highly abundant proteins. 

One of the more pressing limitations of bottom-up proteomics in terms of 

protein discovery and identification is the ambiguity present with the assignment of 

peptides to proteins, because many proteins share peptide sequences, known as the 

protein inference problem [218-220]. Due to the digestion and fragmentation of intact 

proteins, reassignment back to the proteins becomes problematic if the coverage for a 

particular protein is limited, especially when databases contain multiple isoforms of the 

same protein, or particular peptide sequences are common within protein families. This 

often requires identification of unique peptides or proteotypic peptides, which appear in 

no other isoform to identify the correct protein. However, as is often the case, not every 

protein isoform has an identified unique or proteotypic peptide, limiting its application 

across the whole proteome. 
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2.3.2 Top-down proteomics: A complement to bottom-up proteomics 

A significant development in the field of proteomics, which circumvents the inherent 

problems in bottom-up proteomics, such as the protein inference problem mentioned 

above, is top-down MS proteomics. Top-down proteomics is the MS analysis of intact 

proteins and large peptides [221-232], which is appropriate for the localization of 

multiple PTMs across the entire length of a protein, and the identification of multiple 

proteoforms [233], and is highly suitable for proteotyping of diseases in medicine. 

However, due to the very nature of some proteins that are insoluble, complete analysis 

of all proteins across the whole proteome is not possible. By contrast, traditional 

bottom-up approaches can only provide a limited “fragmented” view across the whole 

proteome, on average, 25% of the full length protein [146], indicating that in a bottom-

up experiment many PTMs are not detected but many more peptides overall can be 

identified due to the higher solubility of smaller peptides and their propensity to ionise. 

The differences between bottom-up and top-down proteomics is illustrated in Figure 2.4 

(modified from [234]). 
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Figure 2.4 Top-down versus Bottom-up proteomics 

Fragmentation of proteins in top-down proteomics shows more complete coverage of a single protein, and 

unambiguous identification, including more identified PTMs, but lacks coverage across the whole 

proteome. By comparison, bottom-up proteomics shows limited coverage and ambiguous identification of 

a single protein, identifying only some PTMs, and has much wider coverage of the whole proteome 

(modified from [234]). 

Although top-down proteomics is powerful, it has been less commonly used. 

Top-down mass spectrometry has generally been limited with separation strategies for 

whole intact proteins (restricting its capability to single purified proteins), 

fragmentation, computational tools and with upper limits on the detectable protein mass 

with significant impacts on throughput [235-239]. However, top-down proteomics can 

now allow for the analysis of complex mixtures of proteins consisting of many 

hundreds to thousands of proteins, utilizing recent advances in separation techniques, 

fragmentation and improved detection limits (<60 kDa) of the MS instrumentation [232, 

240-245]. To overcome the restrictions current mass spectrometry technologies have 

imposed on the size limits of top-down proteomics, a technique called middle-down 

proteomics was applied, with large peptides generated (<6 kDa) from target specific 

proteases, followed by analysis with the normal top-down approach. This has the 

advantage of identifying proteoforms larger than the top-down limit of ~60 kDa, while 

gaining the sensitivity of bottom-up proteomics [246]. These rapidly changing trends in 
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top-down proteomics have been outlined in a comprehensive review [233] and in a 

clinical setting [247]. 

Top-down proteomics is less sensitive than bottom-up proteomics, due to its 

inherent insolubility and ionization problems. As both approaches further improve in 

terms of throughput, they will ultimately be used as standard in a synergistic manner. 

The use of both approaches can also allow the testing of hypotheses such as the location 

of the N-terminal end of proteins, the presence of N-terminal methionine excision 

(NME) [248] and signal peptide cleavage. In addition, in the future there will likely be a 

merger of multiple approaches, from peptides, whole intact-proteins and whole protein 

complexes [249]. 

2.3.3 Next generation bottom-up proteomics 

Over the last decade there have been substantial improvements in mass spectrometry. A 

number of recently developed techniques have overcome the drawbacks of the 

traditional DDA approaches used in bottom-up proteomics by taking a broader sweep of 

all peptide ions in a sample, thus providing much greater proteome coverage, by 

selecting all precursor masses at MS1, and by extension all possible fragment ions at 

MS2. This approach is known as data-independent acquisition (DIA), originally 

developed in [250], and subsequently improved [251, 252]. A study demonstrating the 

advantages of DIA over DDA was undertaken [253]. The DIA approach allows for MS 

analysis of all precursor ions (no selection process based on intensity etc) in a complex 

mixture of peptides with no loss in detection, resulting in much higher sequence 

coverage, with fewer samples being required and with improved reproducibility 

compared to DDA. 

A number of different approaches based on DIA have emerged, which include 

MSE [254-258], all-ion fragmentation (AIF) [259], Fourier transform-all reaction 
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monitoring (FT-ARM) [260], Sequential Window Acquisition of all THeoretical Mass 

Spectra (SWATH-MS) [261-264], and improvements to this method utilizing 

multiplexed MS/MS [265], to resolve MS/MS spectra containing multiple precursor 

ions and spectra. All of these methods have their individual advantages and 

disadvantages, and by comparison with DDA. In addition, Precursor Acquisition 

Independent From Ion Count (PAcIFIC) [266, 267] is a DIA method that applies small 

precursor windows across a small mass range requiring multiple injections of sample, 

unlike the other DIA methods mentioned. The main advantage over DDA is improved 

proteome coverage and efficiency of sampling the proteome, with the ability to examine 

less abundant proteins. This advantage is, however, also a disadvantage, in that the 

MS/MS spectra are highly complex and noisy, requiring significant pre-processing, and 

since the number of MS/MS spectra is so large, analysing the data becomes a 

computational challenge. The large amount of data also brings up the issue of storage, 

although an advantage of this issue is that it allows further interpretation at a later date 

without having to re-sample and begin a new bottom-up experiment. Comprehensive 

reviews of the different DIA approaches to handle multiplexed and non-multiplexed 

MS/MS spectra can be seen in [268, 269]. A similar problem to multiplexed MS/MS 

spectra is mixture MS/MS spectra. It is often assumed that a single spectrum contains a 

single peptide, but in reality there can be multiple peptides residing in a single 

spectrum, which have the same precursor ion. A number of approaches have been 

developed over the years to identify multiple peptides from a single spectrum, including 

ProbIDTree [270], MSPLIT [271], MixDB [272] and more recently MixGF [273]. 

Approaches to addressing the problem of mixture and multiplexed MS/MS 

spectra will gradually become more mainstream as the tools improve, with an eventual 

integration of DIA with both top-down and bottom-up proteomics, thus opening up MS-

based proteomics to a whole new level and effectively putting it on the same playing 
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field as the latest next generation genome sequencing technologies in terms of 

throughput and coverage. 

2.3.4 MS/MS spectral identification strategies 

Over the last 20 years MS/MS search tools have evolved along with the capabilities of 

the mass spectrometers at the time. The vast majority of MS/MS search approaches 

have used CID MS/MS spectra, with data obtained from DDA mass spectrometry 

approaches. Search strategies have since been extended to include other fragmentation 

types, such as ETD and HCD. Search tools have also been developed for MS/MS 

spectra acquired from DIA and also top-down proteomics. 

There are currently a large number of MS/MS identification tools available.  

These tools can be based either on: 1) identification and scoring of peptide-spectrum 

matches (PSMs) through basic database searches; 2) directly identifying sequences by 

de novo sequencing of the MS/MS spectra; 3) a hybrid de novo sequence/database 

search approach; or 4) spectral library searching which identifies MS/MS spectra from 

matches to previously identified MS/MS spectra. 

Database searching and scoring of PSMs has been the most widely used and 

applied method to date for identification of known and novel MS/MS spectra, and 

therefore greater emphasis will be placed on this technique for the remainder of the 

chapter. The methods employed to assign significance or confidence to any matches is, 

however, ubiquitous across many methods. 

2.3.5 MS/MS spectral data formats 

MS/MS spectra in the majority of cases are generated by mass spectrometers in a 

number of different proprietary formats depending on the manufacturer and their 

proprietary software package. To be able to access and mine the MS/MS spectra further 

on a variety of different pre-processing tools and search algorithms, conversion of the 
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proprietary MS/MS spectra to an open format is required. The first two open formats to 

be used in MS-based proteomics were: 1) JCAMP-DX [274], an old format used with 

early small-scale MS/MS spectra and so was unsuitable for today’s large MS/MS 

spectral datasets; and 2) the ANalytical Data Interchange Mass Spectrometry (ANDI-

MS) [275] format which was based on the Network Common Data Form (NetCDF) 

[276] library used for reading and writing common array-oriented scientific data for 

sharing. These older formats were used in the early days of proteomics until the arrival 

of the xml formats. The first xml format to be adopted was mzData [277, 278], 

developed by the Proteomics Standard Initiative (PSI) from the Human Proteome 

Organisation (HUPO), which was tasked with creating a standard format for the 

proteomics community and later was superseded by the mzML and mzXML formats. 

The mzXML format was developed by the Institute for Systems Biology - Seattle 

Proteome Centre (ISB-SPC) contemporary with the development of mzXML by HUPO-

PSI. The mzXML format was based on the eXtensible Markup Language (XML) [279, 

280], and it was later developed as a joint project between the ISB-SPC and HUPO-PSI 

by combining the concepts of mzData and mzXML [281, 282]. Other popular data 

formats include Mascot Generic Format (MGF), DTA (Sequest associated format), PKL 

(Micromass) and MS2 [283]. 

There are a number of tools capable of converting the proprietary formats to 

open formats to allow further analysis, such as ReAdW [284], mzWiff [285], and most 

recently the widely used tool msconvert [286], a part of the Proteowizard tool-kit [287] 

which is now standard with many proteomics analysis pipelines, such as the Trans-

Proteomics Pipeline (TPP) [288]. There have also been a number of new application 

programming interfaces (APIs) to allow the proteomics community to use global 

standard approaches towards the reading and writing of these data formats, to allow 

compatibility of input and output data across different groups, and to allow ease of 
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sharing data and comparing research results. An example of such an API is the 

jmzReader Java API to allow parsing of numerous mass spectrometry data formats 

[289], the jmzML Java API for parsing mzML formats [290], and in addition a new 

format from HUPO-PSI called mzIdentML which is written and read using jmzIdentML 

Java API [291]. MS-GF+ [292] is an example of a search tool already implementing the 

jmzIdentML Java API [292]. 

2.3.6 MS/MS spectra pre-processing 

To improve the confidence of MS/MS spectral identification, it is recommended that the 

MS/MS spectra go through pre-processing steps to improve their overall quality for 

database searching. This is due to a variety of reasons including MS/MS spectral noise, 

which constitutes three types: random noise, chemical noise and non-protein 

contaminant noise. MS/MS spectra can also be of poor quality due to incomplete 

fragmentation patterns and low number and/or intensity of peaks, large redundancies 

within the MS/MS spectra where there are multiple MS/MS spectra for one peptide, the 

presence of multiple mass peak isotopes (isotopomer envelopes) and multiple different 

charge state variations amongst the peptide ions in the analysed sample. There are a 

number of different approaches to address these issues, such as deisotoping, which 

selects the most representative peak from different isotopes and charge state 

deconvolution, which is the determination of the mass at a neutral charge state. 

Additionally, the quality of the MS/MS spectra can be improved by removing noisy 

MS/MS spectra, improving the signal to noise ratio, and also clustering the MS/MS 

spectra. Clustering MS/MS spectra merges similar fragmented MS/MS spectra and has 

the effect of improving the signal to noise ratio, reducing the MS/MS spectral dataset 

size, improving database search speed and reducing the occurrences of false positives. 

Overall, depending on the MS/MS spectral dataset and the type of mass spectrometer 

the MS/MS spectra were generated on, all or a number of these approaches can be used 
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to reduce the complexity of the MS/MS spectra, allowing for easier interpretation, either 

for de novo sequencing or through database searching. Many of the above mentioned 

pre-processing approaches are employed within a wide variety of different tools and 

methods (Table 2.4). 

Table 2.4 MS/MS spectral pre-processing tools and methods 

Type of MS/MS pre-processing MS/MS pre-processing tool / method Reference(s) 

Charge state deconvolution Zscore [293] 

Isotope deconvolution 

LASSO [294] 

MS-Deconv 
(exclusive to top-down proteomics)   

[295] 

Non-negative least squares/non-negative least absolute 
deviation regression 

[296] 

Noise reduction 
Wavelet transformation [297-299] 

PeakSelect [300] 

Quality filtering 

Binary classification and statistical regression [301] 

PepNovo [302] 

Spectrum quality classifier [303] 

Fisher linear discriminant analysis (FLDA) [304] 

EagleEye  [305] 

ScanRanker  [306] 

Spectral clustering 

MS2Grouper [307, 308] 

Pep-Miner [309] 

Metric space embedding [310, 311] 

MS-Cluster [312] 

2.3.7 MS/MS database searching 

Once MS/MS spectra have been generated and optionally pre-processed, such as by 

clustering and quality filtering, a key step is the ability to interpret the data by searching 

it against a database of known and/or putative proteins. The ability to interpret MS/MS 

spectra has improved over the last 20 years, with the development of various different 

MS/MS search algorithms, employing different searching and PSM scoring strategies to 

assign a best match between a spectrum and peptide sequence. 

One of the first search strategies developed was based on a sequence tag 

approach, which used de novo sequencing of the MS/MS spectra, limited to generating 

short sequence tags of 3-4 residues, called peptide sequence tags (PSTs), flanked by the 

masses of the N- and C- terminals. By combining this information with fragment ion 
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masses, the precursor peptide mass and its enzyme specificity, unambiguous matches 

could be found [313]. Such an approach has seen great improvements over the years in 

terms of the de novo sequencing of the MS/MS spectra [314-322] and its hybrid 

approach with peptide fragment matching [323-332]. 

An advantage of using a sequence tag approach is its ability to filter and reduce 

the size of the database, and by extension reduce the false-positive rate. This also 

improves the ability to detect PTMs, and to conduct mutation-tolerant searches, improve 

search speed, improve the accuracy compared to other popular non-tag based search 

tools [326, 327, 329, 330], as well as to effectively utilise poor quality MS/MS spectra 

with usually short peptide sequences [333]. At the same time the disadvantages of this 

approach include the difficulty of de novo interpretation of the MS/MS spectra. While 

there have been great improvements over the years with the accuracy of PST 

generation, there is still room for MS/MS spectral interpretation to improve. For 

example, with the sequence tag based tool InsPecT [326] a set number of PSTs are 

generated for any given spectrum, even if there are likely many more correct PSTs 

which could be identified. In addition, the ability to generate PSTs is reduced with 

increasing peptide length (>15aa) and poor quality MS/MS spectra, the efficiency of 

filtering large databases with short 3-4 residue PSTs is very limited due to their low 

specificity, particularly when only relatively few PSTs are generated. A similar method 

to the sequence tag approach was that employed by Look-up peaks, which uses both de 

novo sequencing and database searching [323]. 

The concept of the sequence tag approach has since evolved. Where the 

sequence tag approach was limited to a set number of MS/MS spectral interpretations, a 

new approach called spectral dictionaries reconstructs all possible full-length peptide 

sequences from a spectrum to ensure at least one of the peptides is correct. The 

approach sees improvements with efficiency and specificity over the short sequence tag 
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based approach for filtering large databases, due to the longer sequence tags and 

accuracy of the peptide reconstruction. 

The concept of the spectral dictionary was first introduced [182] and later 

implemented in a software tool called Robust Accurate Identification (RAId) [334] that 

performed slow heuristic searches, which reduced its usefulness for larger datasets. 

Recent advances in this area have seen many orders of magnitude reduction in search 

time using the spectral dictionary approach, with the tools MS-Dictionary [324] and its 

successor MS-GappedDictionary [335] (Table 2.5). MS-GappedDictionary is an 

extension to the spectral dictionary approach using gapped peptide sequences 

(substrings substituted with mass values) to resolve poor ambiguous MS/MS spectra, 

different amino acid combinations resulting in the same mass shift, and adaptively 

generating peptide reconstructions for long peptides (>15aa), using forward-backward 

dynamic programming. Applying this approach permits many more peptide 

reconstructions for any given MS/MS spectral dataset and it is amenable to mutation-

tolerant searches and searches of large databases, such as the six-frame translations of 

the human genome in relatively short time frames, compared to other sequence tag 

based and non-sequence tag based search tools [325, 335]. 

The gapped peptide approach has since been extended to interpret other MS/MS 

spectral types (CID, ETD, HCD and MS/MS spectral pairs CID/ETD) in the de novo 

sequencing tool UniNovo [336]. Recent developments have pushed the length of de 

novo peptide reconstructions further to sequence grade levels, using multiple MS/MS 

spectral types (CID, ETD and HCD) in combination with multiple protease digests to 

achieve many more covering peptides, achieving much longer consensus lengths 

between 60 aa and 200 aa of length with 99% sequence accuracy [337, 338]. Another 

development which interprets top-down and bottom-up MS/MS spectra, reconstructs the 

sequences, and uses the top-down longer peptide sequences as scaffolds with the short 
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peptide sequences from bottom-up to improve the coverage across the scaffolds, similar 

to the concept used in genome assembly [339]. 

During the same time that de novo sequencing, the sequence tag approach and 

PMF were being developed, a different database search approach termed Peptide 

Fragment Fingerprinting (PFF) [340] was rapidly evolving in parallel. PFF is an 

analogous concept to PMF, but instead it looks at matching many fragments from a 

parent peptide. This approach did not require interpretation of the MS/MS spectra as 

with de novo sequencing, but instead relied solely on matching the mass values from all 

the MS/MS spectra against all calculated mass values interpreted from the database. The 

basic principle behind the approach is that it mimics the bottom-up experiment by 

digesting the protein sequences in the database in silico with the same protease used in 

the experiment. All the theoretical peptide sequences that match the experimental 

peptide mass within a chosen maximum mass deviation (MMD) are then chosen as 

candidates. Each of these peptide candidates are then investigated further at the MS/MS 

level by comparing the experimental and theoretical peptide fragmentation patterns and 

then ranking/scoring the peptide and peptide fragment matches by the level of 

correlation between the patterns, which often differ between the MS/MS search 

algorithms employed. To account for PTMs, the theoretical MS/MS spectra derived 

from in silico digestion of the sequence include an additional mass shift for each peptide 

fragment corresponding to the mass of all (an exhaustively long ‘blind’ search) or the 

masses of a chosen list of modification(s). 

Yates and Eng first demonstrated the PFF approach for database searching in 

1994, employed in the MS/MS database search tool, Sequest [341, 342]. Since that time 

many similar approaches have been devised, as well as approaches which have 

incorporated sequence tags, spectral dictionaries, gapped peptides, and/or spectral 
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probability (Table 2.5). There have been many other reviews in the literature covering 

other search tools and strategies [343-346]. 

Table 2.5 Types of MS/MS database search tools and their employed methods 

Method MS/MS database search tool Reference(s) 

PFF 

Sequest [341, 342] 

Mascot [165] 

Tandem [347] 

OMSSA [348] 

PFF with sequence tags 

InsPecT [326] 

GutenTag [327] 

OpenSea [328] 

MultiTag [329] 

TagRecon [332] 

PPM-Chain [330] 

PFF with spectral dictionary RAId [334] 

PFF with spectral dictionary and spectral probability MS-Dictionary [324] 

PFF with gapped peptides, spectral dictionary and 
spectral probability 

MS-GappedDictionary [335] 

PFF with spectral probability and scoring for multiple 
types of spectra 

MS-GF+ [292] 

For a long time the proteomics community has been split on how best to 

interpret MS/MS spectra through database searching and the control of false positives. 

This eventually culminated in a study in 2004, which found many reported results in the 

proteomics community had a very high false discovery rate (FDR). As a result, stricter 

guidelines became required for publication [349], and two years later a study conducted 

by HUPO across a number of laboratories [350, 351] also found widely inconsistent 

results [352], with less than 50% of results in agreement. This illustrates just how 

difficult MS/MS spectral identification is and it highlights a number of challenges 

which still need to be met, including the protein inference problem [220], and the 

inherently poor reproducibility of bottom-up, DDA-based proteomics. As a result of this 

study, HUPO-PSI was formed [353], providing community guidance on the 

standardization and validation of proteomics results. HUPO-PSI further enforced a 

requirement to share all the raw data associated with any publications through public 

repositories such as PeptideAtlas [354], PRoteomics IDEntifications (PRIDE) database 
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[355] and ProteomeXchange [356], and in addition developed standard proteomics data 

formats such as mzXML, mzML and mzIdentML. HUPO-PSI also concluded that there 

was a pressing need for standardization across different studies; concluding that any 

comprehensive proteomics study should endeavour to improve these standards, and 

apply strategies which can better discriminate between true and false positives. Such 

approaches could be a means to combine results from multiple search tools, to provide 

more robust and well-rounded peptide matching strategies, improve search speed and 

improve the number and confidence of matches found. 

To address the needs outlined by HUPO, a number of advances have occurred in 

the development of database search algorithms. Approaches which improve the 

sensitivity, speed and number of peptide identifications, include tools such as MS-

GappedDictionary, outlined previously, addressing the issue of search speed and 

improving the number of identifications compared to other non-gapped peptide 

approaches such as OMSSA, InsPecT and MS-Dictionary (Table 2.5). MS-

GappedDictionary achieved this by generating a spectral dictionary and rigorously 

determining the spectral probabilities (p-values) of each PSM using the generating 

function approach [357]. However, this approach, and other similar full length peptide 

sequence and tag based approaches similar to it, were limited when it came to highly 

charged MS/MS spectra [325]. Approaches that were not limited by MS/MS spectral 

charge included non-tag-based methods such as MS-GF+ (Table 2.5). The MS-GF+ 

search tool uses the MS-GF scoring model first implemented in MS-Dictionary, and is 

able to automatically determine the scoring parameters for a variety of different MS/MS 

spectral types (CID, ETD, and CID/ETD pairs) and proteases (trypsin, LysN etc.).  

Following peptide identification, it is necessary to identify the proteins from 

which the peptides were derived from. However, confident protein identification can be 

hampered by the protein inference problem first mentioned in Section 2.3.1. Although 
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top-down or middle-down proteomics directly addresses the protein inference problem, 

it is not as widely used and does not provide good overall coverage of the entire 

proteome compared to bottom-up mass spectrometry. With the protein inference 

problem still an issue for bottom-up mass spectrometry, algorithmic and database 

construction approaches have arisen [220], such as resorting to infer only a group of 

potential proteins, or infer likely candidates using approaches such as those outlined in 

Table 2.6. 

Table 2.6 Algorithmic and database approaches for the protein inference problem 

Method Protein inference tool/approach Reference(s) 

Expectation-maximization ProteinProphet [219] 

Bayesian Empirical Bayes Protein (EBP) identifier [358] 

Parsimony IDPicker 2.0 [359, 360] 

Deterministic PeptideClassifier [361, 362] 

Graph theory Clique-enrichment approach (CEA) [363] 

Heuristic 

Prediction of proteotypic peptides for protein identification [364] 

Minimum acceptable detectability for identified peptides 
(MDIP) 

[365] 

Minimum protein set with incorporated peptide detectability [366] 

Peptide-centric 

IsoformResolver [367] 

PEPtidomics Protein Isoform (PEPPI) database [368] 

Mass spectrometry-centric sequence database (MScDB) [369] 

The presence of contaminant MS/MS spectra, derived from non-target proteins 

is a problem in proteomics, and can often lead to misidentifications. To account for 

potential contaminants entering a sample it is standard practice to append contaminant 

sequences to the database before searching. Often this consists of human keratin and 

trypsin and other enzymes used in the analysis, as well as any contaminants deemed 

likely to appear due to sampling and handling. MS/MS spectra exclusively matching the 

contaminants can then be removed during the analysis. 

2.3.8 Next generation MS/MS database search technology 

As outlined previously, new approaches for MS/MS database searching for bottom-up 

proteomics are breaking new ground, such as the methods employed by MS-GF+ and 

MS-GappedDictionary. However, other MS/MS database search technologies are 
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beginning to look beyond traditional bottom-up proteomics, to how best to manage and 

interpret the MS/MS spectra from top-down and DIA mass spectrometry. Both 

methods, which have been around for over a decade, are now becoming viable for more 

complex samples and throughputs, opening them up to truly mine the proteome. 

Unfortunately, there has been a lag in the development of MS/MS database search tools 

tailored towards such datasets. 

Top-down MS/MS spectra are highly complex, and to be used in an MS/MS 

database search tool first requires pre-processing to reduce complexity. The MS/MS 

spectra are usually first deconvoluted to their monoisotopic masses (determining the 

mass and charge of the fragment ions from a group of isotope peaks called a isotopomer 

envelope). This can be done via a variety of tools such as Thrash [370], Xtract [371] 

and the more recently MS-Deconv [295]. The spectrum now containing only 

monoisotopic masses is then scored against proteins in a database using a database 

search tool to generate a Protein-Spectrum-Match (PrSM). A number of top-down 

search tools have been developed over the last decade, which include ProSightPC [372, 

373], PIITA [243] and USTag [241], MS-TopDown [374], top-down versions of 

Mascot [375], Sequest [240], and OMSSA [348] search tools and more recently the 

search tools MS-Align+ [376] and its improved version MS-Align-E [377] to identify 

multiple proteoforms from highly modified proteins. Further developments are needed 

in this area to more confidently identify all the various proteoforms in complex samples, 

particularly for large highly modified proteins. In addition there is currently a high-

throughput top-down search strategy in development at Pacific Norwest National 

Laboratories (PNNL) called IQ Top-down, using information from MS1 spectra to 

validate proteoforms [378]. 

The range of MS/MS database search tools to directly interpret DIA MS/MS 

spectra is limited in comparison to those available for DDA. This is because DIA 
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MS/MS spectra requires significant pre-processing (charge/isotopic deconvolution), and 

require conversion into DDA-like MS/MS spectra before interpretation [268]. 

A number of DIA-compatible tools have been developed to meet the need for 

DIA MS/MS spectral interpretation. For example, the MSE approach uses the 

IDENTITYE database search tool [379] but lacks any estimation on FDR, requiring 

validation from conventional DDA approaches [380]. Alternatively, a modified 

approach to MSE, called Ion mobility spectrometry (IMS) assisted MSE (HDMSE) 

[381], applies an additional separation in the gas phase improving proteome coverage 

by up to 60% and then uses a database search tool called Synapter which, unlike 

IDENTITYE, allows control of the FDR [382]. For AIF MS/MS spectra there is an 

MS/MS data processing package called MaxQuant, which in combination with the 

DDA based Andromeda MS/MS database search tool is able to process and interpret 

DIA MS/MS spectra from AIF, and produces pseudo MS/MS spectra before 

interpretation by Andromeda against a database with FDR control [259, 383]. For FT-

ARM MS/MS spectra, there is the FT-ARM analysis tool, which creates hypothetical 

MS/MS spectra from in silico enzymatic digests from a database and scores each 

hypothetical MS/MS spectra against all the acquired multiplexed fragmentation MS/MS 

spectra, and also applies a control on FDR [260]. There are also a number of tools still 

under development, for example, SWATH spectral analysis, which does not currently 

have any established database search tools as it is incompatible with database search 

approaches [268]. However, recently an open-source tool called SWATH-Umpire, 

claimed to extract SWATH signal features from MS1 and MS2 and assemble them into 

pseudo MS/MS spectra compatible with DDA based search tools [384]. Lastly, there are 

other tools under development from Pacific Northwest National Laboratories (PNNL), 

such as IC bottom-up, which is a universal tool for both DIA and DDA, and 

demonstrates improvements over advanced tools such as MS-GF+ [378]. Additionally, 
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approaches such as PAcIFIC, generate MS/MS spectra compatible with conventional 

DDA-based search tools, and recent developments have demonstrated how the approach 

can be applied to top-down mass spectrometry by combining the PAcIFIC approach 

with the top-down search tool, PIITA [385]. 

Instead of identifying MS/MS spectra against a database of putative and/or 

known protein sequences resulting in a PSM, an alternative form of database searching 

is to match the MS/MS spectra against a spectral library (database) of other curated 

spectra to identify a spectrum-spectrum match (SSM). The technique is called spectral 

library searching and was first pioneered by Domokos [386], and later adapted for 

peptide mass spectrometry [387]. The concept relies on the previous identification of 

MS/MS spectra to populate the spectral library with identified MS/MS spectra. The 

searching of spectral libraries is fast, precise, has an improved PTM identification rate 

and has fewer false positives, rivalling the majority of conventional database search 

tools and strategies. A number of tools that have been developed to search and identify 

MS/MS spectra in this way are outlined in Table 2.7. Of particular note is the Tremolo 

spectral library search tool, which is a recent advancement, utilizing a spectral library 

generating function approach to identify SSMs. The concept was first demonstrated in 

MS-GF+, a conventional database search tool, which when compared to spectral library 

tools such as SpectraST was comparable in sensitivity indicating a likely route for 

improvement of spectral library searching [292]. A number of spectral libraries have 

been established over the years, which include PeptideAtlas [354], Cardiac Organellar 

Protein Atlas Knowledgebase (COPaKB) [388], NIST Libraries of Peptide Tandem 

Mass Spectra [389] and BiblioSpec [390]. 
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Table 2.7 Spectral library search tools 

Search tool Reference(s) 

SpectraST [391] 

NIST Peptide Library Search Engine A modified tool from [392] 

X!Hunter [393] 

BlibSearch [390] 

Pepitome [394] 

Bonanza [395] 

MSplit (multiplexed spectral library search) [271] 

MSplit-DIA (multiplexed spectral library search) Currently under review [396] 

Tremolo [397] 

Recently, an approach called Spectral archives [398, 399] was developed, 

expanding on MS-Cluster to generate an archive of many large spectral datasets. With 

this approach the identification of MS/MS spectra becomes rapid, achieves high 

specificity, and is amenable to the identification of novel MS/MS spectra such as 

biomarkers and unknown proteins/genes, which would then contribute to a proteomics 

community consensus of other unidentified MS/MS spectra in the cluster, improving its 

overall representation and confidence of a real identification. Previously, such an 

approach only searched MS/MS spectra against a locally known set of curated MS/MS 

spectra or in the case of a conventional database approach, a protein sequence database. 

The concept of spectral archives was later extended to molecular networks, where any 

class of molecule can be rapidly and confidently identified within both the proteomics 

and metabolomics domains [400]. 

The identification of MS/MS spectra by searching a conventional sequence 

database has a number of caveats when compared to spectral library/archive searching: 

1) the database is often only limited to ‘known’ protein sequences, while adding more 

putative proteins will improve identifications, it will also hamper identifications as the 

database size increases, reducing sensitivity; 2) the database contains many stretches of 

homologous sequences (e.g. larger numbers of isoforms) making identifications, 

particularly of short sequences, difficult; 3) incomplete proteolytic cleavage or 

fragmentation of MS/MS spectra can lead to misidentifications; 4) the presence of 



 

 50 

unaccounted for PTMs and sequence polymorphisms can lead to misidentifications; 5) 

the potential for erroneous sequences in the database is high, often derived from 

genomic sequences with potential sequencing errors; and 6) usually the search is limited 

to peptides which have been proteolytically cleaved (e.g. tryptic peptides) to reduce the 

occurrence of spurious PSMs and limit the search to only tryptic sequences, improving 

the search speed and sensitivity. 

The sensitivity of a MS/MS spectral identification is inversely proportional to 

the size of the search space. The search space of de novo sequencing is much larger than 

conventional databases, and more so when compared to spectral libraries. This is 

because the number of MS/MS spectral interpretations is far greater when interpreting 

MS/MS spectra into a large number of possible peptides, without being limited to 

matching to a chosen number of sequences (PSMs) or a select number of curated 

MS/MS spectra (SSMs). This indicates that of all the methods of MS/MS spectral 

identification, the spectral library approach is more sensitive, but until the method 

matures and spectral archives are more widely supported by the proteomics community 

for the identification of known and unknown MS/MS spectra, the conventional database 

approach will remain more widely used. 

2.3.9 Statistical approaches for peptide and protein identification 

The search algorithms that MS/MS database search tools employ, use PSM scores to 

determine the confidence of a match between the experimental MS/MS spectra and a 

number of matches to other theoretical MS/MS spectra derived from the protein 

database. Many different scoring systems have been implemented in search tools 

outlined in Table 2.8. 
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Table 2.8 PSM scoring methods in some common MS/MS database search tools 

Method MS/MS database search tool  Reference(s) 

Cross correlation between theoretical and 
observed MS/MS spectra 

Sequest [341, 342] 

Bayesian probability based on the number of 
ions matching a peptide sequence in the 
protein database 

Mascot [165] 

Dynamic programming using k-similarity 
statistics 

MS-Alignment [401, 402] 

Calculated probability factors PeptideSearch [313] 

Spectral energy (Delta energy between the 
best de novo and database spectral 
interpretation) 

MS-GF+  
 

[292] 

Further scoring of PSMs during post-processing is possible, using a probabilistic 

score (e.g. peptide probability), determined through expectation-maximisation in 

PeptideProphet [403] and iProphet [404], a support vector machine in Percolator [405], 

probabilistic network in PepNovo [302] and generating function in MS-GF [357]. The 

post-processing tool, iProphet, was also able to combine multiple search results, 

applying a protein or peptide probability as a score derived from across all results [406]. 

Other re-scoring tools such as Percolator and MS-GF are also able to achieve this, to 

normalise and combine results. 

Of particular note from Table 2.8, is the MS/MS database search tool MS-GF+ 

(an extension of MS-GF), which when also applying the spectral probability to all 

identified PSMs as a score for FDR filtering, was shown to identify more peptides than 

other well established search tools [292, 407], such as Mascot [165], Sequest [341, 

342], OMSSA [348] or a combination of these, rescored with PeptideProphet [403], 

iProphet [404] or Percolator [405]. 

The scores obtained from various MS/MS database search tools are ranked and 

in most cases the top matching MS/MS spectra are chosen, which are then further 

analysed at the MS/MS level by comparing the theoretical and experimental peptide 

fragmentation patterns. Each match can then also be further ranked by significance 

estimates via the false positive rate (FPR) or p-value and E-value. The p-value is 
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essentially the chance that any individual PSM is incorrect, determined from the 

fraction of all incorrect PSMs above a certain score threshold over all the incorrect 

PSMs, and can be extended to the E-value in multiple hypothesis testing which is the 

product of all p-values and the number of tests, or more simply put, the expected 

number of times that a PSM is observed with a particular score, by chance alone. The p-

value threshold, usually either 5% or 1%, can then be applied, delegating matches as 

significant and rejecting the null hypothesis (all matches known to be incorrect), or in 

agreement with it, delegating the match as incorrect. A number of methods have been 

devised to estimate the p-value over the years, mostly through empirical methods, such 

as those outlined in Table 2.9. 

Table 2.9 Examples of methods employed to estimate the FPR 

Method Description Reference(s) 

Score distribution 
Models the distribution of all scores to determine the 
significance at the tale of the distribution. 

[408, 409] 

Poisson distribution 
Models the distribution of false-positive matches given some 
prior criteria (e.g. peptide length, protein database size etc). 

[351] 

Bayesian probability model 
Probability of the match being correct given certain criteria 
such as fragmentation ion types, prior MS/MS spectra and 
peptide knowledge across an experiment. 

[219, 403, 410] 

Decoy database 
A null hypothesis is generated. This is done by reversing, 
shuffling or randomizing the target sequences. 

[411-415] 

The decoy database mentioned in Table 2.9, is a more common approach due to 

its simplicity, and empirically represents the null hypothesis. Using the decoy database 

approach as an example, the estimated FPR can be calculated by determining the 

number of matches to the decoy database over the number of total decoys. However, 

since the number of matches to the decoy is usually very small or zero, to calculate 

accurate FPRs the decoy database would need to be extremely large, which is 

impractical (and is usually the same size as the target database), so matches need to be 

grouped by the same score to estimate the FPR which tends to be inaccurate [357]. In 

addition, PSM scores from different MS/MS search tools use heuristic methods, which 

do not correlate well with their FPRs, since many search algorithms usually assign 

similar scores to the top-most ranking PSMs. As a consequence, the estimation of their 
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FPRs are more often inaccurate, resulting in an overlap between all correct and 

incorrect identifications above a certain score threshold. To help reduce the number of 

false positives, a variety of different search algorithms employ heuristic measures to 

their scoring, such as taking into consideration the difference between the score of the 

best match and the second best match, the peptide charge state, peak intensity, the 

fraction of b ions, and many other properties. 

As datasets became larger and multiple hypothesis testing increased it soon 

became apparent that control of the number of false positives across all tests was 

needed, which resulted in the now popular approach, called the false discovery rate 

(FDR), first pioneered by Benjamini and Hochberg [416]. A decoy database is a 

common method to determine the FDR, which can be either concatenated with the 

target database and searched or treated as separate databases. Depending on the chosen 

method, the FDR can be calculated, either by counting the number of decoy matches 

above a particular score over all matches to the target above the score or by multiplying 

2 by the number of decoy matches above a particular score over the combined number 

of decoy and target matches above the score [411, 412, 417]. The FDR can then be used 

to remove groups of matches delegated as false, which is usually applied at the PSM-

level, or to be more conservative and reduce false positives the FDR is applied at the 

peptide-level, a common and recommended strategy in proteomics studies. This is due 

to single peptides often being derived from multiple MS/MS spectra, with some 

potentially being spurious, resulting in very different numbers of identified PSMs 

between PSM-level and peptide-level FDRs. 

Strictly applying filters using the p-value, E-value or FDR, runs the risk of either 

being too strict or too lenient, filtering out many true positives or including too many 

false positives, respectively. An approach found to alleviate this problem was adopted 

from genome-wide linkage analysis studies. The use of smaller datasets during the early 
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genomics era, required only p-value cut-offs and they were often made strict to avoid 

any false positives, a valid approach when there are relatively few hypotheses being 

tested in a single small study. In recent times, with larger datasets being generated 

through high-throughput methods, there are now often thousands to millions of multiple 

hypothesis tests being conducted in a study, with many more genomic features now 

being considered significant. As pointed out earlier, a high level of statistical 

significance does not equate to a true positive, and so caution is needed when 

considering every significant feature.  It was found that simply applying strict p-value 

cut-offs across all hypothesis tests runs the risk of removing true positives, and 

therefore further approaches need to be applied to retain as many true positives as 

possible, while minimizing the false positives [418]. 

Although the FDR measures the significance of a group of PSMs, it does not 

provide a level of significance for each PSM, and hence a different approach is 

necessary to improve sensitivity. This can be achieved using the Posterior Error 

Probabilities (PEP) and q-value. The PEP can be considered as a local FDR (lFDR), and 

was coined as such by Efron et al. [419]. When using very large datasets the p-value can 

be very small by chance alone, limiting its use, and hence a different approach is 

required in the form of q-values. The q-value is a p-value analog based on the FDR, 

while the p-value is based on the FPR. The q-value, unlike the p-value, includes 

multiple testing corrections, by determining the minimum FDR of a significant PSM 

score. In other words, the q-value provides the proportion of incorrect identifications 

amongst all those considered significant [418]. The PEP or lFDR is the probability that 

an individual observation (e.g. a single PSM) with a particular score, is found from 

within the null distribution (e.g. a false peptide within a decoy database) [420, 421], and 

by summing all the PEPs/lFDRs of significance and dividing by the total number of 

PEPs/lFDRs, the FDR for that group of PSMs can be determined [422]. The q-value and 
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PEP/lFDR are usually used in a two-tier approach towards PSM validation. The q-value 

estimates the rate of incorrect PSMs from a group, while the PEP/lFDR applies 

significance to whether a particular peptide or protein is present or not. Hence, the first 

pass of assessing PSM significance should be with a q-value threshold to filter out 

likely incorrect PSMs, after which a second pass with the PEP/lFDR is used to 

determine the likelihood of the remaining PSMs being truly present [421]. 

The FPR is a measure of the quality of a single PSM and is the best approach 

towards discriminating true and false positives. Recent approaches to derive the FPR or 

p-value using theoretical means have been developed [357, 423], but they rely on the 

assumption that each peptide derived from the spectrum is equally likely. One of these 

approaches uses the generating function, a commonly used combinatorics approach 

implemented in MS-GF+ [292]. The method determines the spectral probability (p-

value) determined from all theoretically possible peptide reconstructions, and spectral 

energy (score) for each PSM determined from the difference in score between the best 

peptide reconstruction and the best database peptide. The approach theoretically 

determines the FPR or p-value, as opposed to empirically using Bayesian algorithms or 

the use of decoy databases, mentioned previously. The E-value and FDR and 

consequently the q-value and PEP/lFDR can then be determined from the theoretically 

derived FPR, thus avoiding the need for a target-decoy approach (TDA) [357] due to its 

many short comings [424]. The ability to calculate theoretical FPRs, and by association 

theoretical FDRs, is crucial for studies requiring a reliable distinction between true and 

false PSMs, such as in metaproteomics, proteogenomics or with the identification of 

rare PTMs [424]. However, the empirical approach using TDA still remains the 

standard approach undertaken by many studies, with no study conducted thus far using 

the FPR alone. This is a direct result of the limitation of the current available MS/MS 
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database search tools, which still have to rely on empirical approaches to determine an 

approximate FPR for proteomics and proteogenomics studies. 

Recent developments to alleviate this problem eventuated in the study which 

developed MS-GF+ [292], which found that the spectral probability of a spectrum, 

independent of the database, was able to closely predict the FDR with low-low 

precision MS/MS data obtained from LTQ experiments, but produced inaccurate 

predictions with the more commonly used high-low and high-high MS/MS data 

obtained from machines such as LTQ Orbitrap and QTOF respectively. Such 

discrepancies are seen when using high precision MS data with tighter precursor mass 

tolerances (e.g. parts per million (ppm)) compared to wider fixed value precursor mass 

tolerances (e.g. Daltons (Da)) for low-low precision MS data. The tighter tolerances 

reduce the search space and inflates the expected FDR and E-values determined from 

the spectral probability, while loose tolerances with low precision MS/MS data increase 

the search space, reducing the factual FDR and E-values determined from the TDA 

[292]. 

High precision MS/MS data is important to resolve and identify many multiply 

charged peptide ions as mentioned previously, and so even though more peptides can be 

identified with higher precision, at the same time their expected FDRs cannot be 

determined with the same level of precision using the spectral probability or FPR alone. 

Consequently, the TDA is still an essential tool in proteomics, until a more robust 

strategy can be developed to determine the FDR accurately, independent of the 

database. 

Continuing on from the theme of resolving the protein inference problem, 

highlighted in Section 2.3.7. Apart from the algorithmic methods listed in Table 2.6, 

there is a general rule in proteomics, to identify proteins considered statistically valid, 
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by arbitrarily filtering all proteins, which contain at least two identified peptides. This is 

called the “two-peptide rule”, which essentially filters out all single-hit protein matches, 

often referred to as “one-hit-wonders”, and which are considered as potential false 

positives. Another approach that can be combined with the two-peptide rule to further 

improve confidence of protein identification is percent protein coverage. The larger the 

proportion of protein sequence which is covered by identified peptides, the more 

confident that the protein has been identified, and that the peptides have not simply been 

derived from other similar proteins, protein isoforms or paralogs. In cases where 

proteins are small, the percent protein coverage may likely be higher, and the level of 

protein coverage obtainable would also be dependent on the type and number of 

proteases used. 

Other more complex approaches include ProteinProphet [219] mentioned in 

Table 2.6, which uses an expectation-maximization algorithm to derive a minimum 

protein list and assigns a protein probability to each identified protein. 

Although the two-peptide rule and percent protein coverage are capable of 

confidently identifying proteins, these approaches also result in losses due to many 

filtered out one-hit-wonders being real matches. In addition, relying simply on 

maximizing peptide matches does not equate to protein identifications, as many 

peptides can be shared across different protein isoforms, which would result in biases 

skewing the calculated protein FDR. One approach, superior to the two-peptide rule and 

the ProteinProphet approach is the single-peptide rule in combination with a rigorous 

FPR calculation, using the generating function approach, and extending it to protein 

identification to determine the protein FPR. Using this approach Gupta et al. [425] 

found significant improvements compared to ProteinProphet and the two-peptide rule, 

confirming that single-hit peptides in orthologs of other species accounted for an 

additional ~25% of proteins missed by the two-peptide rule. However, to account for 
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protein isoforms, applying a unique peptide rule on the final aggregate of proteins 

identified would remove any potentially incorrectly included protein isoforms. A 

comprehensive review published in 2010, outlines many of the above mentioned 

statistical methods [426]. 

As mentioned earlier in Section 2.3.8, the precursor mass tolerance and the size 

of the database have an effect on the sensitivity of a database search. Adding further 

PTMs to a search also has the same effect [357, 402, 427-429]. The most widely applied 

method to improve on the search space is to reduce the database size where possible and 

to only search for commonly used PTMs such as carbamidomethylation of cysteine, 

oxidation of methionine and protein N-terminal acetylation, and to limit the number of 

modifications per peptide to at least two. Further reduction of the database size is 

possible by applying a two-pass search approach, which was first pioneered by Craig 

and Beavis [430], and can be applied for particular cases where the database size is 

overly large. This can be done by first performing a search with no FDR filtering and no 

decoy database, thus identifying matching protein sequences, and then performing the 

search a second time using the identified sequences as the target database and their 

decoys, followed by FDR filtering. 

All these approaches would maximize the number of matches obtainable, 

compared to the inclusion of further PTMs or additional sequences. The study from 

[427] assessed many of these search strategies and others, and found that for MS-based 

proteomics there were twelve optimal methods to use (Table 2.10). 
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Table 2.10 Optimal methods for proteomics analysis 

Method number Method 

1 Use a reversed decoy database. 

2 Concatenate target and decoy databases. 

3 
Calculate FDR by counting the number of decoy matches over all matches to the target, 
above a score. 

4 Use the smallest possible database. 

5 Filter out of all unidentifiable MS/MS spectra. 

6 Apply tighter parent mass tolerances where possible during the database search. 

7 
Normalise PSM scores when possible. For example use q-values, p-values, local FDRs, 
peptide probability/posterior probability and spectral probability. 

8 
Apply peptide-level FDR filtering for protein identification or accurate PSM-level FDR 
filtering, when warranted, such as with metaproteomics or proteogenomics. 

9 
Apply a two-pass search approach, although the gains could possibly be reduced for 
higher complexity samples. 

10 Carefully select appropriate PTMs. 

11 
Choose an appropriate MS/MS acquisition mode, such as MS/MS and MS/MS/MS for 
higher mass accuracy. 

12 Use spectral library searching when possible. 

All twelve of the above mentioned methods could have a significant impact on 

sensitivity of PSM identification during a MS/MS database search. Other approaches to 

improve upon the sensitivity of a database search include limiting the peptide fractions 

to a particular range of isoelectric points (pIs), predicting the pI of sequences within the 

target database and limiting the search space to the same pI range when performing the 

MS/MS database search [429]. More complicated and extensive proteomics procedures 

can be used to improve the sensitivity and gains from mining the proteome, which 

include multi-stage peptide identification. This involves an exhaustive iterative process 

of performing a general search, further processing of unassigned high quality MS/MS 

spectra, “blind” PTM searches [402, 431], followed by a more focused search for highly 

frequent PTMs, spectral library searching, and then any remaining unassigned MS/MS 

spectra searched against large translated genomic databases [426]. 

It is the searching of large translated genomic databases, and how to manage 

such a search, which is the primary focus of this thesis. The following section outlines 

the history of the approach and the methods employed. 
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2.4 PROTEOGENOMICS 

This section provides an in-depth background on proteogenomics, the focal point of this 

thesis. It provides an overview of the challenges, important dataset considerations, 

methods of statistical analysis, how best to interpret the results, and provides a review 

of a number of proteogenomics tools. 

Proteogenomics is a new genome annotation approach that has emerged over the 

last decade, which merges peptide mass spectrometry with genome and transcriptome 

data. The traditional approach towards genome annotation particularly for the protein-

coding portion of a genome has often been limited to direct protein-level evidence or 

putative translations from gene predictions. A number of annotation strategies, such as 

the automated Ensembl Analysis Pipeline [432], HAVANA analysis pipeline [143] and 

MAKER2 [137], previously mentioned in Section 2.2.2 and Table 2.3, all rely on 

UniProtKB/SwissProt [433, 434] protein sequences, however only 5% of the sequences 

are derived directly from proteins (http://www.uniprot.org/faq/37). These strategies are 

determined from sequencing efforts using Edman degradation or de novo sequencing 

through mass spectrometry, while the majority of remaining protein sequences are 

putative, derived from translations of cDNA and gene predictions which may be 

erroneous. This traditional approach to proteomics follows the assumption that all the 

proteins which make up the protein-coding space are known, and that each protein is 

accurately defined, and are all mirrored in protein sequence databases, such as 

UniProtKB, Ensembl and RefSeq [435]. Any protein identifications and quantifications 

carried out are based on these assumptions. As such, the past few decades of proteomics 

have been skewed to this view and so they ignore the possibility of a hidden proteome. 

In reality, many peptides derived from proteomics experiments are not present in the 

reference database or possibly no known reference database. This is in part due to the 

fact that many MS-derived peptides contain mutations or are derived from novel protein 

http://www.uniprot.org/faq/37
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isoforms or proteoforms, as well as many translated gene predictions or cDNA 

sequences. Additionally, many protein sequences populating the databases may be 

incomplete due to gene prediction biases or missing information at the transcriptional 

level. 

Historically, genomics and proteomics have been conducted separately, with the 

proteomics being carried out after genome sequencing, assembly and annotation. In 

recent years a new field has emerged which uses mass spectrometry-based proteomic 

data to annotate a genome with direct peptide evidence, thus complementing current 

annotations by unambiguously determining the reading frame, translation start and stop 

sites, splice boundaries, validation of short ORFs, and the identification of novel genes 

[436-439]. This new genome annotation strategy was first investigated by Jaffe et al. 

[440], who coined it proteogenomics, and it has since been applied to many other 

organisms, such as Drosophila melanogaster [441, 442], Arabidopsis thaliana [81], 

Yersinia pestis [443], Pristionchus pacificus [84], Mus musculus [444], Ruegeria 

pomeroyi [445, 446], Shewanella oneidensis [447, 448], Vitis vinifera [8], Zea mays 

[82], and Homo sapiens [11, 449-451]. 

Proteogenomics is an important new field, because it assists in the improvement 

of gene predictions as well as the direct validation of known genes as protein-coding. 

By approaching genome annotation top-down (genomics) and bottom-up (proteomics) a 

more complete and thorough analysis of gene models can be achieved. Besides the key 

benefits to refining gene models, other benefits include: 1) spectral counting to infer 

expression levels; 2) the discovery of alternative translation initiation start (TIS) sites 

through identification of N-terminal peptides, either through standard identification of 

N-terminal acetylated peptides by MS/MS database search or with a more rigorous 

approach employing the enrichment of N-terminal peptides through N-terminomics 

[452]; and 3) the determination of post-translational/processing modification sites, e.g. 
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to identify signal peptide cleavage sites. Figure 2.5 (modified from [148]), outlines the 

key differences between genomics and proteogenomics approaches. 

Figure 2.5 Genomics versus Proteogenomics 

The (A) genomics approach is linear from gene prediction at the genomics level, with protein coding 

validation of the predictions at the proteomics level. However, the (B) proteogenomics approach utilises 

MS-based proteomics to infer the gene predictions and annotations directly in the genome in a 

complementary way with the genomics approach, iteratively improving the annotations with further 

peptide mass spectrometry evidence (image modified from [148]). 

2.4.1 Defining a proteogenomics search 

The aim of proteogenomics is to identify unknown protein-coding regions, and to 

correct and validate the known gene models. This entails performing database searches 

of MS/MS spectra against the known proteome and a putative search space to identify 

peptides and map them to these regions. These unidentified protein-coding regions 

could identify potential novel protein-coding loci (novel genes), expressed 

pseudogenes/lncRNA, and intergenic regions, such as between genes. Or by extending 

the known gene boundaries within a predefined linkage distance [82], within 

untranslated regions (UTRs), between exons of a gene (i.e. within introns), on different 

frames as those suggested by the known gene, and across splice junctions (Figure 2.6). 

In addition known genes can be further refined through the identification of alternative 

TIS sites inferred from N-terminal peptides to infer over-predicted genes. 
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Figure 2.6 Proteogenomics annotation events 

The range of proteogenomics annotations, which fall outside of the known annotations, can be classified 

as a novel protein-coding locus (novel gene), expressed pseudogene/long non-coding RNA (lncRNA), 

untranslated UTR regions, alternative splice junctions, exon boundaries, novel exons (novel peptides 

mapped within an intron) and alternative frames. In addition, not illustrated in this figure are gene 

boundaries (within predefined boundaries closely flanking the gene region) (image courtesy of [439]). 

Generating databases to reflect all these possible protein-coding regions is not 

trivial. They can be defined by 1): a six-frame translation of the genome, which was 

first pioneered by Yates et al [453] and is usually limited in size to open reading frames 

(ORFs) of around 30-40 amino acids, to reflect the most likely minimum peptide length 

and protein coding portion of the genome and to restrict the extent of the inflated 
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database size. This type of approach is commonly applied in various studies across a 

range of organisms [81, 82, 443, 453-456]. But this does not cater for peptides spanning 

exon-exon junctions. In such situations de novo sequencing of the un-assigned MS/MS 

spectra could account for peptides spanning these exon-exon junctions. However, as 

previously mentioned, de novo sequencing has a larger search space and is highly error-

prone. Other methods are therefore needed to define the exon-exon junction search 

space, such as with 2): ab initio gene predictions, which are able to predict the gene and 

the internal exon-exon junctions using numerous tools (as discussed in Section 2.2.2). 

This limits the size to the most likely coding regions, ORFs and exon-exon junctions 

given some prior evidence, as demonstrated in a previous study [444]. Although this 

limits the search space and includes exon-exon junctions, it biases the search to 

whatever the ab initio method considers being a real gene feature and limits the scope 

for the discovery of novel annotations. Additionally, many incorrect and missing gene 

annotations are a direct result of the limitations of ab initio gene prediction. 

 Previous studies have applied this approach in conjunction with a six-frame 

translation to define a separate exon-exon junction search space, derived from cDNA 

evidence, with each exon represented only once in a compact exon splice graph [81, 82, 

457]. An alternative method is to use 3): a six-frame translation of ESTs, which would 

provide experimental evidence of expressed sequences and limited splicing information 

(due to sequencing bias at the 3’ end), which would include novel splice sites and single 

amino acid polymorphisms (SAPs). Although this has the same limitations as a pure 

six-frame translation of ORFs with its large size, EST datasets can be reduced in size by 

applying a series of stringent criteria to best represent the most likely coding regions 

and representing the sequences in a de Bruijn graph [458], as well as the option to align 

multiple ESTs to genomic regions, and determine exon-intron boundaries which can 

then be represented in a compact exon splice graph [457]. 
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In another alternative method 4): a three-frame translation of curated RNA 

transcripts derived from databases such as Ensembl or RefSeq would allow the 

identification of alternative TIS sites and frame-shifts and since the strand orientation is 

known, it avoids further inflating the search space by not including frames on the 

opposite strand. Sequences of pseudogenes and lncRNAs could also be included to re-

classify such transcripts as coding [459]. A different method is to 5): generate a 

database of splice junctions, derived from RNA-seq reads aligned to a genome [460, 

461] using splice alignment tools such as Bowtie2-TopHat2 [126] and STAR [127], as 

well as a full transcript assembly through de novo methods, or preferably genome-

guided methods using tools such as CuffLinks [462], where high abundant transcripts 

are kept (based on read counts), and a three-frame translation is performed [463]. 

Additionally, a sequencing strategy, called Ribo-seq or Ribosome profiling [464, 465], 

can be used with this method, which is the sequencing of mRNA bound to ribosomes, 

enriched for transcripts destined for translation. This would limit the search space to 

only transcripts coding for protein, allow for easier identification of reading frame, 

frame-shift changes, identification of which transcript isoforms are being expressed, and 

in combination with N-terminomics [452], allow for the identification of alternative 

initiation codons. 

 Various other spliced peptide sequence databases can be generated, using RNA-

seq data with automated approaches from systems such as Galaxy-P, generating novel 

SAPs, splice junctions and sequences from highly expressed transcripts [466]. Other 

tools capable of generating databases from RNA-seq data are customProDB [467], 

which can generate splice variant sequences from public repositories such NCBI dbSNP 

[468], the Online Mendelian Inheritance in Man (OMIM) database [469] and the Protein 

Mutant Database (PMD) [470]. Databases can be generated containing sequences from 

sites of RNA-editing, identifiable from RNA/DNA comparisons with tools such as 
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REDItools [471]. Splice sequences can also be extracted from large RNA-seq datasets 

aligned to the genome and incorporated into a splice graph consisting only of splice 

regions distinct from sequences found in the six-frame translated genome [472]. This 

has been demonstrated to incorporate peptide variants, derived from variant calling 

tools such as the Genome Analysis Toolkit (GATK) [473], in the detection of mutant 

peptides in cancer [474]. This could also be used to generate sequences containing sites 

of RNA-editing. 

Depending on the study or target organism, other approaches could include the 

use of 6): curated databases such as the ECgene database with its large numbers of AS 

sequences [475], the Pseudogene.org database [476], the non-coding RNA sequence 

database NONCODE [477], a database of large intergenic non-coding RNAs 

(lincRNAs) located at Harvard [478] and the ChiTaRS database consisting of chimeric 

RNA transcripts [479]. 

Many of the above approaches assume a completed genome to work from when 

defining the search space, either via six-frame translation, mapped ESTs or RNA-seq. 

However, a complete genome is often not available in the majority of cases, and is only 

available as draft versions, which can be highly fragmented in early draft versions. This 

becomes a problem when assigning MS/MS spectra to a genomic sequence, as the 

MS/MS spectra can potentially be misidentified with a PTM in a different genomic 

location to that originally derived. A potential way to address this problem, would be to 

interpret any unassigned MS/MS spectra of sufficient quality by de novo sequencing 

using tools such as PepNovo [314] and UniNovo [336]. The sequences could then be 

used to search a closely homologous genome sequence or other available sequences, 

using tools such as MS-BLAST [480], which can also interpret raw MS/MS spectra for 

searching. In addition, tools such as InsPecT [326] allow for mutation-tolerant searches 

to find matches within homologous genomes, or to use approaches such as template 
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proteogenomics, with tools such as GenoMS [481] modified for large scale genome 

analysis, to find matches to homologous sequences. Strategies of this type allow the 

assignment of unassigned MS/MS spectra and could also provide a means to assist 

genome assembly by constructing complete proteins independent of the complete 

genome, which could then possibly assist with scaffolding where there is minimal read 

depth or coverage between scaffolds. 

2.4.2 Statistical analysis in proteogenomics 

Despite the differences between proteomics and proteogenomics, there is often common 

ground with the application of statistics, taking what is learnt from proteomics, such as 

FDRs, assignment of FPRs or p-values, and the definition of a null hypothesis through 

decoy databases [411]. In recent years, the repertoire of tools has increased to deal with 

the larger search spaces presented by searching the six-frame translation of a genome 

and addressing the inaccuracies with assigning empirically derived scores and FPRs to 

PSMs. 

In proteogenomics, a PSM level FDR is often chosen as the first step to remove 

spurious identifications. As pointed out in Section 2.3.9, in proteomics a peptide-level 

FDR is applied, as the aim is to identify peptides assigned to proteins. By comparison, 

in proteogenomics, the aim is to identify numerous PSMs across the genome to identify 

new coding regions, which is likely to contain much more spurious than real 

identifications. Applying a peptide-level FDR in a proteogenomics study would be 

overly conservative, and therefore a PSM-level FDR followed with further filtering 

using probabilistic scores, such as the peptide probability or posterior probability [404] 

and spectral probability [357], would be a more appropriate strategy. 

Besides the previously mentioned FPR (p-value) and FDR, derived from the 

empirical approach using the TDA, other statistical methods from proteomics can also 
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be implemented in proteogenomics. Examples of approaches include the q-value [418], 

PEP/local FDR [421], and theoretical as opposed to empirical approaches to calculate 

the score and FPR of each PSM using combinatorics [292], which allows for greater 

discrimination between true and false positives. 

A new statistical technique to contribute to this group of tools, specifically 

developed for proteogenomics, has emerged from concepts in genome linkage analysis 

studies [418]. Unlike other approaches, which simply apply stringent p-value or score 

thresholds on peptide identifications and may greatly improve specificity but with a 

trade off on sensitivity, this approach uses a more holistic approach. Since the aim of 

proteogenomics is genome annotation by identify protein-coding regions, and not 

specifically to identify individual peptides or proteins, this new approach uses the 

annotation event probability (i.e. the probability of being correct), which is based on the 

product of all posterior probabilities or local FDRs of PSMs (1 – local FDR) divided by 

the number of co-locations across the genome. The event probability is assigned to a 

cluster of peptides identified as an annotation event in the context of the known 

annotation. The event probability is employed in the proteogenomics tool, Enosi [81, 

82, 482], which classifies annotation events, such as exon boundaries, novel genes, gene 

boundaries, frame-shifts, reverse strands, translated UTRs, and novel splice junctions. 

The loss in sensitivity with increasing database size has been a challenge in 

proteomics [357, 427], and even more so in proteogenomics, as large numbers of 

putative sequences are added, and with an included decoy database the size of an 

already large database is essentially doubled. Therefore, any increase in database size 

when identifying novel proteins should be undertaken conservatively, by avoiding the 

addition of any unnecessary sequences. 
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The size of the database can significantly affect the scoring schemes used to 

identify PSMs. A number of PSM scoring methods compare the best scoring match and 

the second best, as previously highlighted in Section 2.3.9. As many more sequences 

are added the difference between the best score and second best score reduces and the 

likelihood of the best scoring match being incorrect increases. In addition, the 

significance of any matches which are rare diminish with increased database size, 

making it more difficult to separate out true and false identifications and resulting in 

many true identifications being removed when FDR filtering is applied [426]. While the 

number of identifications to the known proteome is relatively large by comparison to 

the novel identifications from the proteogenomics search, the overall number of 

identifications across both search spaces decreases [483, 484] and has been shown in 

some cases to be between 30% (see Section 4.3.13) and 52% (see Section 5.3.14) with a 

six-frame translation [483]. 

In addition to a reduction in sensitivity the search time is substantially increased. 

This can be addressed by splitting the database into smaller separate databases, and 

searching each one separately, which can become problematic depending on the search 

tool. When results are merged the score of the best matching PSM, second best 

matching PSM, and their difference (delta score), need to be adjusted to reflect 

searching the entire database. This is a necessity for tools such as Sequest [341, 342] 

and InsPecT [326]. Adjusting the scores can be avoided when the search tool uses a 

probabilistic scoring method independent of the database, as with MS-GF+ [292]. Other 

approaches to improve search time include the sequence tag and spectral dictionary 

approaches, mentioned previously in Section 2.3.7. Examples of tools using the 

sequence tag approach include InsPecT [326] and GutenTag [327], with InsPecT being 

demonstrated in proteogenomics studies in Arabidopsis thaliana [81] and Zea mays 

[82], while the spectral dictionary approach implemented in MS-Dictionary (later 
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extended to MS-GappedDictionary [335]) has been demonstrated to quickly search the 

six-frame translated genome of Shewanella oneidensis MR-1 and Homo sapiens and 

was around 40x faster than InsPecT [324]. Other approaches to improve the database 

search time, include database indexing [485-487], algorithmic improvements to utilise 

multi-core and multi-threading of high-performance computers [488], proteomics 

workflows utilising the grid [489], cloud computing [490], as well as other algorithmic 

approaches [310, 311, 491]. 

There have been numerous attempts to improve sensitivity when searching large 

databases used in proteogenomics studies, many of which have previously been 

mentioned for proteomics studies in Section 2.3.9. These strategies include MS-GF+, 

with its rigorous approach to define the score and significance of PSMs to better 

differentiate true and false positives [292], combining database search results from 

multiple different search tools [406], re-scoring database search results using multiple 

sources of information from the PSMs and search parameters, using machine-learning 

approaches such as PeptideProphet [403], iProphet [404] and Percolator [405]. Other 

methods to improve sensitivity in proteogenomics searches, mentioned previously with 

proteomics, are to address the problem at the sampling stage by limiting the peptide 

fractions to a particular range of pIs, or predict the pI of sequences in the database and 

then search only the appropriate fraction of the database with the same pI [429] as these 

peptides will likely be more common. The same principle is applied by searching for 

only tryptic peptides when performing a MS/MS database search using the protease 

trypsin. An additional method, which can be applied at the sampling stage, is Ribo-seq, 

mentioned previously, which can significantly reduce the search space to only 

transcripts destined for translation [464, 465], allowing for more statistically confident 

identifications. 
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In addition, the manner in which proteogenomics search results are filtered and 

processed can also improve the sensitivity. Often in the past a single FDR cut-off has 

been applied across all known and novel results [81, 82, 443, 450, 451, 482, 492]. A 

more prudent approach would be to apply FDR cut-offs to the different types of search 

spaces, by first searching the known database and followed by FDR filtering, with any 

remaining unassigned MS/MS spectra used for searching the proteogenomics search 

space for a unified set of novel PSMs [474, 493-495]. This could then have an FDR cut-

off applied across all novel PSMs, or across different classes of novel PSMs [439] (e.g. 

frame-shifts versus novel genes). Control of the FDR across novel PSMs has previously 

been described, after an initial broad 1% PSM level FDR filtering. However, real 

identifications may be missed even before annotation event filtering due to prior 

inaccurate PSM FDR filtering. Such approaches should be applied because different 

genomic regions have their own FPRs, just as different classes of peptides, such as 

tryptic, pI ranged peptides etc have their own likelihood of appearing in a sample, as 

mentioned previously. Compared to a broad FDR cut-off across all known and novel 

PSMs, applying a FDR cut-off separately on the identified known and a unified set of 

novel PSMs, such as those demonstrated in [474], would have the benefit of applying a 

more appropriate threshold for both known and novel PSMs. This would improve FDR 

accuracy, and by applying a more conservative approach by removing MS/MS spectra 

already identified as known, would avoid any possible MS/MS spectral 

misinterpretations among the novel peptides. 

This approach to FDR filtering on known and novel datasets separately, by first 

removing MS/MS spectra assigned to the known proteome before searching the novel 

dataset, is highly presumptuous that the MS/MS spectra was correctly identified in the 

known proteome, which could have also been correctly identified to a novel sequence, 

leading to highly conservative results. However, the approach does have merit when the 
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dataset contains numerous variant peptides, as was applicable in a study on cancer 

variant peptides [474], as there would likely be higher numbers of incorrect MS/MS 

spectral interpretations, due to mass shifts as a result of numerous SAPS mistaken as 

PTMs. A similar method is applied in [496], where the sequences from the 

proteogenomics search database are first in silico digested, with any peptides found 

matching known protein databases such as Ensembl, NCBI and UniProt by sub-string 

matching removed from the proteogenomics database leaving only likely novel 

sequences. However, this approach neglects filtering out of spurious MS/MS spectra, 

and assumes that all MS/MS spectra used in a search have no missed cleavages. It also 

limits the analysis to only in vitro protease cleaved peptides, not considering possibly 

interesting in vivo proteolytic peptides which could be included in the analysis. 

Another method, which can be employed to improve the sensitivity of a 

proteogenomics search, is the two-pass search approach, previously mentioned in 

Section 2.3.9. The method can be applied in proteogenomics to improve sensitivity by 

performing an initial search of the six-frame translation or other proteogenomics search 

space, as well as contaminant sequences, to identify putative sequences with high 

scoring PSMs with no FDR filtering and the removal of any MS/MS spectra not 

matching the target database or only matching contaminant sequences. A subsequent 

search is then performed only with sequences identified from the previous search, with 

the target sequences used in the TDA, followed with FDR filtering [428, 483]. This 

approach is able to filter out spurious MS/MS spectra and identify more PSMs by 

reducing the search space, and thereby increasing the significance of rare PSMs. 

Other methods can also be employed to reduce the database size by identifying 

the most optimal sequences to search, e.g. among all frames of a six-frame translation. 

These include ESTScan2 [497], EORF [498], applying homology searches, predicting 

coding potential, and ab initio predictions [483]. But such approaches, particularly those 
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applying predictions, may inadvertently bias the search space, by applying predefined 

assumptions to the data. 

Additional sources of false positives to those from an inflated search space, can 

be derived from random high scoring MS/MS spectra and matches to peptide sequences 

homologous to the real sequences, which may underestimate the FDR [426]. False 

positives may also be derived from chemically modified peptides from the known 

database; with a mass shift matching the unmodified novel peptides [493, 499]. To 

avoid the inclusion of such peptides the identified peptides from the MS/MS database 

search should then be searched, either by a simple sub-string search or using the Basic 

Local Alignment Search Tool (BLAST) against the six-frame and known database, 

which would identify any erroneous sequences. If, however identification of SAPs is 

also an aim of the analysis such sites should be marked and also screened for mass 

shifts explained by selected PTMs during the MS/MS database search, such as 

oxidation of methionine, deamidation, carbamylation, acetylation etc [82, 429, 493, 494, 

499, 500]. If the specific PTMs in a sample are largely unknown, a “blind” search can 

be run to identify the most common PTMs [402]. But the inclusion of multiple PTMs 

within a proteogenomics search can negatively impact the sensitivity by further inflating 

the search space unnecessarily [82, 427], and so it should be done within a proteomics 

context after the proteome has been improved and defined. As pointed out by Tsur et al 

[402], for every protein there is likely at least 1 unmodified peptide, and so adding 

modifications to a proteogenomics search is likely to hamper attempts to discover new 

proteins and novel annotations. 

Once a proteogenomics search is complete with PSMs identified and FDR 

filtering applied, there are other considerations for filtering before final analysis. Due to 

an upper limit on the number of identifiable PSMs imposed in a MS/MS database 

search, identified peptides from a PSM may not be representative across the whole 
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genome. Therefore, any identified peptides require mapping across the whole genome to 

ascertain which of the peptides are shared (co-located) and which are unique, along with 

their respective coordinates. In addition, another filtering consideration is any peptide 

which contains leucine/isoleucine, as mass spectrometers cannot distinguish between 

these amino acids since they are isomers with the same atomic mass, and so requires 

careful interpretation of the fragmentation pattern via multiple MS/MS experiments to 

distinguish one from the other [501]. Thus any sequences identified as 

leucine/isoleucine variants should be removed from the analysis. 

2.4.3 Defining the level of proteogenomics annotation 

In proteomics the level of annotation is at its basic level, with identified proteins and the 

locations of peptides within those identified proteins. In proteogenomics a broader 

annotation is required to characterise locations across the genome, flanking gene 

regions and within genes, such as novel genes, exon boundaries, TIS sites and frame-

shifts, along with their peptide evidence, which should be flagged as unique or shared to 

indicate unambiguously that a particular genomic locus is being expressed [220]. The 

proteogenomics search space has a much higher false positive rate compared to 

proteomics search spaces, and so to identify any annotation events with confidence and 

to unambiguously identify the locus as being expressed, much like in proteomics with 

the two-peptide rule, the parsimonious presence of two or more unique peptides across 

the region should be a requirement, particularly for regions with a higher false positive 

rate, such as intergenic regions – novel genes, translated UTRs and gene boundaries. In 

addition, there can be multiple simultaneous annotation events inferred for the same 

locus, depending on the surrounding known reference annotations. For example a novel 

peptide inferring a frame-shift can also be identified as a novel exon or translated UTR. 

To account for this overlap and simplify proteogenomics annotation, an order of 

precedence as outlined in a previous study [82], is required. 
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To define a peptide as novel relies on the underlying level of completeness of a 

genome annotation, its quality and the underling proteome database. In some cases the 

annotation is lacking and therefore needs to be revisited, requiring ab initio and 

evidence-based predictions, which themselves may be lacking in completeness and 

quality thus introducing errors into the annotation. For example, the protein predictions 

may be incomplete, containing ambiguous residues, gene models may be incomplete, 

such as truncated exons not divisible by 3, the CDS phase information may be incorrect, 

outlining a discontinuity between predicted sequence and entries in the General Feature 

Format (GFF) files etc (for examples see Chapters 4 and 5). For these reasons a highly 

curated annotation, containing only high confidence annotations, and which has 

potentially gone through some manual curation beforehand, is most beneficial to avoid 

any problems further in analysis. After the initial analysis, any novel annotation events 

identified should be screened following consideration of their posterior probabilities 

[404], event probabilities [81, 82, 482], parsimony, and spectral counts [502]. In 

addition, in support of these annotation events or predictions inferred from the 

annotation events, screening can be performed using BLASTP against public 

repositories containing known or predicted sequences from orthologous genomes, to 

confirm the findings, and by identifying orthologous regions or genes in closely related 

genomes, annotation can also be performed on these orthologous genomes, termed 

ortho-proteogenomics [79, 445]. Public repositories may also contain protein sequences 

derived from the target genome, but not currently incorporated into the current 

annotation from the study due to different annotation versions or other not well-known 

parallel genome projects and annotation efforts. 

An approach termed comparative proteogenomics [446, 448] can be used to 

assign confidence to novel annotations, where multiple parallel proteogenomics 

processes using different MS/MS spectral datasets are carried out on closely related 
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species, with cross-validation of any annotations applied. This is useful in the case of 

single peptide hits or “one-hit-wonders”, where the possibility of false positives is more 

likely. However, there is no currently available scoring scheme for comparative 

proteogenomics, and the approach has so far only been limited to bacterial studies, with 

manual inspection and sequence homology searches still necessary to apply confidence 

to proteogenomics annotations across the comparative studies. 

Another approach for conducting proteogenomics is with the annotation of 

metagenomes using metaproteomics, termed metaproteogenomics [503]. The field of 

metagenomics is tasked with the sequencing, assembly and annotation of communities 

of bacterial species, generally from soil samples, which cannot be individually cultured, 

sequenced and studied on a per species basis [504]. Genome annotation in 

metagenomics was performed by comparison with already existing genome annotations 

from individual species [505], however this can heavily bias the annotations and 

potentially introduce errors, as was outlined in Section 2.2.2. Metaproteogenomics 

emerged from the introduction of metaproteomics to provide more direct evidence for 

the expression of proteins across a bacterial community and to an extent indicate the 

functionality of genes and proteins from each species within that community. 

2.4.4 Proteogenomics tools 

The main goal of proteogenomics is to conduct genome annotation. Over the last decade 

the gold standard in genomic annotation involved a concerted effort in manual 

annotation, often referred to as a ‘genome jamboree’, which cost valuable time and 

money. A high-throughput proteogenomics approach, with high specificity and 

sensitivity would alleviate much of the time and financial requirements involved in 

genome annotation efforts. 
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 A number of proteogenomics strategies have been implemented into tools over 

the years, with many more tools becoming available during the last few years, offering 

increased complexity and sophistication. A number of these tools, with their relative 

advantages and disadvantages are outlined in Table 2.11. 

 

 



 

 78 

Table 2.11 Comparison between different proteogenomics tools 

A brief history of proteogenomics is encapsulated in the following twelve tools, developed over the last 

decade. 

Tool Advantages Disadvantages 

PeptideAtlas 

(2004) [354, 506] 

 Uses PeptideProphet. 

 Better specificity due to searching curated 
protein databases. 

 No way to identify unique peptides. 

 No control on FDR. 

 Web-based only lacking flexibility. 

 No six-frame translation search 
(limited novel discoveries). 

 Limited to searching protein 
databases; International Protein Index 
(IPI) [507] (now discontinued), 
Ensembl, Vega, RefSeq and 
UniProtKB. 

 Inferred annotations limited to peptide 
coordinates from known proteins. 

GAPP 

(2006) [508] 

 Downloadable by request, making it more 
flexible than PeptideAtlas. 

 Better specificity due to searching curated 
protein databases. 

 

 Uses Advanced Average Peptide 
Score (Advanced APS) [509] to score 
PSMs when they share a protein 
match that was obtained from within 
the same experiment [510]. Potential 
to identify incorrect proteins and skew 
the FDR when applying the TDA. 

 Limited control on FDR. 

 No measure of significance for each 
PSM. 

 No six-frame translation search 
(limited novel discoveries). 

Genomic Peptide 
Finder (GPF) 

(2004) [511] 

 De novo peptide sequencing. 

 Maps peptides to six-frame translated 
genome, improving the rate of novel 
identifications. 

 Improved throughput by automation, 
integrating the gene prediction tool 
Augustus. 

 Identification of spliced peptides through 
use of ESTs. 

 

 De novo peptide sequencing of 
MS/MS spectra has a much larger 
search space than other methods of 
MS/MS spectral interpretation, 
impacting sensitivity. 

 No rigorous control on FDR. 

 Limited identification of splice junctions 
using ESTs, as they are limited in 
coverage and are error prone. 

PepLine 

(2008) [512]  

 Maps peptides to six-frame translated 
genome, improving the rate of novel 
identifications. 

 Fast searches of six-frame translated 
genome by mapping peptide sequence 
tags (PSTs) onto genome.  

 PSTs are clustered to identify gene and 
exon-intron boundaries. 

 

 Sensitivity limited due to peptide 
sequence tag approach. 

 Lacks rigorous control on FDR. 
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Tool Advantages Disadvantages 

Genome-based 
peptide fingerprint 
scanning (GFS) 

(2008) [513] 

 Accepts either MS1 or MS2 spectra to 
identify ORFs from a six-frame translation. 

 Flexibility with MS approach: Using MS1, 
the ORFs are in silico digested and 
MS/MS spectra matched to in silico mass 
peaks. Using MS2 the ORFs are matched 
within a precursor mass tolerance, using a 
sequence tag approach or a slower, but 
more accurate GFS HMM_Score 
algorithm. 

 The PSMs are clustered to identify loci. 

 Can be optionally run on a local machine 
or cluster. 

 

 Not optimised for larger genomes. 

 Matches only filtered based on E-
values, with no rigorous control using 
FDR. 

 No discrimination between unique and 
shared peptides. 

 Sensitivity limited due to peptide 
sequence tag approach. 

 No identifications of peptides spanning 
exon-exon junctions. 

 Does not use known protein sequence 
and annotation to infer novel and 
known peptides. 

Proteogenomic 
Mapping Tool 

(2011) [514] 

 Flexible and friendly optional graphical 
user interface (GUI). 

 Extends PSMs in a 5’ and 3’ direction from 
start to stop or splice junction to generate 
expressed peptide sequence tags 
(ePSTs), first coined by McCarthy et al 
[515]. 

 Incorporates splicing either using 
canonical acceptor and donor sites or 
using imported splice junctions from 
GeneSplicer [516]. 

 The identified ePSTs can be used to 
confirm transcriptional data and/or used to 
search for homologues in similarly related 
species. 

 

 Not a fully integrated proteogenomics 
tool and no integrated MS/MS 
database search tool. 

 Lacks specificity, sensitivity and 
limited in its application. 

 Does a complete six-frame translation 
of genome. Not segmented into ORFs 
of a limited size, resulting in a far 
larger search space. 

 Can only map previously identified 
peptides given in a FASTA file. 

 No control on FDR or other filtering 
methods. 

Peppy 

(2013) [11, 449] 

 Employed as a proteogenomics tool for 
ENCODE. 

 Uses a newly developed PSM scoring 
approach. 

 Can run on a desktop for relatively smaller 
genomes when compute resources are 
limited. 

 Lacks rigorous control on FDR (only 
1% PSM FDR applied). 

 Performs a separate proteogenomics 
search and proteomics search, 
requiring manual filtering and 
identification of any novel PSMs. 

 All peptides identified. Studies 
indicated that only unique peptides 
were focussed on to identify loci. 

 No indication that peptide clustering 
was performed. 
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Tool Advantages Disadvantages 

Proteomic-
Genomic Nexus 
(PG Nexus) 

(2013) [517] 

 Employs MS/MS database search against 
six-frame translation, Ensembl and 
RefSeq public repositories. 

 Converts identified PSMs into genomic 
coordinates within a SAM and BED file, 
which can then be viewed in IGV 
alongside RNA-seq read alignment 
results. 

 Integrated into a workflow environment 
(Galaxy) for wider accessibility. 

 Bacterial genomes are sliced into 
segments of a chosen size (e.g. 900 bp) 
and six-frame translation performed. ORFs 
inferred by stitching together sliced 
segments with peptide matches. An 
alternative means to cluster peptides on 
overly long non-genic ORFs due to high 
GC content bacterial genomes. 

 

 Only limited to the MS/MS database 
search tool, Mascot [165]. 

 No rigorous control on FDR, besides 
that employed by Mascot, which is 
known to rapidly lose sensitivity and 
FDR accuracy with larger database 
searches due to its scoring function 
[426]. 

 For eukaryotic genomes, peptides are 
identified against Ensembl and 
RefSeq protein sequences, and then 
mapped onto the genome for 
annotation. 

 MS/MS spectra are not directly 
searched against the RNA-seq data. 
Only co-visualised with mapped 
peptides on the genome. 

Genosuite 

(2013) [502] 

 Combines multiple MS/MS database 
search tools and merges results for 
improved sensitivity, using Combined 
FDRScore [518]. 

 Visualisation of novel peptides mapping to 
genome in HTML file. 

 Visualisation of novel PSMs for manual 
validation in HTML file. 

 High specificity by enforcing ≥2 unique 
peptides, with single peptides ≥5 
significant PSMs. 

 

 Limited to only bacterial genome 
annotation. 

 Only limited to MassWiz [519], 
OMSSA [348], Tandem [347] and 
InsPecT [326] MS/MS database 
search tools. 

 No rigorous control on FDR, besides 
that employed by the MS/MS 
database search tools, and the use of 
a Combined FDRScore [518] when 
merging results. 

 ORF size from six-frame translation 
fixed at ≥50 aa. 

 Any identified leucine and isoleucine 
are considered the same, and mapped 
to the genome/proteome. Could 
introduce ambiguity to identifications. 

 Peptides, which are co-located in the 
genome, are not considered for further 
analysis. Only ≥2 unique peptides, 
with single peptides ≥5 significant 
PSMs, above the desired FDR 
threshold are considered – this 
improves specificity, but reduces 
sensitivity significantly. 

 Limited categorisation of novel 
peptides into Novel Protein Coding 
Region (NPCR) and changes in 
annotated gene models. Manual 
interpretation is then needed via 
comparisons to the NPCRs, ORF and 
other gene predictions. 

 Visual inspection in relation to the 
reference gene model and through 
sequence homology negatively 
impacts throughput. 
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Tool Advantages Disadvantages 

PGTools 

(2015) [496] 

 Employs MS/MS database search tools 
Tandem [347], Comet [520] and MS-GF+ 
[292]. The results of each can be 
combined using Percolator [405]. 

 Runs on multiple processors and on a 
cluster to enable high-throughput. 

 Modular approach, with some modules 
running as independent tools, allowing for 
flexibility with workflow design. 

 Incorporates OpenMS [521] and 
ProteoWizard [287] msconvert for file 
conversion. 

 Databases accessible from FASTA or 
SQLite formats. 

 Source code is freely available as open-
source allowing for customisation for non-
commercial use. 

 Uses JSON data format for reading and 
writing configuration files. Data outputs are 
in CSV, BED, SVG and HTML format. This 
allows for compatibility with other tools. 

 Usable as an automated pipeline or 
through a simple customisable graphical 
user interface (GUI). 

 Translation possible from 1 to 6 frames, 
not just all 6, for transcripts, ESTs and 
genome. 

 At multiple stages of analysis results are 
reported and data visualised as Venn 
diagrams of unique and shared peptides 
between search results, a zoomable 
treemap showing protein groups, 
chromosome distribution and Circos plots 
of identified mapped novel peptides [522], 
and through tools such as UCSC genome 
browser and the Integrative Genomics 
Viewer (IGV) [523]. 

 Separate modules for a proteomics only 
search with aggregation into protein 
groups based on parsimony and unique 
peptides and a genomics only search for 
proteogenomics annotation. 

 Segregates the novel search space prior 
to searching, by in silico digesting 
sequences from proteogenomics 
databases, filtering peptide lengths 7-36 
aa and removing peptides identified from 
known proteins in Ensembl, NCBI and 
UniProt. 

 Multiple types of annotation events 
detectable; pseudogene, translated non-
coding RNA, novel spliced peptides, 
translated UTR, novel gene, novel exon, 
frame-shift, gene extension, exon 
boundary, mutant peptides (indels) and 
gene fusions. 

 

 Currently only human focused and 
requires a database for different 
annotation event types, such as none 
coding, pseudogene, UTR, mutation 
and fusion databases, which are all 
pre-made and require downloading 
(although scripts for database 
generation are available from the 
authors on request), making it difficult 
to extend to other organisms. 
Algorithmic interpretation of the GFF 
file for these regions from the six-
frame translation, RNA-seq and 
variant calling tools would be more 
efficient and extendable as a general 
approach for proteogenomics. 

 The method employed to split 
databases to known and novel before 
MS/MS database searching, neglects 
filtering out spurious MS/MS spectra, 
assumes no missed cleavages, and is 
limited to in vitro protease cleaved 
peptides, as opposed to the inclusion 
of interesting in vivo proteolytic 
peptides, which could be included in 
the analysis. 

 A splice junction database was 
constructed from exon information 
extracted from a GFF file and donor 
and acceptor sites, joining exons 
together in different arrangements. 
Although this is able to identify 
previously unknown isoforms, it also 
has the potential to inflate the false-
positive rate. A similar approach was 
used in an exon graph from [81], but 
was abandoned in favour of a FASTA 
splice graph database derived from 
RNA-seq read alignments, thus 
reducing the false-positive rate, by 
inclusion of experimental evidence, 
generated with user controlled 
stringencies. 

 Only considers unique peptides 
mapped to genomic coordinates, to 
improve specificity, but significantly 
reduces sensitivity. 
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Tool Advantages Disadvantages 

Prokaryotic 
proteogenomics 
pipeline (PPGP) 

(2010, 2011, 2014)  

[443, 492, 524]  

 Fast search times with sequence tag 
approach employed by InsPecT. 

 Configured to run MS/MS database search 
on a variety of HPC environments for 
parallel running on a cluster. 

 Uses MS-GF to re-score PSMs with 
MS/MS spectral probability. 

 Clusters PSMs based on a chosen 
interpeptide distance to limit ORF size for 
high GC genomes, which often have long 
–non-genic ORFs. 

 Allows identification of signal peptides. 

 Applies ORF filtering to remove low 
complexity peptides, non-tryptic peptides, 
non-unique peptides, and ORFs 
containing only 1 peptide (one-hit-
wonders). 

 Reports different degrees of conflicting 
overlapping annotations, due to commonly 
overlapping genes in bacteria. 

 

 Limited to only bacterial genome 
annotation. 

 Only limited to the MS/MS database 
search tool, InsPecT [326]. 

 Sensitivity limited due to sequence tag 
approach. 

 Filtering of identified PSMs used high 
stringency of spectral E-values. 
Improved specificity, but reduced 
sensitivity. 

 New annotations only limited to ‘novel 
proteins’, ‘new starts’ and expressed 
‘pseudogenes’ among the known 
genes. 
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Tool Advantages Disadvantages 

Enosi 

(2008, 2012, 2014)  

[81, 82, 472, 482]  

 Integrates different MS/MS database 
search tools, initially with InsPecT [81], 
later used InsPecT with MS-GF to re-score 
PSMs [82], and has most recently been 
updated to MS-GF+ [6, 472]. 

 Two levels of FDR control: 1% PSM level 
FDR and event level with the event 
probability. 

 The use of an event probability is able to 
save single peptide identifications, which 
have often been delegated as “one-hit-
wonders”. 

 The number of unique peptides and the 
size of the peptide linkage distance for 
peptide clusters can be defined by the 
user, providing control on analysis 
stringencies. 

 A minimum stop-to-stop ORF size during 
six-frame translation can be defined, 
giving control on identification of short 
ORFs and database size. 

 Accounts for peptides spanning splice 
junctions using an exon graph [8, 81, 82] 
derived from all previously identified 
exons, later abandoned in favour of a 
FASTA splice graph used in [472, 474], 
derived from large RNA-seq experiments.  

 A larger number of annotation events are 
identifiable; novel genes and distal events: 
reverse strands, translated UTRs and 
gene boundaries and proximal events: 
frame-shifts, exon boundaries, novel 
exons and novel splicing. In the latest 
release through the use of variant 
peptides in a splice graph [474], indels 
and substitutions can be identified. 

 Configurable to run the MS/MS database 
search on a SGE cluster. 

 Reports annotation event types, genomic 
location, event probabilities, and the 
presence of the annotation event directly 
overlapping the gene of interest. All novel 
and known peptide identifications are 
provided in a GFF file, suitable for 
visualisation and as hints for gene 
prediction. 

 Novel peptides are verified as truly novel, 
by searching for those which are 
homeometric, i.e. those indistinguishable 
by mass spectrometry and which may be 
contained in the known proteome, and 
identified as novel my accident. These are 
then removed from the analysis after FDR 
filtering. Such peptides include those 
containing Isoleucine/Leucine 
substitutions and Lysine/Pyroglutamate 
substitutions. 

 

 Many peptide clusters are 
miscategorised as gene boundary and 
reverse strand annotation events as a 
result of a fixed peptide linkage 
distance too large for some genomic 
regions, which would suit a smaller 
linkage distance. This also affects the 
number of novel genes, which can be 
categorised. 

 The latest version 1.0 only runs the 
MS/MS database search on an SGE 
cluster, splitting the database up to run 
on each node, and is not configured 
for other schedulers such as PBS Pro 
and SLURM. Running on these would 
require running the search outside 
Enosi within an in-house script. 

 Pre- and post-processing tasks are not 
multi-threading and do not run on a 
cluster, such as splice graph 
generation and FDR filtering. This 
requires some innovative approaches 
outside of the Enosi tool to process 
particularly large datasets from splice 
graphs and the combined raw results 
from a six-frame translation search. 

 In Enosi version 1.0 when using the 
built-in combined FDR strategy, 
filtering is applied to each result file 
based on the number of split 
databases searched and then merges 
them post-filtering. This introduces 
FDR inaccuracies, but can be avoided 
to a degree by manually combining 
results prior to FDR filtering.  
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Many of the tools mentioned above in Table 2.11 do not scale well for large 

projects, do not easily allow the capture of metadata, offer flexibility to integrate a 

seamless workflow, or the sharing of these workflows with collaborators, and not all of 

them leverage HPC clusters. However, there are a few known exceptions: 1) Enosi uses 

a text file containing parameters which can be shared and reused, is configurable to run 

on an SGE cluster, and is also accessible from ProteoSAFe [525], a web-based 

proteomics analysis suite; 2) the prokaryotic proteogenomics pipeline (PPGP) [524] 

allows the use of high performance computing clusters using InsPecT for MS/MS 

database searching, and using a text file for parameters, similar to Enosi; 3) PG Nexus 

has been integrated into Galaxy, a web-based workflow environment; and 4) the 

recently released PGTools, can run on a HPC cluster, and captures results at each stage 

of analysis in HTML reports and visual aids. 

There is a need for such analysis approaches in proteogenomics, where the 

capture of meta-data is essential and major collaborations in genome annotation will 

benefit from the sharing and re-use of workflows to enable large scale proteogenomics 

efforts. 

2.5 BIOINFORMATICS WORKFLOW ENVIRONMENTS 

This section provides a background on bioinformatics workflow environments and 

outlines the means of enabling the wider uptake of proteogenomics in large 

international and national genomics projects. A number of workflow environments are 

discussed in detail. 

The domains of genomics, transcriptomics, proteomics and proteogenomics all 

mentioned up to this point share a common theme, that of informatics, or more 

precisely, bioinformatics, which details how the processing of biological data and their 

interpretation are conducted. Bioinformatics itself has often been isolated to scientists 
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with information technology (IT) skills, who also frequently have knowledge in a wide 

variety of disciplines, e.g. statistical analysis, proteomics, genomics, transcriptomics 

and metabolomics. The bioinformatics workflow environment is a new tool that 

simplifies the requirements for bioinformatics analysis, allowing anyone access to tools 

with much of their complexity abstracted away, the only requirement being the choice 

of parameters, input and form of workflows. However, many of these prerequisites can 

become standard with particular workflows, which could be set up once by a specialist, 

and then reused with minimal tweaking of parameters by the end user. This paradigm is 

powerful, allowing much broader use of tools with minimal downtime for training. 

For proteogenomics to become more accessible to the wider scientific 

community, anyone who can generate peptide mass spectrometry data, or who has 

recently sequenced a new genome, either themselves or through external sources, 

should be able to bring these datasets together and perform analyses without needing to 

employ the skills of further specialists in bioinformatics. 

A number of bioinformatics workflow environments have emerged over the 

years [526-534], some of which are limited in functionality, flexibility, and user-

friendliness and others breaking those trends and setting new benchmarks for a better 

and useful workflow environment. Three examples of bioinformatics workflow 

environments are detailed below. 

Taverna [529, 530] is a desktop-based workflow environment that is employed 

in a highly configurable graph of interconnected processes. The execution and 

management of each process is written in eXtensible Markup Language (XML) called 

Simple conceptual unified language (Scufl). Each process must be configured in the 

Scufl language with error handling managed by the user, with the various processes 

then chained together into complex workflows with multiple branching or iterative 
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processes running in parallel. Each process can be run on a local machine or submitted 

to a web service for execution (e.g. NCBI and EMBL web services such as BLAST and 

ClustalW), and all actions are saved in a log file. In addition, Taverna has integrated 

workflow saving and offers sharing through myExperiment [535], a web site which 

shares workflow objects between scientists. Taverna is focused towards scientists who 

understand programming and probably are familiar with a command line environment, 

and who essentially become the system administrators of their own workflows. 

Consequently, many scientists not familiar with these necessary skill-sets may shy away 

from using such a workflow environment. 

Galaxy [532] is an internet-based workflow environment, designed with 

genomics [531], and more recently proteomics [466] and proteogenomics [536] 

workflows in mind. Compared to Taverna, the skill requirements are lower and the 

interface is simplified, with no user requirements to have programming or system 

administrative skills, and with the maintenance of tools the responsibility of a separate 

systems administrator. However, adding new tools requires a software developer to 

integrate the tool using JavaScript Object Notation (JSON), which becomes problematic 

when many different tools are needed for various different groups. In addition, as with 

Taverna, all work history is recorded allowing easy access to previous run workflows 

and their use as templates for similar workflows, which can then be processed 

independently or processed together to find their union, intersect, subtraction etc. Also 

similarly to Taverna, Galaxy allows the sharing of workflows through myExperiment 

and Galaxy Published Workflows and, just as Taverna runs on a local computer, Galaxy 

runs on a single server on the Internet with a single location for the storage of data input 

and output of results. The workflow design scheme can be complex, with multiple 

branching and parallel processes, but it is limited by comparison with Taverna, since the 
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user has less control on how to configure the processes, leaving that responsibility to a 

programmer. 

Yabi [533] is an internet-based workflow environment for various domain-

specific tasks, and which uses a three tier system: 1) a frontend web application for the 

user interface, 2) a middleware layer for process management, tool configuration, 

analysis history tracking and user management, and 3) a resource manager that exposes 

data and then compute resources to the middleware. Yabi skill requirements are less 

than both Taverna and Galaxy, with much of the complexity of managing and 

configuring the processes abstracted away from the user and delegated to the systems 

administrator. The display of the workflow scheme is also simplified to a linear form, 

although branching and parallel processing of tasks is still possible. This allows 

complex workflows to be created without the workflow clutter from many multiple 

different processes running in parallel, and provides a more intuitive and easy to 

understand workflow. Yabi separates out roles to the user, systems administrator and 

software developer. This is designed to abstract out the complexities for the user and 

allow the systems administrator to focus on their role without needing to be involved in 

software development. Monitoring the progress of processes through Yabi can be 

followed through a web-browser. Yabi is also able to access data in a heterogeneous 

manner, which distinctly separates it from both Taverna and Galaxy, as the backend 

where data are stored can be in various remote locations, and accessed through SSH 

[537], GridFTP [538], SFTP , Amazon Simple Storage Service (S3) [539] and others. In 

addition, various compute resources can be used, which include Torque [540] and PBS 

Pro [541], residing on HPC, Grid or Cloud based machines. This architecture lends 

itself well to performing tasks across various compute and storage resources for 

analysis, without relying on any one single resource. This capacity is critical when the 
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user has large datasets accessible from a remote site, with the results outputted to a 

different remote site for review. 

Yabi has also been implemented into a command line interface for users who are 

more familiar with the command line, and who do not wish to write scripts in order to 

run jobs on HPC systems. During the design of workflows each process is configured to 

know which types of input and outputs to expect, with an indication to the user when a 

particular input is required from the output of a previous process. In addition, 

workflows in Yabi can be saved and re-used, with plans to make these workflows 

sharable between different installation instances of Yabi.   

All these tools lend themselves well towards proteomics and proteogenomics 

pipelines, which could be easily supplemented with pre-processing and post-processing 

stages. However, to really reach out to the scientific community, tools such as Yabi are 

needed to simplify the tasks by abstracting away the complexities, and allowing 

flexibility to where the tools can be deployed and accessed. This can be done even from 

remotely distant locations, so that scientists can focus on the science, instead of 

struggling with the tools and the logistics of processing large datasets. 
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3 METHODOLOGIES 

This chapter outlines the key Materials and Methods used throughout this thesis and 

culminates in the synthesis of a roadmap for undertaking proteogenomics. 

3.1 DATASETS 

3.1.1 Proteomics and genomics datasets 

The MS/MS spectra and genomic datasets from all four case studies (Chapter 4: 

Bacteria, Chapter 5: Grape, Chapter 6: Human and Chapter 7: Wheat) were obtained 

from a variety of different sources, including research collaborators and publically 

available datasets and generated through prediction tools, as outlined in the Materials 

and Methods sections for each case study. All protein datasets included a common 

source of contaminants downloaded from the Global Proteome Machine (GPM) 

(ftp://ftp.thegpm.org/fasta/cRAP/crap.fasta), comprising a broad range of contaminants 

including keratins, chymotrypsin and trypsin. Other contaminants were added if 

suspected to be in the samples, such as non-target proteins and other uncommon 

proteases if used in the study. These were added to the known protein datasets prior to 

MS/MS database searching. 

Visualization of all gene models and their supporting evidence, including novel 

and known peptides, was done using the Integrative Genomics Viewer (IGV) [523]. For 

illustrative purposes for this thesis, GenomeTools [542] was used. 

When visualizing the MS/MS spectra assigned to the known and novel peptides, 

and for illustration in this thesis, Lorikeet Spectrum Viewer 

(https://code.google.com/p/lorikeet/) was used. 

3.1.2 RNA-seq datasets 

For eukaryote studies, to account for alternatively spliced genes and to define a search 

space for spliced peptides, Illumina RNA-seq data was obtained from the Sequence 

ftp://ftp.thegpm.org/fasta/cRAP/crap.fasta
https://code.google.com/p/lorikeet/
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Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) through DNA Nexus 

(http://sra.dnanexus.com/), and also obtained from collaborators, the details of which 

are highlighted in each respective chapter. 

3.2 DATA FORMATS 

The initial step for any proteogenomics analysis is the conversion of data formats. File 

formats outputted from mass spectrometers are in a proprietary format and before any 

analysis can begin, they require conversion to an open source format such as mzXML, 

mzML and MGF, to be processed by the analysis tools. 

The main workhorse of any MS-based proteomics analysis pipeline is the 

MS/MS database search tool; in this case it is MS-GF+ [407] (version v9949 

2/10/2014). MS-GF+ can accept mzML, mzXML, MGF, MS2, PKL and DTA file 

formats. Due to the pre-processing steps undertaken for clustering and quality filtering, 

for each case study investigated it was necessary to convert the original file format, if 

not already formatted and whether proprietary or open format such as mzXML, to 

MGF. 

The tool msconvert, from the Proteowizard package 

(http://proteowizard.sourceforge.net/), was used for conversion of the MS/MS spectral 

file format. The Windows 32-bit version of msconvert was used, which was the only 

free open source version available that includes vendor reader support. The msconvert 

tool is capable of running on the command line or through a graphical user interface 

(GUI). 

3.3 MS/MS DATABASE SEARCHING 

The MS/MS database search was performed by MS-GF+, which uses the following 

settings: 1) Depending on the source of the MS/MS spectra the protease was either 

http://www.ncbi.nlm.nih.gov/sra
http://sra.dnanexus.com/
http://proteowizard.sourceforge.net/
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trypsin, chymotrypsin, Aspn or unspecified, 2) a precursor mass tolerance was then 

chosen, which varied depending on the case study and/or dataset used and whether the 

search was for the assessment of optimal precursor mass tolerance, mentioned later in 

Section 3.4.6. 3) The number of allowed modifications per peptide was set to 2, with 

modifications: carbamidomethylation of cysteine (C+57), oxidation of methionine 

(M+16) and protein N-terminal acetylation (+42). 4) The maximum peptide length was 

set to 30 amino acids (aa), 5) the isotope error range was set to “0,2”, 6) the instrument 

was set to either high-res Time-of-Flight (TOF) (e.g. Quadrupole TOF (QTOF)) or low-

res Linear Trap Quadrupole (LTQ) (e.g. Ion Trap) depending on the mass spectrometer 

used to generate the data. 7) The number of tolerable termini was set to 1, 8) the number 

of reported matches per MS/MS spectrum was set to 10, and 9) a reverse sequence 

decoy database was generated. 

In Enosi (version 1.0), some MS-GF+ parameters mentioned above are always on 

by default and are not changeable (i.e. they are hard coded into the tool), such as the 

number of tolerable termini, maximum peptide length, number of reported matches per 

MS/MS spectrum, use of a reversed sequence decoy database and the isotope error 

range. In addition, there are restrictions to parameters such as the number and types of 

modifications and a precursor mass tolerance in Daltons (Da) is restricted to between 

0.0 to 2.0 Da, as a mass window above this would increase search time and reduce the 

sensitivity of the search by considering many more possible precursor masses, which 

becomes a problem and more so in proteogenomics searches. However, due to the 

inaccuracies with low-accuracy mass spectrometers (e.g. LTQ), there is no well-defined 

optimal precursor mass tolerance that can be chosen, as the actual mass of each peptide 

ion may vary widely, resulting in the MS/MS spectra not being identified if the mass 

window is too narrow or too wide. In some situations, going above 2.0 Da, and looking 

at a range of precursor mass tolerances, e.g. up to 3.0 Da may be warranted to improve 
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upon coverage, as demonstrated in a later chapter utilizing low-accuracy MS/MS 

spectra. As a result, the database searches were performed using an in-house script, 

independent of Enosi, with each MS/MS spectral file searched against each database 

file. This step was also taken due to the limitation that Enosi required an SGE cluster for 

scheduling, which was not accessible to the dissertation author. Only access to SLURM 

and PBS Pro schedulers were available, as further explained later in Section 3.5. 

3.4 PROCESSING AND PREPARATION OF DATASETS 

3.4.1 Formatting of gene model and protein sequence datasets 

Datasets from the various case studies required varying degrees of modification 

depending on the state of the publicly available annotations or the output from 

prediction and annotation tools. For the proteogenomics pipeline to be compatible with 

the GFF file an “mRNA” line must be present preceding the “CDS” line, while a “gene” 

line is not critical for processing. In cases where only “gene” and “CDS” lines exist, the 

word “gene” from column three, can be replaced with “mRNA”. Also the protein 

FASTA headers and/or Parent identifiers in the GFF file were modified to ensure that 

they were the same. The “Parent” identifier for mRNA was also required to be the same 

on the corresponding CDS and exon features. Additionally, to assist downstream 

annotation, where the “ID” and “Parent” identifiers were too generic or inconsistent 

across all features, they were modified to include the gene name and/or accession for 

easy identification. 

In some instances, gene feature coordinates were found to be in the wrong 

orientation on the reverse strand (e.g. 5’ to 3’ on the forward strand and 3’ to 5’ on the 

reverse strand). In particular, for Enosi to determine known mapped peptide 

coordinates, CDS and exon coordinates must be in a 5’ to 3’ orientation on the reverse 

strand (i.e. the highest coordinate to lowest coordinate), and the reverse for the forward 
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strand. In instances where GFF files contained CDS and exons in the wrong orientation, 

an in-house script, utilizing GFFutils (https://github.com/daler/gffutils), was used to 

parse the GFF file and to output all gene features in a 5’ to 3’ orientation, regardless of 

which strand was implicated. In addition to the gene feature orientation, modifications 

to the GFF files were carried out with a series of Unix commands. 

3.4.2 Pre-processing of RNA-seq datasets 

All Illumina reads were first checked for quality using FASTQC [543], followed by 

trimming using Trimmomatic [544], with quality score thresholds set to an average of 

20 across a 4 bp window. Minimum length was set to 20 bp and Phred scores were set 

to 33 (Illumina 1.8+) or 64 (Illumina 1.5+) depending on the reads. The first 15 bp of 

the reads were cropped to remove any Illlumina bias present, and the appropriate 

Illumina adapter sequences (either TruSeq2 or TruSeq3) were chosen in each case 

depending on the sequencing method used. All unpaired reads were merged and labelled 

single end (SE). All trimmed reads were then gzipped. FASTQC was then re-run on the 

trimmed reads to confirm the quality of the reads before alignment to the genome. 

3.4.3 RNA-seq alignments 

All alignments to the respective genomes in each case study were carried out using the 

Spliced Transcripts Alignment to a Reference (STAR) aligner (version 2.3.1x) [127], 

using the two-pass scheme which was conducted using an in-house bash script running 

on a Cray XC30 supercomputer (Magnus, from the Pawsey Supercomputing Centre 

https://www.pawsey.org.au/). Magnus consists of two compute cabinets, each holding 

52 compute blades, with four nodes per blade and each node supporting two 8-core Intel 

Sandy Bridge Xeon E5-2670 processors running at 2.6 GHz, with 64 gigabytes of 

DDR3-1866 per compute node, at 1.6GHz. Each STAR job on the supercomputer was 

assigned 16 cores and 63 GB RAM and ran within a 12 hour walltime. STAR was run 

with 16 threads, and the parameters “genomeSAindexNbases”, “genomeChrBinNbits”, 

https://github.com/daler/gffutils
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“genomeSAsparseD”, and “limitGenomeGenerateRAM” were set to “7”, “10”, “20”, 

and “63000000000”, respectively (optimised for aligning to particularly larger, highly 

fragmented genomes). The two-pass scheme was implemented by using the splice-

junctions output from the 1st pass, as input for the 2nd pass to improve upon the 

sensitivity of splice junction detection. STAR was chosen by comparison with other 

alignment tools such as TopHat2 [126] due to its improved alignment speed, sensitivity 

and reporting fewer false positives [545]. 

All alignment results from paired end and single end reads were in Sequence 

Alignment/Map (SAM) format, which were then subsequently sorted by coordinate and 

converted to sorted Binary Alignment/Map (BAM) format files using the tool SortSam 

from Picard tools (http://picard.sourceforge.net/). 

3.4.4 Preparation of proteogenomics splice database 

All sorted BAM files from the STAR alignments were then merged together into a 

single BAM file using SamBamba (http://lomereiter.github.io/sambamba/), which is a 

SAM and BAM tool capable of quickly merging many SAM and BAM files into one 

larger file with relatively little memory overhead. The Picard tool MarkDuplicates was 

then run to filter any PCR and optical duplicates from the merged BAM files. In some 

cases, where the BAM files were particularly large with many sequences in the header, 

MarkDuplicates was run before merging the BAM files using Sambamba. The resulting 

BAM files, with redundant read alignments removed, were then converted to a SAM 

file using SAMTools [546]. 

Packaged with Enosi (version 1.0) is a script called BuildSpliceGraph (version 

0.4.11), which takes SAM files and a genome FASTA file. Using the SAM file 

mentioned above, BuildSpliceGraph was run to generate a SpliceInfo file, with a 

maximum peptide length set to 30 aa and a minimum number of spliced reads set to 2. 

http://picard.sourceforge.net/
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Finally, a splice FASTA file was generated; representing all spliced peptides and 

containing genomic coordinates in the FASTA header. This splice FASTA file was then 

used as a splice database in the proteogenomics analysis. In instances where the genome 

was very large and/or fragmented, resulting in very large numbers of splices to process, 

each splice from the SpliceInfo file was separated out and run in a massively parallel 

manner on Magnus, mentioned previously in Section 3.4.3 for RNA-seq alignment. 

3.4.5 Preparation of six-frame translation database 

A stop-codon-to-stop-codon translation of the genome was generated in all six frames. 

This was undertaken using the Enosi tool, using 30 aa as the minimum Open Reading 

Frame (ORF) size and with the minimum file size for each file set to 500 Mb, unless 

otherwise specified for each specific case study. 

3.4.6 Pre-processing MS/MS spectra and MS/MS database search 

optimization 

In each case study the total set of MS/MS spectra were clustered using MS-Cluster 

[312], thus improving the signal to noise ratio by merging MS/MS spectra and 

removing redundant MS/MS spectra matching the same peptide, which improved the 

overall quality of the MS/MS spectra and reduced the number of aberrant MS/MS 

spectra attributing to false positives. This also reduced the overall dataset size, resulting 

in improved search times. PepNovo [302] was then used to quality filter the clustered 

MS/MS spectra. Due to the limited MS/MS spectral dataset sizes, the level of quality 

filtering was optimised for each dataset to reduce losses. Comparisons using the known 

proteome, were made between the original MS/MS spectra, clustered MS/MS spectra, 

and clustered+quality filtered MS/MS spectra across a range of quality score thresholds 

(PepNovo scores 0.001, 0.005, 0.01, 0.05, 0.1, and 0.2), to ascertain the most 

appropriate pre-processing procedure to use before undertaking proteogenomics 

analysis. 
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Often in peptide mass spectrometry users default to around 20 ppm with high 

accuracy Orbitrap, Fourier Transform (FT) and TOF machines, while 2.0 - 4.0 Da is 

often the choice for lower accuracy LTQ machines. Additionally, the accuracy of any 

one machine can alter over time, over different mass ranges (depending on the 

machine), and can also differ from day to day. In keeping with this trend and to keep the 

choice of precursor mass tolerance consistent while assessing quality filtering and 

clustering it is best to default to using a precursor mass tolerance of 20 ppm for high-

accuracy MS/MS spectra and 2.0 Da for low-accuracy MS/MS spectra. Comparisons of 

all results between the original MS/MS spectra, clustered MS/MS spectra, and 

clustered+quality filtered MS/MS spectra, were then made, taking the largest number of 

peptide-spectrum matches (PSMs) <5% peptide false discovery rate (FDR), and the 

most appropriate pre-processing strategy was chosen for further proteogenomics 

analysis.  

For most of the case studies in this thesis, a high accuracy mass spectrometer, 

such as the LTQ Orbitrap and QTOF was used to generate the MS/MS spectral datasets. 

The high accuracy MS/MS spectral datasets are well suited to applying a precursor mass 

tolerance optimization step. The use of high accuracy machines is frequently ignored or 

forgotten when performing MS/MS database searches [161] and it is often prudent to 

optimize MS/MS database search parameters before conducting the analysis proper 

[547]. A similar approach was taken with the proteogenomics analysis, by using the 

high sensitivity and precision of MS-GF+ in conjunction with the choice of an optimal 

precursor mass tolerance to reduce false positives and improve peptide discovery rates, 

while maximizing on the identification sensitivity of proteogenomics annotations. The 

choice of precursor mass tolerance also affects the sensitivity of MS/MS database 

searches. By increasing the error window, particularly for the larger fixed value errors 

in Da often used with low-accuracy mass spectrometers, such as with an LTQ, the 
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search space and search time is essentially increased, which consequently reduces the 

sensitivity of the search (up to a point dependent on the accuracy of the mass 

spectrometer). This fact is reflected in Enosi as outlined in Section 3.3, where Enosi 

purposely restricts the choice of precursor mass tolerances to between 0.0 and 2.0 Da 

when selecting Da as the precursor mass unit. 

Assessment of the optimal precursor mass tolerance for each dataset was 

conducted over a number of ranges (generally 0.5 - 5.0 Da for low-accuracy and 0.5-

150 ppm for high-accuracy) to deduce the optimal precursor mass tolerance for the pre-

processed MS/MS spectral dataset, as before, taking the largest number of PSMs <5% 

peptide FDR. 

MS-Cluster was used to cluster the MS/MS spectra as previously outlined. 

However, in cases where the number of MS/MS spectra was less than 100,000, 

clustering was not performed as this would prove ineffective and it would probably 

result in MS/MS spectral losses. PepNovo on the other hand uses a machine-learning 

approach based on prior MS/MS spectra on which it was trained on during its 

development [314], looking at peak intensities and numbers. The training data were 

likely derived from cell lysates, which would have a higher signal-to-noise ratio, higher 

peak intensities and large numbers of mass peaks compared to samples derived from 1D 

or 2D gel digests. Therefore, any MS/MS spectra derived from similar sources to cell 

lysates, instead of 1D gel digests, would be more suitable for quality filtering. PepNovo 

applies a quality score to each MS/MS spectrum, which is then applied to filter the 

MS/MS spectra. As a result, some case studies with MS/MS spectra derived from 1D 

and 2D gels were not quality filtered, and similarly, when there were a limited number 

of MS/MS spectra, no clustering was performed. 
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 The original MGF files and also the single merged larger MGF file following 

clustering (and quality filtering where applicable) were split up into separate smaller 

files each consisting of 65,000 MS/MS spectra, using an in-house MGF splitting script 

on a local machine or 20,000 MS/MS spectra each, for running on a cluster with a 24 

hour walltime (MS/MS spectral numbers below 1,000 were not recommended as this 

would lead to significantly lower accuracy FDR calculations). The original MGF files 

were also split, as some MS/MS spectral files can be too large for tools like MS-GF+ to 

process effectively or at all. Enosi was designed to run directly on a SGE cluster, where 

it would split up the MS/MS spectral files based on the number of compute nodes 

specified, but when the number of compute nodes is few or is only ever run on a single 

node, each MS/MS spectral file may still remain too large to process effectively. 

To evaluate the different pre-processing strategies and precursor mass 

tolerances, an in-house script was used along with MS-GF+ (version v9949 2/10/2014). 

The in-house script contains parameters as explained in Section 3.3. A decoy database 

was created by reversing the sequences from the target database and then was combined 

with the target database and indexed using a suffix array. This was done automatically 

by MS-GF+ otherwise, depending where the search was run e.g. on a cluster, then the 

generation of decoy sequences and indexing of the databases were performed as 

separate jobs. If running multiple split MS/MS spectra across multiple split databases on 

a cluster, the results were then merged and a 1% PSM FDR applied. This was applied 

using the ComputeFDR function from MS-GF+, with the spectral E-value used as a 

score. Calculations of the peptide FDR and protein FDR were then determined based on 

the method outlined in [411]. In addition, the number of PSMs, number of non-

redundant peptides, and number of non-redundant proteins were then calculated prior to 

and post-FDR filtering. Ultimately, further control on the FDR is employed within each 

case study, either prior to proteogenomics analysis using the more traditional combined 
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FDR strategy (see Section 3.5) or the two-stage FDR strategy (see Section 3.5.2), or 

during proteogenomics analysis by the event probability. 

Other parameters to consider for optimization included post-translational 

modifications (PTMs). The inclusion of PTMs has the effect of also increasing the 

search space and reducing sensitivity. A more prudent approach is to leave the search 

for protein polymorphisms and PTMs to only proteomics searches and focus on what is 

most appropriate for proteogenomics in the context of improving sensitivity by 

maximizing the number of new annotations. As was pointed out by Tsur et al [402], for 

every protein there is likely at least one unmodified peptide, and so by adding further 

modifications to a proteogenomics search will only hamper attempts to discover new 

proteins and novel annotations. As such, the selection of appropriate PTMs for the 

MS/MS database search were kept to the default throughout this thesis: 

carbamidomethylation of cysteine (C+57), oxidation of methionine (M+16) and protein 

N-terminal acetylation (+42). 

3.5 PROTEOGENOMICS PIPELINE 

A proteogenomics pipeline was customized utilizing the proteogenomics tool Enosi 

(version 1.0) [8, 437, 548, 549]. Enosi incorporates the highly sensitive and accurate 

MS/MS database search tool, MS-GF+, and also has the ability to search an RNA-seq 

derived FASTA splice-graph database [549]. 

For all case studies, the appropriate pre-processing strategy and precursor mass 

tolerance were selected based on an evaluation using the known proteome, as outlined 

above in Section 3.4.6. The clustered and quality filtered MS/MS spectra were then split 

using an in-house MGF splitting tool into 65,000 MS/MS spectra when running on a 

local machine or 20,000 MS/MS spectra on a cluster, to remain within a 24 hour 

walltime.  
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The Enosi tool assigns different annotation events to the identified peptide 

clusters: novel genes, identified outside the boundaries of the peptide linkage distance, 

distal events, identified within the boundaries of the peptide linkage distance, but 

outside the boundaries of a gene and proximal events, identified within the boundaries 

of the peptide linkage distance and within the boundaries of a gene. The novel gene 

events consist of novel genes, while distal events consist of gene boundaries, translated 

UTRs and reverse strand events, and proximal events consist of frame-shifts, exon 

boundary, novel exon and novel splice events (when applicable for eukaryote studies). 

The parameters selected for Enosi included a six-frame translation of the 

genome generated as outlined above in Section 3.4.5, a minimum cluster size (total 

peptides per cluster) set to 1, a minimum number of unique peptides per cluster set to 1 

and an initial minimum event probability of 90%, before further manual filtering among 

the different annotation event types. Through MS-GF+, the Enosi tool automatically 

generates a decoy database of reversed sequences with both target and decoy databases 

combined and indexed using a suffix array. As part of the pipeline, the MS/MS database 

search parameters were set as outlined in Section 3.3, with the majority of case studies 

applying a two-pass search approach outlined below in Section 3.5.1. The final MS/MS 

database search results were then either all merged in a combined FDR strategy or split 

into novel and known PSMs, termed a two-stage FDR strategy [439, 474], as outlined 

below in Section 3.5.2. A ≤1% PSM FDR was then applied, with local FDRs for each 

PSM calculated. For the combined FDR strategy, following FDR filtering all identified 

peptides were then grouped into novel peptides and known peptides by comparison to 

the known proteome. 

Using an in-house script, all PSMs identified from the known proteome were 

divided into two confidence levels: all proteins that contained a mapped peptide and all 

proteins that contained ≥2 peptides with 1 unique peptide. This division was done to 



 

 101 

remove ambiguity due to the protein inference problem and resulted in a list of high 

confidence known protein identifications. All novel peptide identifications were then 

mapped to their genomic coordinates, clustered according to a peptide linkage distance 

with each cluster inferred as a different annotation event, as mentioned previously. All 

annotation events were then screened through a combination of methods; e.g. event 

probabilities, multiple unique peptides, sequence homology to curated proteins, peptides 

mapping to the known proteins being annotated, parsimony and spectral counts, which 

can provide an estimate of protein abundance that correlates well with transcript 

abundance, if high enough protein coverage from the known peptides is achieved. The 

novel events passing screening were then interpreted to infer gene model changes 

(Figure 3.1), which were then visualized in a genome browser, such as IGV, and if a 

eukaryote study, incorporated as hints for gene prediction using the gene prediction tool 

Augustus [101, 102]. 
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Figure 3.1 Customized proteogenomics pipeline 

In module 1, a MS/MS spectral pre-processing and optimization step was carried out, following a MS/MS 

database search with an optional two-pass search implemented against the six-frame translation of the 

genome, known proteome, and where applicable, a splice graph. In module 2, FDR filtering was applied 

to results, in either a combined FDR strategy (dashed line) or a two-stage FDR strategy (dash dot line), on 

the known results and novel results separately. Identified known proteins were filtered by parsimony (≥2 

peptides) with 1 unique peptide. Novel peptides were mapped to the genome. In module 3, novel peptides 

were clustered within the peptide linkage distance, annotation events inferred, then filtered based on event 

probability, number of unique peptides, sequence homology, presence/lack of multiple peptides mapped 

to the known proteins being annotated, and spectral counts, followed with identification of novel and/or 

refined gene models. 

It should be noted that the current version of Enosi (version 1.0) has some 

inaccessible parameters hard-coded into the tool, such as the number of tolerable 

termini, restricted precursor mass tolerance in the range of 0.0 to 2.0 Da (with precursor 

mass tolerance in ppm being unrestricted), and maximum peptide length. The number of 

reported matches per MS/MS spectra, use of reversed sequence decoy database and 

isotope error range are hidden, but are always on by default, including a restriction on 

the allowed number and types of modifications. Also when selecting Da as the 

precursor mass unit, Enosi purposely restricts the use of a precursor mass tolerance to 

between 0.0 and 2.0 Da. As previously noted, this is to limit the search space and search 

time during proteogenomics searches, as precursor mass tolerances in Da much higher 
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than 2.0 Da would inflate the FDR and significantly reduce the sensitivity of PSM 

identifications, and consequently the number of identified proteogenomics annotations. 

However, in some cases the limit of 2.0 Da was purposely exceeded, as outlined 

previously in Section 3.3. 

The following proteogenomics specific parameters were chosen: 1) annotation 

events were initially filtered based on 1 unique peptide per cluster, 2) a minimum 

cluster size of 1 peptide, 3) a minimum event probability of 90% and 4) the peptide 

linkage distance, which was based on the minimum intergenic distance for particularly 

small compact genomes such as prokaryotes or the size of the majority of genes (>95%) 

in eukaryotes. Other more general parameters included the selection of the MS/MS 

instrument and precursor mass tolerance, which was based on an assessment of the 

MS/MS spectra outlined previously in Section 3.4.6. 

The selection of the peptide linkage distance is important because it impacts 

how annotation events are defined, more so for novel gene and distal events like gene 

boundary and reverse strand events, as these can be identified further afield from the 

peptide cluster, depending on the size of the peptide linkage distance. A larger peptide 

linkage distance would reduce the number of novel genes found, and increase the 

number of distal events, while reducing it would identify more novel genes and fewer 

distal events. As such, the peptide linkage distance was considered carefully. 

Importantly, during proteogenomics annotation any identified distal events such as gene 

boundary and reverse strand events could possibly be novel genes as the peptide linkage 

distance is a fixed variable, unlike reality where the intergenic distances across the 

genome can vary widely. 

Once all peptide clusters were assigned as novel gene, distal events or proximal 

events, they were further filtered manually based on ≥2 unique peptides per cluster 
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and/or event probabilities ≥99.9%, which were considered as high confidence 

annotation events. Any other proximal events were accepted based on a relatively high 

event probability of ≥99.8%. In addition, all annotation events were further screened, 

particularly to validate single unique peptide annotation events by: 1) the presence/lack 

of unique and shared peptides mapping to the known proteins being annotated 

particularly for the proximal events, with consideration of their frame in relation to the 

novel peptides; 2) spectral counts; and 3) sequence homology to protein sequences in 

public protein repositories such as NCBI NR, NCBI RefSeq protein and/or NCBI 

SwissProt, to identify any annotation events already validated within protein 

repositories [439]; and in some cases 4) the peptide length was a consideration which 

would impact significance when searching protein repositories. The presence/lack of 

mapped unique and shared peptides to the reference known proteins being annotated 

were determined using a customized script, with manual checking of the frame of these 

peptides to see if any peptides in close proximity to the novel peptides were in a 

different conflicting frame, which was important for proximal events. 

To improve specificity of annotation event identification and ensure that unique 

loci were identified, peptide clusters with at least 1 unique peptide only were accepted. 

The same principle was applied to improve specificity and remove ambiguity with 

protein identifications. This is a similar concept to using proteotypic peptides as a 

unique signature for a single protein in peptide mass spectrometry [550], often used in 

Selective Reaction Monitoring (SRM) in targeted proteomics [551]. This principle is 

therefore applied by using sequence homology searches of the unique and novel 

peptides, using BLASTP against NR, RefSeq protein and/or SwissProt to reduce the 

ambiguity while screening. Other information found from the sequence homology 

search such as the same chromosome and genomic region identified from the 

proteogenomics analysis, preferably with support from EST, mRNA and/or protein, 
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with 100% coverage and identity particularly for proximal events, was considered as 

conclusive evidence. However, for one early case study in a bacterial genome stringent 

event probabilities alone were used for novel genes, distal events and proximal events, 

with their selection based on cross correlation between different bacterial gene 

prediction tools. 

In each case study the current annotation of the genome was provided as a 

reference. These were provided as GFF file and protein predictions as FASTA 

sequences, and where necessary were modified as outlined in Section 3.4.1. 

For larger proteogenomics studies which required parallel computing, Enosi 

utilizes a Distributed Resource Management Application API (DRMAA) scheduler to 

coordinate each run of MS-GF+. However, throughout the course of this thesis, a 

DRMAA scheduler was not accessible from any of the available clusters provided by 

the Pawsey Supercomputing Centre (http://www.pawsey.org.au/), with PBS Pro and 

SLURM the only installed schedulers. To work around this issue, MS-GF+ searches of 

the six-frame translation, proteome and any splice graph databases were carried out 

using an in-house script which would mimic the initial stages of the Enosi 

proteogenomics pipeline, namely database indexing and the MS/MS database search. 

The Pawsey Supercomputing Centre’s supercomputer Zeus was utilized for this task 

due to its 24 hour walltime and large number of relatively freely available processors 

due to its smaller user base and subsequent shorter queue wait time, and a submission 

limit cap of 96 jobs (although not all running concurrently). The Zeus supercomputer 

has 29 nodes, each with two 8-core Intel Xeon E5-2670 CPUs, and between 128 GB to 

512 GB RAM per node. Enosi is capable of running the proteogenomics workflow from 

any stage in the analysis. This facility was utilised after receiving the MS/MS database 

search results, which were subsequently all merged with 1% PSM FDR applied 

(combined FDR) or merged based on the known proteome search space and novel 

http://www.pawsey.org.au/
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proteogenomics search space (two-stage FDR), with 1% PSM FDR applied to each 

(Figure 3.1). During FDR filtering each PSM had its local FDR calculated, which was 

run on a different machine and did not require parallel processing. 

In instances where the merged results, using the combined FDR strategy, gave a 

large tab-separated value (TSV) file, upwards of 12 gigabytes (a consequence of 

searching a large six-frame translated genome and/or splice graph database), the files 

were split into smaller result files based on the MS/MS spectral files, as filtering on the 

FDR and calculating local FDR for each PSM on a single large result file extended 

processing time significantly. It was found that the processing time could be reduced to 

around a few days or up to a week per file if the results were merged into 2 (see Section 

6.2.5) or 4 (See Section 5.2.5) TSV files, which differed depending on the dataset. 

Results derived from low-accuracy MS/MS spectra took less time to process than high-

accuracy MS/MS spectral results, as more highly significant PSMs are usually found in 

high-accuracy data. However, such a strategy can result in inaccurate FDR calculations 

and shifts in the eventual event probabilities as the same peptide matches can be 

distributed across multiple different search result files leading to slight biases with some 

results. As a consequence, a balance between processing time versus accuracy of FDRs 

and event probabilities was required, limiting all the results to a few result files at most, 

a necessary compromise if results are to be obtained in any reasonable time frame. For 

results obtained from the two-stage FDR strategy, no splitting of result files was 

necessary, as this strategy implemented a filtering of known and novel PSMs and 

consequently reduced the final result file sizes. This issue indicates a need for new 

processing approaches or algorithms to process larger sets of results, often found from 

combined FDR approaches, in a faster and more accurate way without subdividing the 

results. 



 

 107 

As outlined previously [548], a hybrid approach to proteogenomics is often 

suitable for larger more gene-sparse genomes, where a combination of event 

probabilities and unique peptides per cluster are used for different annotation event 

types. In such a case, novel genes and distal events require at least 2 unique peptides per 

cluster with more relaxed event probabilities, while proximal events require 1 unique 

peptide with more stringent event probabilities being applied and with the peptide 

linkage distance set to a distance represented by the majority of genes (generally >95% 

genes). The rationale behind this judgement is that within large intergenic spaces, such 

as in eukaryotic genomes, at least 2 unique peptides are more likely to be found and the 

possibility of finding false positives is much higher. Conversely, within the intragenic 

space, around annotation events such as frame-shifts and exon boundaries, more than 1 

unique peptide is less likely to be found due to the confined region and false positives 

are less likely to occur. When MS/MS spectral datasets are very large such an approach 

would likely correlate well with accepting at least 2 unique peptides for novel gene and 

distal events, but when the MS/MS spectral datasets are small, many annotation events 

may simply lack a second unique and novel peptide due to low coverage. In such 

instances, a single unique peptide could be accepted when other evidence suggests a 

likely valid annotation event, such as was previously described. Within the context of 

the proteogenomics analysis, the peptide linkage distance defines intergenic and 

intragenic spaces. The linkage distance determines how large the peptide clusters can 

become (the intragenic space), while it also defines the distance between peptide 

clusters (the intergenic space). When applying this same principle to smaller, compact 

genomes such as bacteria, it is more prudent to set the number of unique peptides per 

cluster to 1 and apply a more stringent event probability to novel genes and distal 

events, and the same stringency or less for proximal events, while setting the peptide 

linkage distance to a suitably smaller intergenic distance. 
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3.5.1 Two-pass search approach 

A two-pass search approach was applied in a number of case studies, similar to the 

approach demonstrated in [428], to improve the sensitivity and identification rate of 

PSMs and proteogenomics annotations. In the first-pass the six-frame translated genome 

with added protein contaminant sequences was searched against using MS-GF+, with 

parameters as outlined in Section 3.3 and the exception that no decoy database was 

added to the target database and searched. This was repeated for the known proteome 

database and splice graph (if applicable). 

Any PSMs that matched the six-frame translated genome, known proteome or a 

splice graph, were identified, while any PSMs that only identified contaminant 

sequences were discarded. No FDR filtering was applied to any matches during this 

first-pass search. In an earlier bacterial study (Chapter 4) all matches were taken from 

the first-pass. However, in later studies (Chapters 6 and 7), since the MS/MS database 

searches are taking the top 10 matches, it was realized that these could also include very 

low significant matches. These matches were subsequently removed, keeping all PSMs 

below a spectral E-value of 1.0E-05. By comparison, a 1% PSM FDR roughly equals to 

a spectral E-value of 1.0E-10 and so this retains all significant matches, while removing 

all insignificant matches unlikely to be retained below the 1% PSM FDR threshold. The 

choice of a 1.0E-05 spectral E-value was a relatively arbitrary choice, and could be 

adjusted if there was supporting evidence to do so. 

A new MS/MS spectral dataset for each database, and a new target sequence 

database were created from the first-pass search, based on the accepted PSMs and using 

an in-house script. The new MS/MS spectral dataset was then used to search the new 

target databases, along with their decoys in the second-pass search during a normal run 

of the proteogenomics pipeline. 
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3.5.2 Two-stage FDR strategy 

The two-stage FDR strategy was outlined in [439], with similar strategies in [474] and 

[552]. Instead of applying a 1% PSM FDR across all proteogenomics results, the FDR 

was applied across the different search spaces. In [474] this was applied to the known 

proteome and a unified novel set of proteogenomics results, with MS/MS spectral 

identifications in the known set removed from the novel set before MS/MS database 

searching of the proteogenomics search space. However, this can be overly 

conservative, as a MS/MS spectral identification first identified in the known set does 

not necessarily represent the most ‘correct’ identification for that MS/MS spectrum. 

Although when the proteogenomics search space contains a variety of putative variant 

peptides as demonstrated in [474], this can be justifiable to reduce the potential for 

incorrect identifications with Single Amino acid Polymorphisms (SAPs) being 

misidentified as PTMs. Similarly, in [552] prior to MS/MS database searching, the 

sequences from the proteogenomics search space are in silico digested, with the 

peptides identified from the known search space by sub-string matching and 

subsequently removed to create a database of likely novel peptides. However, this does 

not filter out any spurious MS/MS spectra, applying the full MS/MS spectral dataset to 

both known and novel search spaces. This approach also assumes that all MS/MS 

spectra used in a search have no missed cleavages, which would limit coverage 

particular for non-tryptic ended peptides at the proteins N-terminus, and also limiting 

the digestion to a number of well-known proteases and it would also limit the analysis 

to only in vitro protease cleaved peptides, which would miss in vivo proteolytic peptides 

if they were of interest. 

 In this thesis a different approach was taken with PSMs identified after filtering 

the MS/MS spectra through a two-pass search approach, removing spurious MS/MS 

spectra and reducing the search space to high confident matches, where the search space 
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was then divided into novel and known sequences. All PSMs that identified a novel 

peptide had a 1% PSM FDR applied, with the same applied to a separate set of known 

PSMs identifying known proteins. This allowed more accurate FDR calculations for 

both the ‘known’ search space and the ‘novel’ search space. Some MS/MS spectra may 

be interpreted as novel and known, with possibly differing spectral E-values, which this 

method does not account for. However, this method does improve on the accuracy of 

the FDR, and does not make any assumptions of a MS/MS spectrum belonging to 

‘known’ or ‘novel’ peptide sequences, unlike the more conservative approach [474]. 

For Enosi to determine novelty prior to FDR filtering, a different approach to the 

workflow was required. Firstly, the results from the known proteome search had a 1% 

PSM FDR applied. Following this, the results from the six-frame and splice graph 

search are merged and filtered to 100% PSM FDR to identify all possible PSMs in a 

format which is compatible with Enosi’s determine novelty stage. All PSMs identified 

at 100% PSM FDR were then split into known and novel by Enosi. Any PSMs 

identified as a novel PSM are then checked to ensure they fall below a 1.0E-05 spectral 

E-value, after which the identified novel MS/MS spectra and novel sequences were used 

in a novel-only MS/MS database search, followed by the application of a 1% PSM 

FDR. The remainder of the workflow is as normal, which uses a known 1% PSM FDR 

filtered set of PSMs and novel 1% PSM FDR filtered set of PSMs. This essentially 

reduces the size of the proteogenomics search space to only PSMs identified as novel, 

improving the accuracy of the FDR filtering for both the novel and known peptides. 

Some MS/MS spectra can be identified in both the novel and known search 

spaces as a result of different MS/MS spectral interpretations with different spectral E-

values in the top 10 matches. Future work could see the use of a spectral E-value 

comparison between the novel and known PSMs, to more accurately assign a PSM to a 
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novel or known peptide sequence, with any ambiguous matches with the same spectral 

E-values discarded. 

3.5.3 Gene prediction 

Once the novel annotations were filtered and reviewed, the gene prediction tool 

Augustus [102] (version 3.02), was used for studies involving eukaryotic genomes. 

Depending on the study, Augustus was either first trained (generating gene models) or 

ran with the default gene models, the details of which are presented within each chapter. 

Once the novel annotations were filtered and reviewed, the gene predictions 

were improved using the novel peptides as hints. Further hints generated from other 

extrinsic supporting evidence were also generated for some case studies, further 

outlined in their respective chapters. 

The hints generated from EST, RNA-seq and the current annotations were 

designated group name ‘E’ with associated default weighting, and the hints from any 

repeat regions were designated group name ‘RM’ with associated default weighting. All 

novel peptides were designated group name ‘M’, with the default high significance 

weighting to force incorporation of the hints. The hint files were then combined and 

used as hints during the Augustus gene prediction. Augustus was run using the 

parameters listed in Table 3.1. 

It is worth noting that Augustus can predict more genes and proteins than there 

actually are due to two factors: 1) a fragmented genome can cause Augustus to predict 

two or more incomplete genes across contigs and scaffolds and 2) given the available 

evidence, due to possible incomplete coverage, predictions may be split into two or 

more genes and proteins. These two points need to be considered when reviewing any 

Augustus predictions. 
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Table 3.1 Applied Augustus parameters 

Parameter Value 

--strand both 

--genemodel complete 

--AUGUSTUS_CONFIG_PATH Path for the trained gene models (generated or default) 

--extrinsicCfgFile Config file with extrinsic weights for ‘E’, ‘RM’ and ‘M’ group names. 

--singlestrand true 

--altnernatives-from-evidence true 

--gff3 on 

--print_utr on 

--protein on 

--codingseq on 

--species Set to the species name 

--hintsfile 
Hints file containing novel peptides (group M), any available extrinsic hints, 

current annotations (group E), and any repeat hints (group RM)  

--allow_hinted_splicesites atac 
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4 BACTERIAL PROTEOGENOMICS 

4.1 INTRODUCTION 

Bacteria have long been the dominant form of life on Earth, since they first evolved 

some 3.5 billion years ago. They have since diversified into many forms as they adapted 

across almost all environments across the globe. They are an essential component of our 

biosphere, with some species playing a role in the formation of nitrates in the soil, a task 

that nitrogen-fixing bacteria (rhizobium) perform in the root nodules of host plants, 

others contribute to disease (e.g. Mycoplasma pneumoniae causing pharyngitis, 

bronchitis, and pneumonia), and still others can contribute to a healthy digestive tract 

(e.g. Lactobacillus acidophilus). 

Understanding how different bacteria function is important, so that diseases can 

be treated, soil for agriculture can be improved using nitrogen fixation, and our overall 

wellbeing improved. The biotechnology revolution over the last few decades has 

benefited greatly as a direct result of discoveries from bacteria, such as the use of DNA 

polymerase from thermophilic bacteria used in the DNA polymerase chain reaction 

(PCR) [553], a staple technology used in the amplification of DNA for sequencing. In 

addition, a new technology discovered from bacteria has emerged, called clustered 

regularly interspaced short palindromic repeats (CRISPR) [554], based on the innate 

immune response of bacteria to recognize viruses, which claims to be able to directly 

edit DNA in vivo, potentially allowing for the correction of genetic diseases. 

To better understand the underlying mechanisms that underpin CRISPR, 

nitrogen-fixation, pathogenicity causing disease and others, within bacteria, genome 

sequencing and annotation efforts are required. The throughput and quality of bacterial 

genome sequencing has improved significantly over the years. For example, Illumina 

sequencing technology can now sequence 100 bacterial sequences simultaneously [555]. 
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However, the throughput of genome annotation strategies has not been able to match, 

and bacterial genome annotation strategies often involve the use of ab initio gene 

prediction tools and sequence similarity, which are prone to errors and inconsistencies, 

as was introduced in Section 2.2.2. Therefore, a new methodology, capable of 

maintaining high throughput and quality of genome annotation is needed. 

This study applies a new approach towards genome annotation, termed 

proteogenomics, and also demonstrates the power that repurposing legacy proteomics 

data has for improving the genome annotation of the nitrogen-fixing bacteria 

Bradyrhizobium diazoefficiens. 

Agriculture requires a constant supply of nitrates to the soil to allow crops to 

grow and achieve high yields. This often requires artificial means using fertilizers. 

Unfortunately, fertilizer run-off into water sources such as estuaries causes problems 

with toxic algal blooms resulting in anoxic rivers leading to a large die off of fish 

populations. By understanding the molecular mechanisms underpinning the processes 

for nitrogen-fixation in bacteria such as Bradyrhizobium diazoefficiens, it is highly 

likely that a new strain could be created with higher rates of nitrogen-fixation and 

compatibility with a wider range of host plants, allowing for a more viable, economical 

and natural alternative to fertilisers. 

4.1.1 Outline of this study 

The overall aim of this study was to undertake the genome annotation of 

Bradyrhizobium diazoefficiens, applying a proteogenomics approach using the Enosi 

tool [82] and to compare with the findings from another study which used Genosuite 

[502]. 

B. diazoefficiens is an important agricultural nitrogen-fixing bacterium. The 

genome was first sequenced by Kaneko et al. [556] in 2002, with gene predictions 
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carried out by Glimmer [557] and sequence similarity. It was found that B. 

diazoefficiens had a genome size of 9.1 Mbp and a GC content of 64%. 

The Enosi tool was initially built with a focus on eukaryotic genomes, and the 

latest version incorporates MS-GF+, which applies a combinatorics approach to scoring 

and assignment of significance to peptide-spectrum matches (PSMs). As part of this 

study, a proteogenomics pipeline was employed for B. diazoefficiens, which has not 

been previously demonstrated. 

A customized proteogenomics pipeline incorporated a pre-processing and 

optimization step, using the known proteome to evaluate the MS/MS spectral dataset 

and improve on the PSM identification rate. In addition, a two-pass search approach 

was applied which demonstrated how it could further improve on sensitivity. Two 

additional MS/MS spectral datasets (PRIDE Accessions 10112 and 10113) were also 

included, and with comparisons made between multiple annotations from both methods. 

4.2 MATERIALS AND METHODS 

4.2.1 Proteomics and genomics datasets 

The Bradyrhizobium diazoefficiens USDA 110 (previously B. japonicum) genome 

sequence and gene models [556] in GFF and proteome FASTA file formats were 

downloaded from NCBI BioProject 57599 and further gene models were predicted 

using Prodigal [558] and RAST [134]. Gene models were modified with an in-house 

script to be compatible with the proteogenomics pipeline (Appendix File 4.1). 

Peptide mass spectrometry datasets, totaling 757,807 MS/MS spectra, were 

downloaded from PRIDE [559] as MGF files, using accessions 10099-10104 and 

10112-10116. Initially generated in proteomics studies [4, 5], samples were run on a 1D 

gel, subsequently digested with trypsin and run through an LTQ Orbitrap. The MS1 was 

run on the Orbitrap and MS2 was run on the LTQ. 
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Contaminant proteins were used, as outlined in Section 3.1.1. In addition, three 

sources of plant protein contaminants were also used [4, 5]; Soybean (Glycine max), 

Cowpea (Vigna unguiculata) and Siratro (Macroptilium atropurpureum), obtained from 

Phytozome v9.0 (http://www.phytozome.net/) and UniProt (http://www.uniprot.org/). 

Plant protein databases were merged and redundancy was removed using CD-HIT [560] 

based on 100% homology. These databases were then appended to the reference NCBI 

protein predictions before being used in the MS/MS database search to identify any 

contamination. 

4.2.2 MS/MS database searching  

The MS/MS database search was performed by MS-GF+, as outlined in Section 3.3. In 

this case study, trypsin was used as the protease, instrument was set to low-res LTQ 

(Ion Trap), and the precursor mass tolerance used was set to 6.0 ppm, as determined 

from a preliminary MS/MS spectral dataset assessment, detailed below in Section 4.2.3. 

4.2.3 Dataset processing 

The NCBI predicted protein sequence FASTA file and GFF file required formatting into 

a compatible format for proteogenomics analysis, as outlined in Section 3.4.1. The total 

of all 757,807 MS/MS spectra obtained for this study were first assessed by searching 

against the known proteome, examining the effects of using MS-Cluster to cluster the 

MS/MS spectra, PepNovo to quality filter the MS/MS spectra, and an assessment of 

optimal precursor mass tolerances, as outlined in Section 3.4.6. Since all the MS/MS 

spectra were derived from an LTQ Orbitrap mass spectrometer and of high-accuracy, 

this must be reflected in the search parameters. Thus assessment of the optimal 

precursor mass tolerance involved a range of tolerances: 0.5, 1.0 up to 10.0 in 1.0 ppm 

increments, and then up to 20.0 ppm in 5.0 ppm increments. 

http://www.phytozome.net/
http://www.uniprot.org/
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4.2.4 Proteogenomics pipeline 

The proteogenomics pipeline was used as outlined in Section 3.5, utilizing the Enosi 

tool (version 1.0) and a combined false discovery rate (FDR) strategy. In addition, a 

two-pass search approach was used, similar to the approach demonstrated in [428], and 

which is outlined in Section 3.5.1. Essentially the first-pass MS/MS database search was 

performed to identify matching sequences without a decoy database and no FDR 

filtering, which were then used to define the database for the second-pass MS/MS 

database search, which included a reversed decoy database of the target sequences and a 

1% PSM FDR filtering. The two-pass search approach was used to assess whether any 

improvements could be observed to the sensitivity of the MS/MS database search of the 

six-frame translated bacterial genome. After a preliminary assessment of the MS/MS 

spectra, as outlined above in Section 4.2.3, the choice of clustering the MS/MS spectra, 

but not quality filtering using PepNovo was decided, resulting in 285,344 clustered 

MS/MS spectra and a 6.0 ppm precursor mass tolerance. 

The total 285,344 MS/MS spectra were split into separate MGF files of 65,000 

MS/MS spectra each using an in-house MGF splitting tool, before running each MS/MS 

spectral file through MS-GF+ on a single Ubuntu machine with 40 processors and 64 

GB RAM against the known proteome and a six-frame translation of the genome. The 

two-pass search approach was also applied, according to Section 3.5.1. However, in this 

case study all matches were used to define the search space for the 2nd pass, and not 

those identified with a ≤1.0E-05 spectral E-value, as was demonstrated in later studies, 

which came to light at a later date after this study had been conducted. The combined 

FDR strategy and two-pass search approach are illustrated in Figure 3.1. 

The choice of parameters for the proteogenomics pipeline, as outlined in Section 

3.5, included an initial minimum event probability for novel genes, distal events and 

proximal events of 90%, a peptide linkage distance of 60 bp representing the optimal 
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minimum intergenic space within an operon (see Section 4.3), a minimum cluster size 

of 1 and a minimum of 1 unique peptide per cluster. 

 Further event probability thresholds were applied to the different annotation 

event types based on cross-validation between all of the three gene models (NCBI, 

Prodigal and RAST), with higher stringencies applied to novel gene and distal events. 

The final event probability thresholds applied were 99.5% for novel genes, 99.1% for 

distal events and 99.1% for proximal events. As outlined in Section 3.5, the known 

proteins were identified based on all mapped peptides and also those that contained ≥2 

peptides with 1 unique peptide. 

4.3 RESULTS AND DISCUSSION 

The present study outlined the benefits of the customized proteogenomics pipeline and: 

1) brought awareness to how different -omics platforms can be integrated, e.g. in this 

case genomics and proteomics; 2) demonstrated the differences in sensitivity and 

specificity between Enosi and Genosuite; 3) demonstrated the use of a two-pass search 

approach (Section 4.2.4) to database searching; 4) identified 155 novel genomics 

annotations for B. diazoefficiens and; 5) more broadly identified the power of 

repurposing legacy proteomics data for use in genome annotation. 

4.3.1 Evaluation of pre-processing MS/MS spectra 

Prior to running the proteogenomics pipeline, an evaluation of MS/MS spectra pre-

processing and parameter optimization was conducted (Appendix File 4.2). All 757,807 

MS/MS spectra were clustered by a factor of 2.66. It was found that clustering reduced 

the peptide FDR after an initial 1% PSM FDR filtering from 5.37% to 1.58%, and 

reduced the protein FDR from 31.40% to 9.69% (Appendix figure 4.1A-C). As can be 

seen in Appendix Figure 4.1A, the number of total MS/MS spectra lost after quality 

filtering ranged from 10% at the lowest end to 80% at the most stringent cut-off. 
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Applying scores between 0.05 – 0.1, as recommended by PepNovo (detailed in the Help 

File bundled with the tool), resulted in 50% of the MS/MS spectra being lost. These 

MS/MS spectral losses showed a significant drop in the number of unique peptides 

discovered after FDR filtering (Appendix Figure 4.1D), while showing only a gradual 

drop in the number of PSMs (Appendix Figure 4.1E), with the peptide FDR and protein 

FDR only improving negligibly with quality filtering (Appendix Figure 4.1B-C). Losses 

in MS/MS spectra, resulting in the reduction in the number of unique peptides reported 

without any significant reductions in false positive rates, would indicate the dataset was 

not improving but was losing valuable MS/MS spectra for novel proteogenomics 

discoveries. 

The losses observed were probably attributable to a combination of the 

methodology employed by PepNovo and the source of the proteomics data, which were 

derived from a 1D gel followed by trypsin digestion and LC-MS/MS, as explained in 

Section 3.4.6.  

 These results indicated a clustered MS/MS spectral dataset with the absence of 

PepNovo quality filtering was most suitable for further proteogenomics analysis as this 

resulted in the highest gains in peptide discovery with minimal losses of MS/MS 

spectra, while keeping the peptide FDR below 2%. In addition, the search tool used in 

this analysis, MS-GF+, uses a different approach to quality scoring prior to beginning 

the search, based on log-likelihood ratios [292], and was able to remove poor MS/MS 

spectra in the study with no apparent impact to the search results. 

4.3.2 MS/MS database search parameter optimization 

As outlined in Section 3.4.6, high-accuracy MS/MS spectra are well suited to precursor 

mass tolerance optimization, as tighter tolerances often improve upon the sensitivity of 

PSM identifications. This holds true for this study, which uses high-accuracy MS/MS 
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spectra, generated from an LTQ Orbitrap mass spectrometer. 

A clustered set of MS/MS spectra was used to assess the precursor mass 

tolerances over a range, as outlined previously in Section 4.2.3. From this analysis it 

was determined that 6.0 ppm was the optimal precursor mass tolerance to use 

(Appendix Figure 4.2). After a ≤1% PSM FDR was applied the maximum number of 

PSMs obtainable was 53,349 at 6.0 ppm, while the peptide FDR was 1.69% (Appendix 

File 4.2). 

4.3.3 Effects of preliminary analysis on proteogenomics results 

To determine the effectiveness of pre-processing the MS/MS spectra by clustering/not 

clustering and optimizing the precursor mass tolerance, the different parameters and 

pre-processing steps were compared. It was found that the total run time of the 

unclustered MS/MS spectra took more than 10x longer than the clustered dataset and 

there were 337 more annotations with ≥90% event probability. When these novel 

annotation events were filtered to the same event probability stringency, as outlined in 

Section 4.2.4, the majority of the annotation events were removed leaving 186 

annotation events, 31 more than when clustering and optimizing the precursor mass 

tolerance. Although these results indicate a gain of 31 annotation events by not 

clustering, they most likely include greater numbers of false positives, as was noted 

from the known proteome searches with 5.36% peptide FDR and 31.4% protein FDR 

when using unclustered MS/MS spectra, compared to 1.58% peptide FDR and 9.69% 

protein FDR when clustered. The peptide FDR and protein FDR would likely be further 

inflated by including the six-frame translation, and therefore the confidence applied to 

these annotation events is relatively low. 

Comparing precursor mass tolerances revealed that there were 23 more 

annotation events with a ≥90% event probability using 6.0 ppm, than by using 20.0 
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ppm. However, there were only 16 more annotation events found with a 6.0 ppm 

precursor mass tolerance when more stringent event probability thresholds were 

applied. Therefore, there is a significant advantage to clustering in combination with the 

application of a precursor mass tolerance optimization step with the known proteome. 

Clustering has the advantage of removing many spurious annotation events and 

reducing search and post-processing times. In addition, optimizing the precursor mass 

tolerance improved the number of annotations reported and reduced the error window 

for peptide and protein identifications by removing the potential for incorrect matches. 

A redundant set of MS/MS spectra totaling 757,807 was then clustered by a factor of 3 

and used in the proteogenomics pipeline. 

4.3.4 Proteogenomics pipeline 

There are several key variables in the proteogenomics pipeline to define the number and 

type of accepted annotation events, including: the minimum cluster size (peptides per 

cluster), the minimum number of unique peptides per cluster, the maximum peptide 

linkage distance and the event probability. 

The peptide linkage distance is the most difficult variable to define in bacterial 

genomes. It is usually calculated based on the size of ≥95% of genes, with the same 

value defining the distance between a cluster and a neighbouring gene to include in 

annotation event inference. This would make little sense in prokaryotic genomes due to 

the compactness of the genome, with many genes close together within operons and 

with a large proportion of gene overlap. Therefore the maximum peptide linkage 

distance of 60 bp was chosen because: 1) prokaryotic genomes are often compact with 

overlapping genes; 2) gene overlaps >60 bp may be considered as misannotations [561, 

562]; 3) the maximum distance between genes within an operon is considered to be 

around 50-60 bp [502]; and 4) high GC bacterial genomes often have longer ORFs 

[563], increasing the likelihood of false-positive PSMs across the length of the ORF, 
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which could inadvertently be grouped into the peptide cluster if the peptide linkage 

distance was sufficiently large enough. However, a peptide linkage distance of 60 bp 

may also inadvertently classify novel genes as distal events, such as reverse strand 

annotations, due to a number of truly novel genes on the reverse strand overlapping a 

known gene. As a result, careful consideration is needed when reviewing novel gene 

and distal event annotations. 

Due to the compact nature of the genome and small peptide linkage distance, 

one unique peptide per cluster was used to assign annotation events, particular for novel 

genes and distal events (as opposed to ≥2 unique peptides outlined in [82]), and also due 

to the lower chance of two or more unique peptides appearing within the smaller peptide 

cluster. To avoid potential false positives resulting from the inclusion of only one 

unique peptide, stringent event probabilities were applied, particularly for novel genes. 

The event probability stringency could be adjusted due to the small genome size based 

on calculated annotation event FDRs [82], but tools to determine this adjustment were 

not currently available, therefore to ensure better specificity more stringent event 

probabilities across all annotation events were applied. 

4.3.5 Proteogenomics analysis 

The proteogenomics analysis identified 155 novel annotation events among 145 genes 

from NCBI, with 250 annotation events among 234 genes from the RAST annotation 

and 88 annotation events among 83 genes from the Prodigal predictions (Table 4.1 and 

Appendix Files 4.3 and 4.4). 

From these results, it can be seen that the proteogenomics evidence agreed more 

with the Prodigal predictions and demonstrated the least agreement with the RAST 

annotations, with the NCBI annotations residing in-between these two extremes. 
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Table 4.1 Summary of bacterial proteogenomics annotations 

The results of the proteogenomics pipeline (NCBI reference compared to RAST and Prodigal predictions) 

are compared with the Genosuite analysis [502]. 

Proteogenomics tool Enosi Genosuite 

MS/MS Search tool(s) MSGF+ 
MassWizz/OMSSA/
X!Tandem/InsPecT 

Reference annotation NCBI RAST Prodigal NCBI 

Total NCBI reference genes 8,317 NA NA 8,317 

Total ‘known/predicted’ protein-coding genes 8,317 8,715 8,498 8,317 

Raw MS/MS search ‘known/predicted’ protein matches 
≤1% PSM FDR 

3,123 3,134 3,188 NA 

Proteogenomics mapping: Total 'known/predicted' 
proteins ≤1% PSM FDR 

3,550 3,557 3,617 2,591 

Proteogenomics mapping: Total ‘known/predicted’ 
proteins ≤1% PSM FDR (≥2 peptides with 1 unique) 

2,194 2,182 2,233 NA 

 

Total identified 'novel' peptides ≤1% PSM FDR 330 538 210 221 

Raw MS/MS search ‘known’ peptides ≤1% PSM FDR 15,103 15,061 15,289 NA 

Proteogenomics mapping: Total identified 'known' 
peptides ≤1% PSM FDR 

24,975 24,729 25,088 24,194 

Proteogenomics mapping: Total identified 'known' 
peptides ≤1% PSM FDR (≥2 peptides with 1 unique) 

15,579 15,389 15,684 NA 

 

Frame-shifts 9 47 8 2 

Exon boundaries 22 21 19 48 

Gene boundaries 19 54 17 36 

Reverse strands 45 33 12 21 

Novel genes 60 95 32 36 

 

Total annotation events 155 250 88 107 

Total genes affected 145 234 83 107 

Total novel peptides in affected genes 259 450 144 283 

Findings from [502] were based on ≥2 unique peptides or single peptides with ≥5 significant PSMs ≤1% 

FDR. Due to differences in semantics, the following was assumed: 

 Any identified translation initiation start (TIS) sites in [502] would be considered exon 

boundaries in this study. 

 There was no description of gene boundaries from [502], and are possibly described as novel 

genes. 

NA: Not available 

Note: Some values for the number of identified proteins have been revised since publication [6]. 

4.3.6 Novel gene annotations 

There were a total of 155 novel annotation events from the NCBI predictions, such as 

with gene bll2355 and bll2356 (prp1) where both were annotated as reverse strand 

events as the novel peptides were found within the 60 bp peptide linkage distance of the 

genes. Eight unique peptides, supported by 16 MS/MS spectra (Appendix Figure 4.8), 
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were found to be overlapping gene bll2355 and then aligning across the gene boundary 

into an intergenic region, with an event probability of 100%. There were also no 

peptides that mapped within these NCBI known genes, providing no conflicting 

evidence for the reverse strand annotation. Where this annotation event was identified 

as a reverse strand, the previous study [502], RAST and Prodigal predictions concluded 

differently, identifying a novel gene annotation on the opposite strand. Both RAST and 

Prodigal did not predict the same gene; instead they predicted genes that overlap 

bll2355 on the opposite strand covering the entire region where the 8 novel peptides 

mapped (Figure 4.1). Searching proteins bll2355 and bll2356 against NCBI NR with 

BLASTP revealed no significant matches to bll2355 except to itself and the close 

relative B. japonicum USDA 6, both characterised as hypothetical proteins. However, 

bll2356 matched, both to itself and to several dozen other close relatives, all of which 

are characterised as a metallophosphoesterase protein. Therefore bll2355 should be 

removed or annotated as putative, with a new gene model annotated on the opposite 

strand in line with the Prodigal and RAST gene models (Figure 4.1), with no annotation 

changes to bll2356. As a result from this annotation, it is clear that some reverse strand 

annotations may be novel genes, making the potential true number of novel genes as 

high as 125 (Table 4.1). In conclusion, there is a need to determine how well the peptide 

evidence can fit into heuristically determined gene models. This highlights the need for 

bacterial gene prediction tools such as Prodigal and Glimmer [557] to accept peptide 

level evidence as hints, in a similar way to tools like Augustus [102], in order to remove 

much of the manual annotation and improve throughput. 
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Figure 4.1 Reverse strand or novel gene annotation 

Genome view of potential reverse strand annotation of bll2355 that was probably a novel gene annotation 

on the opposite strand given the supporting evidence. 

Another novel gene discovered in [502] between blr2145 (CYP114) and blr2146 

was identified in this study as a gene boundary event for blr2146. Compared to the 

results in [502], only three of the five peptides identified were also identified in this 

study (Appendix Figure 4.3), with three MS/MS spectra supporting them (Appendix 

Figure 4.10). The other two peptides have probably fallen outside the FDR threshold. 

The annotation of a novel gene was however supported by RAST and Prodigal gene 

predictions (Appendix Figure 4.3). Additionally, known peptides mapped to blr2145 

and blr2146, which have been characterized as cytochrome P450 hydroxylase and a 

dehydrogenase, respectively, by RAST, and which was in agreement with searches 

against NR with BLASTP. Further proteogenomics evidence, with a smaller peptide 

linkage distance would likely annotate this event as a novel gene. This highlights the 

difficulty in assigning a peptide linkage distance for prokaryotes, as the actual 

intergenic distance in this particular case between the Prodigal and RAST predictions 

and blr2146 is only a few base pairs, and with only 38 bp between the most 3’ novel 

peptide and blr2146. 
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A good example of a high confidence novel gene annotation was a novel gene 

located at positions spanning 539,180 to 539,438 containing 7 unique peptides outside 

of the known NCBI predictions with an event probability of 100% (Appendix Figure 

4.4), and supported by eleven MS/MS spectra (Appendix Figure 4.11). This annotation 

was also supported by the RAST annotation and Prodigal predictions. Interestingly, 

RAST annotated the gene as matching a bll3711 protein, which happened to be a 

paralog gene in B. diazoefficiens much further downstream at positions 4,102,260 to 

4,102,625. This was confirmed after searching the RAST prediction against NR with 

BLASTP, which matched bll3711 with an E-value of 1E-81 and query coverage and 

percentage identity of 100%. This novel gene annotation was also confirmed in [502]. 

4.3.7 Sequencing error: A discovery from exon boundary/frame-shift 

annotation 

An example of when annotation events can indicate a potential underlying problem with 

the genome sequence is between two different genes, blr0352 and blr0353. Here the 

unique peptide “IAANPDDVNALYR”, supported by three MS/MS spectra (Appendix 

Figure 4.9), mapped to a region overlapping both genes. This suggested an exon 

boundary for blr0353 and a frame-shift for blr0352. Both genes contain mapped 

peptides, indicating both are being expressed (Figure 4.2A). Both genes were searched 

against NR using BLASTP, with blr0352 shown to contain a Peptidase C14 domain to 

which each known peptide has been mapped, while blr0353 contains a tetratricopeptide 

repeat domain (TPR) that the novel peptide partially overlapped. The Prodigal 

predictions mirror the NCBI annotation, while the RAST annotation indicates one large 

gene and protein product with what appeared to be a change in frame in the middle of 

the gene, and was annotated in agreement with the BLASTP result. The RAST protein 

prediction which spanned both gene regions was searched against NR using BLASTP 

and revealed a number of top matches with ≥90% identity to homologous proteins in 

Japonicum USDA 122, Japonicum S23321 and SEMIA 5079. Multiple sequence 
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alignments of these proteins with the NCBI blr0352, prodigal and RAST prediction, 

using Muscle [564, 565], indicated a greater agreement with the Prodigal predictions 

and the NCBI annotation, except for a region towards the 3’end where a change in 

frame occurred (Figure 4.2B). The genomic nucleotide regions for these homologous 

genes were also aligned using Muscle and identified what appears to be a possible 

sequencing error with the insertion of a guanine (G) at position 370,898, outlining a 

string of guanines (Figure 4.2C) shown previously to induce sequencing errors where 

there are strings of G-C or A-T pairs in the genome [566].  
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Figure 4.2 Exon boundary and frame-shift annotation or sequencing error 

(A) Genome view of potential frame-shift of blr0352 and exon boundary of blr0353. (B) Multiple protein 

sequence alignment of blr0352, RAST, Prodigal and protein homologs, with a sequence discrepancy 

resulting from a possible sequencing error (dashed lines) (C) Multiple nucleotide sequence alignment of 

blr0352 in diazoefficiens USDA 110, japonicum USDA 122, S23321 and SEMIA 507. A “G” insertion at 

position 370,898 (dashed lines). 

 Although the unique peptide did not overlap directly with the possible 

sequencing error, it highlighted a problem with the sequence in this region. Further 

sequencing, PCR or alignment of peptide/protein, mRNA, cDNA or EST sequences to 
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this region are required to confirm the error, as this single nucleotide insertion may 

actually be one of numerous differences between B. diazoefficiens and other closely 

related species. Correction of this sequencing error would re-assign the unique and 

novel peptide as a known peptide. The sequencing error was likely a contribution from 

the presence of the TPR region down-stream to sequencing difficulties of high GC 

content in bacterial genomes. 

4.3.8 Gene boundary annotations 

Another annotation was with genes bll0795 and bll0794 (PhoH), where both were 

annotated as gene boundary events. A unique peptide mapped in between bll0795 and 

bll0794, with an event probability of 99.8% (Appendix Figure 4.6), which was 

supported by one MS/MS spectrum (Appendix Figure 4.14). Only bll0794 contained 

mapped peptides that were in the same frame as the novel peptide, and not the same 

frame as bll0795, so a gene extension to bll0794 and not bll0795 was suggested. 

Interestingly, although this unique peptide has high confidence, it did not agree with the 

RAST annotation or Prodigal predictions (Appendix Figure 4.6). Also the study from 

[502] gave the impression that this unique peptide belongs to gene bll0794, even though 

it clearly falls outside of the gene boundary and in the intergenic region. Searching 

bll0794 against NR with BLASTP revealed the protein matched numerous phosphate 

starvation-inducible proteins (PHOH), within other related species, which was also 

confirmed from the RAST annotation. 

4.3.9 Exon boundary annotations 

An annotation from [502] suggesting an alternative translation initiation start (TIS) site 

was also in agreement with this study, which found an exon boundary event for bll2019 

(NolA). The unique peptide “IGELAEATGVTVR” was detected overlapping NolA at 

the 3’-end, with an event probability of 99.8% (Appendix Figure 4.5A) and was 

supported by three MS/MS spectra (Appendix Figure 4.12). The NolA gene also 
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contained known peptides within the same frame as the novel peptide. Searching the 

NOLA protein against NR with BLASTP revealed that the protein matched numerous 

other nodulation proteins in other related species. In contrast, the novel peptide was 

identified from the RAST annotations as a novel gene, as the NolA gene was not 

predicted by RAST, while Prodigal was able to predict the full length of the NolA gene 

(Appendix Figure 4.5A). Another exon boundary event or TIS from [502] in agreement 

with this study was for gene bll2380. The study from [502] reported four novel peptides 

overlapping and upstream of bll2380. This study confirmed this as an exon boundary 

event (Appendix Figure 4.5B) with an event probability of 100% and was supported by 

fourteen MS/MS spectra (Appendix Figure 4.13), and also supported by the RAST 

annotation and Prodigal predictions. A number of known peptides also mapped to 

bll2380 in the same frame as the novel peptides (Appendix Figure 4.5B). Searching 

bll2380 against NR with BLASTP revealed that the protein matched numerous 

glycosyltransferase proteins in related species, confirming the same RAST annotation. 

4.3.10 Frame-shift annotation 

An example of a high confidence frame-shift annotation was with gene bsr6520. The 

gene bsr6520 and the gene bsr6521 downstream appeared to have swapped names 

according to NCBI Gene (http://www.ncbi.nlm.nih.gov/gene/1053434) and the NCBI 

protein database, which is in contrast to the NCBI annotation and GFF file presented in 

NCBI BioProject 57599. Further references throughout this chapter use the naming 

presented in the NCBI annotation and GFF file during the proteogenomics analysis to 

preclude any confusion. 

The bsr6520 gene has 2 exclusively unique and novel peptides 

“RAGSLGEAGGR” and “QSSEVRPHEGGAVGGGDAR” (Figure 4.3A with two 

supporting annotated MS/MS spectra in Figure 4.3B) mapping to a different frame, both 

contributing to an event probability of 99.99%. The gene bsr6521 down-stream was also 

http://www.ncbi.nlm.nih.gov/gene/1053434
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in the same frame as the unique peptides. Searching both bsr6520 and bsr6521 against 

NR with BLASTP revealed bsr6520 contained a match to a hypothetical protein with a 

Domain of unknown function (DUF4169), while gene bsr6521 matched to arylsulphate 

sulphotransferase with a Ribbon-helix-helix domain (RHH_4). A previous study [502] 

identified that both unique peptides belonged to bsr6521 and also to bsr6520, so there 

may have be some nomenclature confusion, as mentioned earlier. In addition, the results 

from [502] did not show a report of any frame-shift. This annotation suggests changing 

the frame of bsr6520, while bsr6521 should be extended to position 7,177,733 where a 

methionine initiation start probably resides, fusing with bsr6520, as the new frame of 

bsr6520 contained no stop-codons until the 3’ end of bsr6521 (Figure 4.3A). 

Further evidence is needed in the form of peptide/protein, mRNA, cDNA or 

EST sequences bridging the divide between the genes before any definite conclusions 

can be drawn. Neither the RAST annotations nor the Prodigal predictions agreed with 

the proteogenomics annotation, instead choosing the original frame from NCBI, which 

highlights the caution which needs to be applied when using gene prediction tools such 

as Glimmer, used for the original NCBI annotation of B. diazoefficiens. In addition, 

from the BLASTP results the incorrectly annotated bsr6520 gene can be seen matching 

to a number of homologues in other Bradyrhizobium species, which include species 

Japonicum USDA 124, Japonicum USDA 4, S23321, WSM1743, and URHA0013, all 

containing the DUF4169 domain and all with a percentage identity ≥90%, suggesting 

this annotation could be applied to these other genomes using an ortho-proteogenomics 

approach [79]. 
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Figure 4.3 High confidence frame-shift annotation 

(A) Genome view of potential frame-shift annotation of bsr6520. (B) Annotated MS/MS spectra 

supporting the novel peptides suggesting the frame change of bsr6520. 

4.3.11 N-terminal acetylated peptides 

An example of a conflicting annotation from [502] which indicated a potentially over-

predicted gene was with known NCBI gene blr0594 (trxA). N-terminal acetylated 

peptide “TIIDQGNGAAGPAAADLIK” was identified from the study in [502], 
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indicating a GTG instead of an ATG at its N-terminal end, which is known to code for 

the initiator Methionine in high GC genomes and so suggested an alternative TIS site 

and hence indicated that the gene was over-predicted. By searching amongst all peptides 

mapping to known genes it was found that the unique peptide contained no acetylation 

of the N-terminal end (Appendix Figure 4.7 and supporting MS/MS spectrum in 

Appendix Figure 4.15), even though numerous other peptides with N-terminal 

acetylation were found amongst the known peptides. According to MS-GF+ the PSM 

had a spectral E-value of 4.05E-13, an E-value of 1.67E-5 and a Q-value of 0.0, 

indicating a significant identification. The effect of clustering the MS/MS spectra was 

considered as a cause of the missed modification, but it was soon ruled out when 

unclustered MS/MS spectra were searched against the known proteome using MS-GF+ 

(results not shown). Therefore, the cause could be attributed to subtle differences in 

sensitivity in the detection of post-translational modifications between the different 

search tools. In addition, both Prodigal and RAST agreed with the alternative TIS site, 

as the 5’ end of each predicted gene aligned with the coordinates of the unique peptide 

(Appendix Figure 4.7), suggesting agreement with the results from [502]. To follow this 

up all N-terminal acetylated peptides within the NCBI known proteins were explored, 

revealing that each protein they mapped to indicated an agreement with the TIS of each 

gene. 

  Of the 3,550 NCBI known proteins containing 24,975 mapped peptides, 36 

different proteins contained N-terminal acetylated peptides (Appendix File 4.4). While 

out of 2,194 high confidence NCBI known proteins, containing 15,579 mapped peptides 

and at least 2 peptides with 1 unique peptide, there were 20 different proteins containing 

N-terminal acetylated peptides. Thus confirming, as previously indicated in [502], that 

N-terminal acetylation may be more widely utilized in bacteria than previously thought. 

The novel peptides were then screened for N-terminal acetylated peptides, and it was 
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found that there were no N-terminal acetylated peptides, except for unique peptide 

“MPMNVPSIAASNMLGMRR” with a low event probability of 93.1%, which was 

subsequently removed from further analysis. The peptide was found mapped within 

gene bll3136 (fdhF) on the reverse strand, which according to the NCBI protein 

database is already well characterized as a formate dehydrogenase alpha subunit, adding 

confidence that this was likely a false positive peptide. 

4.3.12 NCBI vs RAST vs Prodigal annotations 

As a preliminary step before using NCBI, RAST and Prodigal predictions for 

proteogenomics analysis, a comparison was conducted using Mummer [567] to 

determine which protein predictions were in greatest agreement with one another. It was 

found that using NCBI as the reference dataset Prodigal matched to 7,698 genes 

(90.6%) and RAST matched to 7,585 genes (87%), implying that more Prodigal genes 

were in agreement with the NCBI annotations even though there were many more 

RAST annotations. This indicates that RAST contains a number of false positives or 

genes predicted in the wrong frame compared to the other annotations. This is further 

supported from the proteogenomics analysis, which found many more novel annotation 

events with RAST (250) than with Prodigal (88), while NCBI (156) was in-between. 

It was found that the RAST annotation tool incorrectly predicted the CDS phase 

for a number of genes in the GFF output file. Discrepancies are present between the 

predicted protein sequence (not shown) and the gene model for the prediction in the 

GFF file. For example, CDS was in phase 1, when on visual inspection of the predicted 

protein sequence, it should have been 0. This resulted in many incorrect peptide 

coordinates for the known genes amongst the RAST predictions. Consequently, the 

error highlighted the need for highly curated reference datasets before proceeding with 

any proteogenomics annotation, as by definition the mapping to a reference proteome is 

only as good as the reference annotation. 
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4.3.13 Impact of search space  

A total of 3,123 of 8,317 proteins annotated by NCBI were identified during MS/MS 

database searches using MS-GF+, while the total number of proteins mapped by 

proteogenomics was 3,550. Of these, 2,194 high confidence proteins had ≥2 peptides 

with 1 unique peptide. Prodigal predictions showed the largest agreement from the 

proteogenomics analysis, with a total of 3,617 proteins. Of these, 2,233 high confidence 

proteins had ≥2 peptides with 1 unique peptide (Table 4.1). A total of 4,456 proteins 

were identified when the same search was conducted against only the known NCBI 

proteome. Comparisons between proteomics- and proteogenomics-only searches 

revealed a loss of 1,333 proteins out of 4,456, i.e. a loss of 30%, with similar losses 

confirmed in other studies [81, 324, 439]. Based on these results, it is likely that many 

novel annotations derived from the six-frame translation have also been missed due to 

the loss in sensitivity. 

In an attempt to improve on the number of annotations reported, a two-pass 

search approach similar to the approach reported in [428], was applied for the NCBI 

annotations (Appendix Files 4.3 and 4.4). Above an event probability of 90%, from the 

raw MS/MS database search, resulted in the identification of 7 additional novel 

annotation events and 5 known proteins (total 3,128), however no changes were 

observed for all known proteins and high confidence proteins once they were mapped 

by proteogenomics. For the novel annotation events, once filtered to the same 

stringency applied previously, no changes in the number of novel annotation events 

could be seen. Adjusting the stringency of these thresholds would include the additional 

novel annotations at the cost of potentially increasing the false positive rate. A means to 

determine the FDR at the annotation event level or support annotations through 

orthogonal evidence is needed before the thresholds could confidently be lowered to 

include further annotation events. 
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It seems probable that eukaryotic genomes, where the proportion of protein-

coding genes occupy a relatively smaller fraction of the genome and where there are 

relatively fewer sense-antisense gene overlaps, would likely benefit significantly from 

the two-pass search approach. In addition, by combining the accuracy and sensitivity of 

Enosi/MS-GF+ with the two-pass search approach in situations where the genome size 

is large, such as the human genome (~3 Gbp) or even larger in the hexaploid wheat 

genome (~17 Gbp), the likely increase in sensitivity of identifying novel annotation 

events would be worthwhile, and should be incorporated as standard, or at the very least 

as an option, in all proteogenomics pipelines. 

4.4 SUMMARY 

The present study has highlighted the advantages of proteogenomics, the power of 

repurposing legacy proteomics data and has brought awareness to how different –omics 

platforms can be integrated. Primarily, the study has made a significant contribution to 

the genomic annotation of Bradyrhizobium diazoefficiens, identifying 259 novel 

peptides contributing to 155 novel annotation events, consisting of 9 frame-shifts, 22 

exon boundaries, 19 gene boundaries, 45 reverse strands and 60 novel gene events in a 

total of 145 genes. Through the identification of these annotation events a possible 

sequencing error was flagged and further validation is required to resolve some false 

positive annotation events. Some of the lessons learnt from this study include: 1) the 

problems identified when using a fixed peptide linkage distance; 2) the high proportion 

of false positive annotation events with overlapping genes reported by Enosi; 3) the 

relative ineffectiveness of a two-pass search approach in bacterial genomes with a high 

proportion of overlapping genes; and 4) the loss in sensitivity when applying a 

combined FDR strategy. 
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4.5 CONCLUSIONS 

While Enosi benefited greatly from improved sensitivity, improvements were still 

required to deal with overlapping bacterial genes. In contrast, Genosuite was capable of 

distinguishing such features and provided a higher specificity, but a lower sensitivity 

than Enosi. Clustering and the selection of appropriate precursor mass tolerances 

improved efficiency in proteogenomics searches, while the problems with the reduction 

in sensitivity due to six-frame searches resulted in a 30% loss of known proteins when 

using a combined FDR strategy. This was partially overcome using a two-pass search 

approach, however the search space still proved to be an obstacle for bacterial 

proteogenomics. This was probably due to the high level of overlapping genes and the 

relative proportion of coding to non-coding genes compared to larger genomes such as 

human and wheat, where the non-coding portion remained relatively small by 

comparison, and possibly as a result of including very low significant matches from the 

first pass in the second pass. Overall, the methods employed in this study provided a 

means to better understand the field of proteogenomics, thereby identify current gaps in 

understanding and facilitate additional future improvements in the field. 
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5 GRAPE PROTEOGENOMICS 

5.1 INTRODUCTION 

The grapevine industry has successful global market access and large economic support 

worldwide. The genus Vitis is important to the wine industry and as a perennial fruit, 

part of the staple diet in the Mediterranean where there is reduced prevalence of heart 

disease [568]. The putative causative agents reducing the prevalence of heart disease 

may well be derived from grapes, with a number of key candidates being resveratrol, 

quercitin and ellagic acid [569], with resveratrol attracting extensive media attention in 

recent years as a potential life-extending drug [570], and which further adds to the Vitis 

market value and opens up the potential for many unexplored medical benefits. The 

broad spectrum of commercial applications of grapevines challenges the industry to 

improve yields, quality, resistance to diseases and abiotic stress conditions across the 

globe. One particularly important Vitis species is Vitis vinifera, which has recently been 

subjected to sequencing e.g. sequencing of the heterozygous variety Pinot Noir [571], 

and a 93% homozygous Pinot Noir, from genotype PN40024 [572]. The sequencing and 

assembly of the latter variety has since been improved from 8X coverage to 12X 

coverage resulting in a 487.1 Mbp assembled genome. Genomic annotation of the 8X 

and 12X was also undertaken, with the 8X gene prediction being performed using 

GAZE [110], published along with its sequencing [572], while the 12X sequence and 

assembly has since resulted in three different iterative improvements in annotation. The 

first named 12Xv0 was performed using GAZE. The second named 12Xv1 resulted 

from the combination of 12Xv0 and gene predictions by the tool JIGSAW [108], 

undertaken at CRIBI in Padova, Italy [573]. The third improvement named 12Xv2 

(since updated to 12Xv2.1) was undertaken recently, using assembled transcripts from 

RNA-seq, ab initio predictions, proteins, and ESTs [7]. 
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5.1.1 Outline of this study 

The aim of this study was to apply proteogenomics to further improve on genomic 

annotation of the grape genome and to compare the complexity of performing 

proteogenomics annotation in larger plant genomes, in relation to smaller bacterial 

genomes, as was demonstrated in Chapter 4. In addition, the benefits and shortcomings 

of current proteogenomics strategies were outlined. The latest grape Pinot Noir 12X 

genome assembly and 12Xv2.1 genome annotation were obtained from CRIBI, while 

the proteomics data were in the form of 177,174 MS/MS spectra derived from Cabernet 

Sauvignon grape berry skins, used in an earlier proteogenomics study by the 

dissertation author in Chapman et al [8]. In that study an earlier version of the 

proteogenomics pipeline was applied, with 29 annotation events found including; 1 

frame-shift, 3 translated UTRs, 1 exon boundary, 6 novel exons, 9 gene boundaries, 3 

reverse strands and 6 novel gene events. The present study expands on that work by 

using an improved proteogenomics pipeline and an additional 2,701,718 MS/MS 

spectra derived from Cabernet Sauvignon shoot tips, used in a large proteomics study 

on the effects of water deficiency [9]. In addition, RNA-seq data derived from Vitis 

vinifera Corvina cultivar [10] and a large RNA-seq study looking at multiple cultivars 

(unpublished), was used for the identification of splice regions. 

5.2 MATERIALS AND METHODS 

5.2.1 Proteomics and genomics datasets 

The latest assembled grape Pinot Noir 12X genome [572] with the genotype identifier 

PN40024, and the 12Xv2.1 genome annotation and protein predictions [7] were 

downloaded for use from the CRIBI web site (http://genomes.cribi.unipd.it/DATA/) 

(Appendix File 5.1). 

The MS/MS spectra were derived from finely ground shoot tips of Cabernet 

Sauvignon, across 3 biological replicates on 4 different days during water deficit [9]. 

http://genomes.cribi.unipd.it/DATA/
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The samples were digested with trypsin, aided by Lys-C digestion, and were run on a 

LTQ XL mass spectrometer (Thermo), with fractionation performed by HPLC and a 

series of gas-phase fractionation (GPF) steps to further aid in separation. A total of 

2,701,718 MS/MS spectra were downloaded from the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [574], 

using the identifier PXD000123. An additional 177,174 MS/MS spectra from the 

previous proteogenomics study by the dissertation author in Chapman et al [8] were also 

used, derived from Cabernet Sauvignon berry skins which were finely ground, 

extracted, digested and fractionated in the same way as the shoot tips, with the samples 

running on an LTQ Velos Pro (Thermo) mass spectrometer. 

As outlined in Section 3.1.1, a source of contaminants was appended to protein 

sequence predictions in the 12Xv2.1 annotation before being used in the MS/MS 

database search to identify any contamination. 

5.2.2 RNA-seq datasets 

Illumina RNA-seq datasets were obtained from two sources. One source was from a 

recent study [10], where the transcriptome of V. vinifera cultivar Corvina was 

sequenced, looking at three different developmental time points, i.e. post-fruit set (PFS), 

mid-ripening (MR), and mid-withering (MW), at approximately 2 months post-harvest 

and from different tissues, organs and development time-points. The RNA-seq reads 

were downloaded from the Sequence Read Archive (SRA) 

(http://www.ncbi.nlm.nih.gov/sra) through DNA Nexus (http://sra.dnanexus.com/), 

using identifier SRA055265. The second source of RNA-seq data, which is currently 

unpublished, consisted of grape skins from multiple different cultivars Chardonnay, 

Cabernet Sauvignon, Merlot, Pinot Noir, Semillon, Cabernet Franc and Sauvignon 

Blanc, that had been subjected to different water deficits, time-points and sugar levels. 

This data was obtained from collaborator Ryan Ghan from the University of Nevada 

http://proteomecentral.proteomexchange.org/
http://www.ncbi.nlm.nih.gov/sra
http://sra.dnanexus.com/
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and who was a co-author to the previous grape proteogenomics study in Chapman et al 

[8]. 

5.2.3 MS/MS database searching  

The MS/MS database search was performed by MS-GF+, as outlined in Section 3.3. In 

this case study trypsin was used as the protease, the instrument was set to low-res LTQ 

(Ion Trap), and the precursor mass tolerance was 2.0 Da and 3.0 Da for two different 

MS/MS database searches, as determined from a preliminary MS/MS spectral dataset 

assessment, detailed below in Section 5.2.4. 

5.2.4 Dataset processing 

The 12Xv2.1 protein sequence FASTA file and GFF file required formatting into a 

compatible format for proteogenomics analysis, as outlined in Section 3.4.1. Many of 

the CDS phase in the 12Xv2.1 annotation were incorrect. The errors were retained for 

the proteogenomics analysis, to highlight corrections to the annotation via 

proteogenomics. However, GenomeTools [542] was used to correct the CDS phase 

errors to be used later as hints for gene prediction, and for visualization, as outlined in 

Section 3.1.1 (Appendix File 5.1). 

The total 2,878,892 MS/MS spectra obtained for this study were first assessed 

by searching against the known proteome, examining the effects of using MS-Cluster to 

cluster the MS/MS spectra, PepNovo to quality filter the MS/MS spectra, and with an 

assessment of optimal precursor mass tolerances, as outlined in Section 3.4.6. Since all 

the MS/MS spectra were of lower accuracy, derived from an LTQ mass spectrometer, 

this factor had to be reflected in the search parameters. Therefore, assessment of the 

optimal precursor mass tolerance involved a range of tolerances, 0.5 up to 5.0 Da, in 0.5 

Da increments (Appendix File 5.2). 

All RNA-seq data were pre-processed for quality and aligned to the 12X grape 
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genome as detailed in Section 3.4.3. The resulting alignment BAM files were then 

merged and used to generate a splice graph FASTA database. A six-frame translation of 

the genome was also generated. The methods used for both splice graph and six-frame 

translation generation are outlined in Section 3.4. 

5.2.5 Proteogenomics pipeline 

The proteogenomics pipeline was used as outlined in Section 3.5, utilizing the Enosi 

tool (version 1.0). This study began before a two-pass search approach with two-stage 

false discovery rate (FDR) strategy was considered, and so a combined FDR strategy 

was applied to all MS/MS search results using a 1% peptide-spectrum match (PSM) 

FDR. However, due to the low-accuracy of the MS/MS spectral dataset, two runs were 

performed using 2.0 Da and 3.0 Da precursor mass tolerances to improve on the number 

of PSMs identified. The choice of these two different precursor mass tolerances were 

based on the preliminary assessment of the MS/MS spectra, detailed previously in 

Section 5.2.4 and later discussed in Section 5.3 (Appendix File 5.2). 

A clustered MS/MS spectral dataset, quality filtered to a PepNovo score of 0.01, 

gave 1,594,076 MS/MS spectra. The MS/MS spectra were then split into 20,000 

MS/MS spectra each using an in-house MGF splitting tool, before running each MS/MS 

spectral file through MS-GF+ on a cluster against the known proteome, two six-frame 

translation files (minimum 500 MB each), and a splice graph FASTA file for each of 

the 2.0 Da and 3.0 Da proteogenomics runs. Each set of results were then merged across 

4 tab-separated value (TSV) files, and further processed through the proteogenomics 

pipeline. It was necessary to merge the results across four different TSV files instead of 

a single TSV file, due to limitations in processing large result files from the combined 

FDR strategy, as was outlined in Section 3.5. 



 

 143 

The choice of parameters for the proteogenomics pipeline, as outlined in Section 

3.5, included an initial minimum event probability for novel genes, distal events and 

proximal events of 90%, a peptide linkage distance of 18,000 bp representing >95% of 

gene sizes in the current annotation, a minimum cluster size of 1 (total peptides per 

cluster) and a minimum of 1 unique peptide per cluster. Following this, for all 

annotation events which did not have ≥2 unique peptides and/or ≥99.9% event 

probability, screening was performed based on the number of assigned PSMs, sequence 

homology to sequences in NCBI NR, NCBI RefSeq protein and NCBI SwissProt, with 

an emphasis placed on matches to the same chromosome and genomic region, supported 

by EST, mRNA and/or protein evidence, and with all proximal events requiring at least 

100% query coverage and identity. Mapped known peptides matching the protein being 

annotated, and their frame in relation to the novel peptides, were also considered, 

particularly for proximal events (Appendix File 5.3). 

  The results from the proteogenomics analysis at 2.0 Da and 3.0 Da were 

aggregated for the known proteome by providing all FDR filtered results together and 

starting a normal run of the proteogenomics pipeline. For the novel identifications, the 

aggregation of results was undertaken directly through the Enosi tools aggregation 

function, taking the novel peptide locations, known peptides and their locations from 

the 2.0 Da and 3.0 Da results. 

5.2.6 Improving gene predictions 

Once the novel annotations were filtered and reviewed, the gene prediction tool 

Augustus [102], was used to improve the overall gene models of the 12Xv2.1 

annotation. Augustus was first trained using the automated Augustus web server [575], 

by providing ESTs, cDNA (including FL-cDNA) and mRNA downloaded from the 

NCBI nucleotide database and a repeat masked V. vinifera genome, using 

RepeatMasker [576] and Tandem Repeat Finder [577]. Once the Augustus V. vinifera 
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gene model parameters were generated, hints in the form of extrinsic evidence to 

improve the gene models were generated. These included ESTs, cDNA, and mRNA, 

generated using the BLAST-like Alignment Tool (BLAT) [122], while intron hints were 

generated using the RNA-seq BAM file (used previously for generation of the splice 

graph) with the Augustus script bam2hints, and repeat masked hints were generated 

from RepeatMasker during previous training. In addition, the current 12Xv2.1 

annotation was used as hints (with the CDS phase corrected using GenomeTools), along 

with the hints from novel peptides reviewed previously from the accepted novel 

annotations. The Augustus gene prediction tool was then run, using parameters as 

outlined in Section 3.5.3. 

5.3 RESULTS AND DISCUSSION 

The present study outlined improvements to the 12Xv2.1 annotation of V. Vinifera, 

demonstrating the benefits of proteogenomics by identifying 341 (103 exclusively) 

novel annotation events, and in particular showed how the use of legacy data from other 

studies can value-add and improve on the gene models. The study was a good example 

of the importance of sharing proteomics and RNA-seq data, to be utilized beyond the 

initial scope of the generation of such data, and provided awareness of how different -

omics platforms, such as genomics, proteomics and transcriptomics can be integrated. 

The study also outlined different strategies towards proteogenomics and the benefits of 

considering and evaluating each parameter and annotation, instead of blindly applying 

thresholds with no reflection of their suitability for the study in question. This study 

further reflects on some of the strategies taken, and considers further improvements. 

5.3.1 Evaluation of pre-processing MS/MS spectra 

Prior to running the proteogenomics pipeline, the MS/MS spectra were evaluated for the 

optimal pre-processing strategy and precursor mass tolerance (Appendix File 5.2). All 
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2,878,892 MS/MS spectra were clustered by a factor of 1.50. It was found that 

clustering reduced the peptide FDR after an initial 1% PSM FDR filtering from 11.70% 

peptide FDR to 4.70% peptide FDR and reduced the protein FDR from 39.30% to 

17.90% (Appendix Figure 5.1A-C). As can be seen in Appendix Figure 5.1A, the 

number of total MS/MS spectra lost after quality filtering ranged from 3.3% at the 

lowest end to 64% at the most stringent cut-off. Applying scores between 0.05 – 0.1, as 

recommended by PepNovo (detailed in the Help File bundled with the tool), resulted in 

around 33% to 45% of the MS/MS spectra being lost. However, at a score of 0.01 only 

17% of MS/MS spectra were lost, while maintaining a peptide FDR of ~3%, as well as 

retaining many PSMs and unique peptides which were lost with higher scores than 0.01 

(Appendix Figure 5.1D-E). Any losses in MS/MS spectra, resulting in a reduction in the 

number of PSMs and the number of unique peptides reported, without any significant 

reductions in false positive rates, would indicate that the dataset was not improving but 

was losing valuable MS/MS spectra for novel proteogenomics discoveries. 

Taken together, the results for this particular MS/MS spectra indicate a clustered 

MS/MS spectral dataset, with a PepNovo quality filtering score cut-off of 0.01 was 

most suitable for further proteogenomics analysis, as this resulted in the best balance 

between keeping the largest number of PSMs and filtering out poor quality MS/MS 

spectra, while keeping the peptide FDR to around 3%. 

5.3.2 MS/MS database search parameter optimization 

Only low-accuracy MS/MS spectra were available for this study, which limited its 

potential for identifying the highest number of PSMs due to a higher false positive rate 

as a consequence of the larger error window. A clustered set of MS/MS spectra, which 

was then quality filtered to a PepNovo score of 0.01, was used to assess the precursor 

mass tolerances (Appendix File 5.2). In this study, in contrast to Chapter 4 (where a 

well-defined optimal precursor mass tolerance could be chosen), due to the larger mass 
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window, the sensitivity of PSM identifications increased the further the mass error 

window was increased, and the peptide FDR after an initial 1% PSM FDR can be seen 

to plateau off after 2.0 to 3.0 Da, remaining under 4.5% (Appendix Figure 5.2). The 

optimal precursor mass tolerance here was not necessarily the highest, which could 

theoretically keep going above the 5.0 Da range looked at in the assessment. However, 

larger precursor mass tolerances would negatively impact the sensitivity of the database 

search as more potential PSMs would be considered in the search, further negatively 

impacting search time and false positive rates. As a result, two different precursor mass 

tolerances were chosen, which gave the best balance between the sensitivity of PSM 

identifications and peptide FDR: 2.0 Da and 3.0 Da, which gave 57,968 PSMs at 3.3% 

peptide FDR and 81,278 PSMs at 3.9% peptide FDR, respectively. 

Using both precursor mass tolerances for proteogenomics analysis by 

aggregating the results together improved the overall identification rate. While the 2.0 

Da precursor mass tolerance identified a slightly different set of novel peptides as a 

result of the smaller search space, identifications which were missed due to the 

restricted mass window were then identified using the 3.0 Da precursor mass window, 

which identified some of the same novel peptides but also included others not 

previously identified (results not shown). In reality, using a much larger range of 

precursor mass tolerances could be selected e.g. 1.0 Da to 4.0 Da, which would identify 

more PSMs than 2.0 Da and 3.0 Da alone. However, to keep the post-analysis simple 

(by keeping the number of time-consuming MS/MS database searches to a minimum), 

and to avoid inflating the FDR further than absolutely necessary, these two were chosen 

which most agreed with the assessment (Appendix Figure 5.2B). 

5.3.3 Proteogenomics pipeline 

A proteogenomics pipeline was customised using Enosi with MS-GF+, as outlined in 

Section 3.5 and illustrated in Figure 3.1, utilizing only the combined FDR strategy with 



 

 147 

no two-pass search approach, instead improving upon the sensitivity and identification 

rate by performing two proteogenomics runs with two different precursor mass 

tolerances and aggregating the results (Appendix Files 5.3 and 5.4). 

A number of key variables required consideration in this study, just as they were 

considered in Chapter 4. However, in contrast, the peptide linkage distance was easier 

to determine in this study, as the genome was eukaryotic containing much larger 

intergenic distances. The peptide linkage distance was chosen based on the size of 

≥95% of genes in the current genome annotation, which was found to be 18,000 bp. 

For the number of unique peptides per cluster a minimum of 1 unique peptide 

per cluster was applied, with a minimum peptide cluster size of 1. Following this step 

annotation events were accepted based on a number of criteria outlined in Section 5.2.5. 

Such an approach, while laborious in screening large numbers of PSMs, was able to 

identify more novel annotations than simply applying a stringent event probability and 

allowed for annotation events to be validated against proteins previously not considered 

in the original annotation. Based on this approach, the final minimum event 

probabilities were 99.80% for novel genes and 98.374% for distal events and proximal 

events, with a number of other single peptide annotation events removed during 

screening. For example, some single unique and novel peptides, particularly those with 

lower event probabilities, did not match anything significant within the grape family in 

NR, RefSeq protein or SwissProt databases while others only matched bacteria, plant 

mitochondria or chloroplasts, and some proximal events did not have 100% coverage 

and identity with some matches. For a number of proximal and translated UTR events 

in particular, due to their close proximity to the known annotation, there was an overall 

correlation observed between the probability of the annotation event and the number of 

known peptides also mapping to the protein being annotated. A similar observation was 

made with the number of spectral counts and other supporting evidence as the event 
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probabilities increased (Appendix File 5.3). Many of the higher event probability 

annotation events were later found to incorporate into new gene predictions, however, 

this was not consistently the case, as further discussed in Section 5.3.4. 

Many of the novel peptides found to match chloroplasts and mitochondria were 

often accompanied by higher numbers of PSMs compared to the majority of other novel 

peptides. This would be expected due to the larger numbers of such proteins relative to 

the rest of the plant cell, as chloroplasts and mitochondria are numerous, particularly in 

rapidly growing grape shoot tips used in this study. To avoid such contamination, a cell 

component isolation step during sampling could have been applied, but as this dataset 

was legacy data and not originally purposed for proteogenomics, this was not a path that 

could be pursued. The source of the proteomics data can therefore be another source of 

false positives. In this case, due to the source of the genome being the cultivar Pinot 

Noir, with the proteomic data derived from Cabernet Sauvignon and RNA-seq data 

covering various different cultivars, variations between the peptide sequences and target 

genomic and RNA-seq sequences could occur. This could lead to potential 

misinterpretations of the variation as a post-translation modification (PTM) or 

identification of novel peptides in multiple locations where there are none, which would 

negatively impact the final event probability. A means to limit the false positive rate 

could be to limit the MS/MS database search to essential PTMs, limit the search space 

or alternatively by adding known variant peptides to the target database such as that 

demonstrated with splice graphs in [474]. However, the possibility of using variant 

sequences in proteogenomics was not known until late in the study and was 

consequently not explored. 

Future studies utilising data generated solely for proteogenomics could generate 

large amounts of data specifically for one variety, and thus control for these types of 

false positives, with the inclusion of RNA-seq data from other grape varieties, 
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conditions and time points to identify variants using the methods demonstrated in [474]. 

Additionally, a source of false positives could be the lack of sequence coverage of the 

genome, with large regions remaining unsequenced. This possibility may be the case 

with the 12X genome assembly in this study, which is fragmented and consists of 19 

chromosomes, a number of which also have random fragment counterparts and also a 

large unassigned chromosome (ChrUn), which can be seen in a relatively recent 

comparative analysis between the 8X and 12X assemblies [578]. A fragmented genome 

can also result in a number of misidentified PSMs, as outlined in Section 2.4.1, which 

highlighted a number of work-around solutions including: the use of de novo 

sequencing tools, searching the interpreted MS/MS spectra against homologous 

sequences, using mutation tolerant search tools, or modifications to approaches such as 

template proteogenomics which align stretches of interpreted MS/MS spectra against 

relatively short homologous sequences for construction of whole proteins in the absence 

of a target genome sequence. However, such approaches were not explored in this 

study, as they would require more algorithmic development for use in proteogenomics 

for whole genomic re-annotation, and as such, have yet to be implemented in tools such 

as Enosi. 

In addition to using the sequence homology approach for the screening of 1 

unique and novel peptide annotation events, the peptide length was also considered; 

with short peptides (<10aa) only considered if the match was to the identical 

chromosome and region identified from the proteogenomics analysis. As in Chapter 4, 

the event FDR could not be calculated to determine which event probability provided an 

acceptable FDR at the annotation event level. Therefore, screening each novel 

annotation event in the manner described above provided another way in which to 

discriminate true from false positives. How effective this was at the annotation event 

level could not, however, be determined. 
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5.3.4 Proteogenomics analysis 

The proteogenomics analysis was performed based on the acceptance of novel 

annotations with preference given to high event probabilities and ≥2 unique peptides per 

cluster accepted. Other annotation events like those with lower event probabilities and 

only 1 unique peptide per cluster, were screened by considering the event probability, 

spectral counts, mapping of unique and shared peptides to proteins being annotated with 

their frame in relation to the novel peptides considered and sequence homology to 

known sequences in the same chromosome and region, containing orthogonal 

supporting evidence. To account for an inflated number of gene boundary and reverse 

strand events for each peptide cluster, due to the use of a fixed peptide linkage distance, 

as was explained in Section 3.5, an exclusive number of annotation events for gene 

boundary and reverse strand events, and their associated genes and proteins was also 

determined to indicate the numbers without the effect of a fixed peptide linkage 

distance, as shown in parenthesis in Table 5.1. 

 This series of screening led to final event probabilities of 99.80% for novel 

genes and 98.374% for distal events and proximal events, which followed with the 

identification of a total of 133 novel peptides and 341 novel annotation events (103 

exclusively) among 216 genes (67 exclusively) from the 12Xv2.1 annotation (Table 5.1, 

Appendix Files 5.3 and 5.4). 

 This study showed a large improvement over the 29 annotation events identified 

during the preliminary study [8] mentioned in Section 5.1.1. The novel annotations 

along with the 12Xv2.1 reference annotation were then used as hints for Augustus gene 

prediction. A total of 84,948 genes and 93,754 proteins (≥66 aa in length) were 

predicted (Appendix File 5.5), and of these, 57 predicted proteins had 110 novel 

peptides incorporated (Table 5.1), of which 94 novel peptides were unique and 

identified in 54 of the 57 predicted proteins (Appendix File 5.6). The number of protein-
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coding genes and proteins predicted by Augustus was far higher than the original 

reference 12Xv2.1 predictions (Table 5.1). In addition to new predictions previously not 

identified, these high numbers could also be attributed to two factors, as was outlined in 

Section 3.5.3. 

The novel peptides incorporated into the predictions ranged in event 

probabilities from 98.374% to 100%, which was within the same range as all resulting 

filtered novel annotation events. However, the majority of the distribution of novel 

annotation events that contained peptides, which were incorporated into the Augustus 

gene predictions, belonged to the higher event probabilities. There were also some 

novel peptides, from high event probability annotation events, which could not be 

incorporated into predictions. This was possibly due to the interpretation of real MS/MS 

spectra derived from contaminants, such as from chloroplasts and mitochondria or 

misidentified variant peptides mistaken as containing PTMs. The event probabilities 

could not discriminate against these types of false positives and could only provide a 

probability of the whole annotation event being correct based on the product and quality 

of all the MS/MS spectra in the annotation event. 

The exclusion of many novel peptides from Augustus gene predictions were also 

observed in the Arabidopsis proteogenomics analysis from [81], however this was not 

discussed in that study. The dissertation author received confirmation that this was the 

case with the Arabidopsis proteogenomics study (S. Payne, personal communication, 

September 29, 2012), and so this should warrant being addressed in the Enosi tool in 

later versions. Because if some accepted novel peptides could not be included into the 

predictions, it is highly probable that some novel peptides that were included should not 

have been, leading to false predictions. This could perhaps be addressed with the 

consideration of other evidence, additional parameters and threshold stringencies before 

defining the final peptide clusters and inferring annotation events, to avoid including 
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what may be spurious novel peptides, instead of mainly relying on parsimony of unique 

peptides within annotation events and their event probabilities. 

The number of novel peptides incorporated into the predictions was quite high at 

110 novel peptides (83%). Of the 110 incorporated novel peptides, 15 were exclusively 

derived from the splice graph, while 7 were identified in both the six-frame translation 

and splice graph, with the remaining 88 novel peptides identified exclusively in the six-

frame translation. 

A BLASTP search was performed, by searching all 93,754 Augustus-predicted 

proteins (Table 5.1) against the 12Xv2.1 proteins, taking the top match with E-value 

≤1E-10. Any sequences that did not match were considered novel predictions, 

sequences that had a query coverage ≥95% with at least 1 mismatch were considered to 

be the same prediction as the reference protein, and the remaining matches were 

considered to be modified predictions, either due to Augustus predicting different gene 

models or modified as a direct result from the supporting evidence. From this analysis 

there were 42,257 non-paralogous novel protein predictions, 32,837 modified 

predictions and 18,660 predictions considered to be essentially the same as the 

reference. 

Searching all 57 protein predictions that had the novel peptide evidence 

incorporated, against the 12Xv2.1 proteins, taking the top match with E-value ≤1E-10, 

identified 49 protein predictions likely to be modified predictions, leaving 3 protein 

predictions, that found no match and were considered as non-paralogous novel protein 

predictions (Table 5.1). 

Based on the annotation events incorporated into the Augustus gene predictions, 

the minimum event probabilities which led to a new Augustus gene prediction were: 

gene boundary, translated UTR, reverse strand and exon boundary event 98.374%, 
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frame-shift event 99.80%, and novel exon event 99.193%. 

Table 5.1 Summary of grape proteogenomics annotations 

The results of the proteogenomics analysis of grape 12Xv2.1 annotation. 

Total 12Xv2.1 genes 31,845 

Total ‘known’ protein-coding genes 31,654* 

Total ‘known’ proteins 55,373* 

Raw MS/MS search ‘known’ protein matches ≤1% PSM FDR 2,773 

Proteogenomics mapping: Total 'known' proteins ≤1% PSM FDR 7,536 

Proteogenomics mapping: Total ‘known’ proteins ≤1% PSM FDR (≥2 peptides with 1 unique) 1,117 

 

Total identified 'novel' peptides ≤1% PSM FDR 325 

Raw MS/MS search ‘known’ peptides ≤1% PSM FDR 7,886 

Proteogenomics mapping: Total identified 'known' peptides ≤1% PSM FDR 11,779 

Proteogenomics mapping: Total identified 'known' peptides ≤1% PSM FDR (≥2 peptides with 1 
unique) 5,048 

 

Frame-shifts 5 

Translated UTRs 37 

Exon boundaries 16 

Novel splices 1 

Novel exons 9 

Gene boundaries 160 (24) 

Reverse strands 112 (10) 

Novel genes 1 

 

Total annotation events 341 (103) 

Total genes affected 216 (67) 

Total proteins affected 326 (101) 

Total novel peptides in affected genes/proteins 133 

 

Total Augustus protein-coding gene predictions 84,948 

Total Augustus protein predictions 93,754 

Total Augustus gene predictions with incorporated novel peptides 55 

Total Augustus protein predictions with incorporated novel peptides 57 

Total novel peptides incorporated into Augustus protein predictions 110 

Improved protein predictions with incorporated novel peptides 49 

Novel non-paralogous protein predictions with incorporated novel peptides 3 

* The original consisted of 31,845 protein-coding genes coding for 55,564 proteins. A total of 191 

proteins which were <20 aa in length were removed from the analysis. 

Note: Numbers in parenthesis represent the exclusive numbers. The inflationary effect of a large peptide 

linkage distance on gene boundaries and reverse strands was removed by assigning a peptide cluster as 

either a proximal or distal event, not both, with preference placed on proximal events. 

5.3.5 Novel gene annotations 

A single novel gene annotation event was discovered (Table 5.1), located on 

chromosome 14, and spanning positions 14,715,245 to 14,715,284 with an event 

probability of 99.80%. This novel annotation event consisted of a single unique peptide, 

with 2 PSMs assigned (Figure 5.1, and with two supporting annotated MS/MS spectra 
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in Appendix Figure 5.3). Searching the novel peptide against the grape family in NR 

revealed a significant match to a predicted glutathione S-transferase protein 

(XP_002266106.1 with E-value = 3E-07) of 263 aa in size, which was also located on 

chromosome 14, within the same genomic region, with mRNAs, ESTs, and proteins 

supporting the prediction. 

However, the novel peptide could not be incorporated into the Augustus gene 

prediction, although two genes in close proximity were predicted on different strands 

(Figure 5.1). While a BLASTP search of gene g54248 against the grape family in NR 

found no significant matches, gene g54247 in the same frame as the novel peptide, 

further upstream, found a significant match to a hypothetical protein (CAN74624.1 with 

E-value = 0.0). Although as with the BLASTP search, exon and exon_part hints (Figure 

5.1) suggest that there should be an identified gene in this region. Further evidence is 

likely needed to add support to the novel gene event before the weighting of the 

evidence is sufficient to predict a new gene in this region, in line with the supporting 

evidence found in NR. 

 

Figure 5.1 Novel gene annotation 

The novel gene event inferred from a novel and unique peptide flanks Augustus gene predictions, but is 

not incorporated into any new predictions. However, exon_part (EST and cDNA evidence) hints used for 

prediction overlap the novel peptide region before an intron region inferred from the RNA-seq evidence. 

In the last track a repeat region is highlighted. 
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Based on the peptide linkage distance no novel genes were found with ≥2 unique 

peptides, highlighting the importance of screening all annotations to identify valid 

single unique peptide annotation events. With better depth and breadth of sampling 

across many more grape tissues, the identification of annotation events with ≥2 unique 

peptides would likely improve. Regardless, careful screening of all annotations, at least 

with single unique peptides, was still a viable approach to identify potentially missed 

annotations, even if sufficient depth and breadth of sampling was available. 

One of the reasons why only one novel gene event was identified was because 

the proteogenomics approach used categorizes peptide clusters as novel genes when 

they reside outside the peptide linkage distance. This is also similarly true for gene 

boundary events and reverse strand events, which rely on the same peptide linkage 

distance for the assignment of annotation events across the genome, and can result in 

many overlapping annotation events for a single peptide cluster even if they are 

unlikely. A true annotation event assignment is likely to be interpreted correctly for 

peptide clusters in close proximity or directly overlapping the genes, as they cannot be 

refuted, unlike annotation events inferred on genes with peptide clusters possibly many 

thousands of base-pairs away. This is a consequence of applying a general rule (gene 

sizes >95% in size), across all genomic features and as a result there are likely to be 

many more novel genes misidentified as gene boundary events and reverse strand 

events. A good example of where this can occur was with a reverse strand event located 

on chromosome 11, at positions 10,628,861 to 10,628,908, with an event probability of 

99.999%, consisting of 3 novel and unique peptides with 8 PSMs assigned, but on 

inspection appeared more likely to be a novel gene event. In addition Augustus 

predicted a new gene in this location using the novel peptides and exon_part hints 

(Figure 5.2, and with 8 supporting annotated MS/MS spectra in Appendix Figure 5.4). 

Performing a BLASTP search against the grape family in NR revealed all three 
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novel peptides matched 40S ribosomal protein S8 (XP_010646836.1 with E-value 

ranges: 1E-07 – 2E-08) with 100% query coverage and identity, and which had EST and 

mRNA evidence supporting it. The new Augustus gene prediction matched significantly 

but with poor coverage of 29% and identity of 51% to a hypothetical protein 

(CAN81604.1 with E-value 5E-21), which likely indicated a truly novel identification. 

Figure 5.2 Novel gene annotation and prediction misidentified as a reverse strand event 

The novel gene annotation was identified through what was inferred as a reverse strand event, due to the 

peptide linkage distance including a nearby gene. The novel peptides were incorporated into a new 

Augustus gene prediction, which were also supported by exon_part (EST and cDNA evidence) hints. 

5.3.6 Gene boundary annotations 

There were 160 (24 exclusive) gene boundary events identified (Table 5.1). However, 

this could have been artificially inflated as the peptide linkage distance was applied 

evenly across all peptide clusters identified in the genome, as a number of genes from 

the reference annotation could be seen in close proximity to each other, well within the 

18,000 bp peptide linkage distance. 

An example of a gene boundary event is on chromosome 18, spanning positions 

4,109,211 to 4,112,683, with gene VIT_218s0001g04980, consisting of two protein 

isoforms with an event probability of 100% and with 13 PSMs identifying 4 unique 

peptides. In addition, an Augustus gene prediction using the novel peptides and 

reference annotations as hints was able to improve the gene model, incorporating the 
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novel peptides, previous annotations, exon and intron hints, into the new prediction 

(Figure 5.3, and with 13 supporting annotated MS/MS spectra in Appendix Figure 5.5). 

Performing a BLASTP search against the grape family in NR revealed that all 

novel peptides matched acetyl-CoA carboxylase 1-like protein (XP_002285808.2 with 

E-value range: 5E-07 – 3E-16), with 100% query coverage and identity. The two 

reference protein-coding transcripts also matched acetyl-CoA carboxylase 1-like protein 

(XP_002285808.2 both with E-values = 0.0); protein-coding transcript 1 with 100% 

query coverage and protein-coding transcript 2 with 98% query coverage, both with 

100% identity. The new Augustus gene prediction also matched acetyl-CoA 

carboxylase 1-like protein (XP_002285808.2 with E-value = 0.0), with 100% query 

coverage and identity, which showed that the original prediction was under-predicted, 

requiring a further extension of the gene towards the 5’ region on the reverse strand. 
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Figure 5.3 Gene boundary annotation 

The gene boundary event inferred from the novel and unique peptides closely flanked reference gene 

VIT_218s0001g04980 from the 12Xv2.1 annotation. The novel peptides, reference gene 

VIT_218s0001g04980, exon (EST and cDNA evidence) and intron (RNA-seq evidence) hints were 

incorporated into the Augustus gene prediction. A group of peptides were also found mapped to gene 

VIT_218s0001g04980 indicating its expression and adding confidence to this proteogenomic annotation. 

 In the gene boundary annotation event, genes VIT_218s0001g05020 and 

VIT_218s0001g05030 were identified further upstream (based on the peptide linkage 

distance), but the novel peptides were in closer proximity to gene 

VIT_218s0001g04980, which was also the only gene amongst them with known 

mapped peptides. In addition, this peptide cluster also identified a reverse strand 

annotation event for gene VIT_218s0001g04970 further upstream, but this finding was 

also unlikely to be a ‘real’ annotation and was only inferred from the large peptide 
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linkage distance. 

As outlined previously in Section 5.3.5, a fixed peptide linkage distance across 

the entire genome is a generalisation of the distribution of genes, inadvertently grouping 

genes into annotation events that do not belong and/or grouping peptides into peptide 

clusters that belong to separate annotation events. 

Numerous other gene boundary events were also discovered with high event 

probabilities and multiple unique peptides, but these findings were also identified as 

translated UTR and reverse strand events, and appeared to agree more with these 

annotation event types than with the gene boundary event type. As such, to identify the 

true number of the different types of annotation events, manual screening of all 

annotation events was needed to see which annotation event was more likely the true 

case, by identifying which peptide clusters from the gene boundary and reverse strand 

events were exclusively identified as only those annotation events (Table 5.1), and were 

not also identified as other annotation events such as proximal events. This can help 

resolve some of the ambiguity when trying to interpret what the location of a peptide 

cluster could actually mean in relation to the surrounding genes instead of automatically 

inferring the annotation event based on its proximity to genes and the peptide linkage 

distance. However, a step of this nature is at odds with one of the aims of 

proteogenomics, i.e. to fast-track genome annotation without any loss in the quality of 

the annotation. 

One way of improving the genomic annotation is to simply ignore classifying 

annotation events and focus on the identified novel peptides as hints towards gene 

prediction in tools such as Augustus, and to filter out any possible false gene predictions 

using orthologous evidence to group genes into low and high confidence sets. However, 

a method of this nature becomes more time-consuming, introduces error and avoids 
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assigning annotation events entirely, and relies heavily on the abilities of the gene 

prediction tool. A better approach to assigning annotation events at the proteogenomics 

level would be to re-define the way in which annotation events are categorized, based 

on additional evidence, such as known mapped peptides and their frame in correlation 

to the nearby novel peptides within the same or overlapping ORF. 

An additional approach could be to determine the peptide linkage distance 

dynamically for each peptide cluster, based on the average size of genes in the 

immediate region in combination with other evidence such as ESTs, RNA-seq and/or 

the distribution of all mapped peptides and applied to machine-learning approaches, 

before annotation event inference, to identify the most likely genes involved in each 

annotation event. For example, a reverse strand annotation event would more likely to 

be defined for a gene when the peptide cluster directly overlaps it and has no 

neighbouring genes, particularly none with mapped known peptides. However, if the 

neighbouring genes have mapped peptides and the genes are in relatively close 

proximity, then the annotation could be defined as a gene boundary event overlapping 

the gene on the opposite strand. Such problems need to be met in a dynamic way, as the 

peptide linkage distance does not discriminate between entities in relatively close 

proximity, and those much further up or downstream of the peptide cluster. 

5.3.7 Reverse strand annotation event leads to a new gene prediction 

There were 112 (10 exclusive) reverse strand annotation events identified (Table 5.1), 

but the majority of these annotation events were also identified as gene boundary and 

translated UTR events due to the peptide linkage distance. However in 8 cases the 

peptide cluster directly overlapped a gene on the opposite strand. An example of one of 

these 8 reverse strand annotations was gene VIT_211s0065g00070 with its single 

protein-coding transcript, which was also identified as a gene boundary annotation for 

gene VIT_211s0065g00060 much further upstream. This annotation was identified on 
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chromosome 11, spanning positions 13,140,580 to 13,147,463, with an event 

probability of 99.960% with 2 PSMs identifying 2 unique and novel peptides. 

Additionally, Augustus predicted a novel gene from one of the novel peptides (Figure 

5.4, and with 2 supporting annotated MS/MS spectra in Appendix Figure 5.6). 

Performing a BLASTP search against the grape family in NR revealed that 

novel peptide “ELSNYMQPIHIHTIYLPILLLIKMEK“ matched a hypothetical protein 

(CAN73713.1 with E-value = 0.030), with 80% query coverage and 56% identity, and 

novel peptide “KVEENLNNEAR” matched a protein transport protein SEC16A 

homolog (XP_010646525.1 with E-value  = 7E-04), with 90% query coverage and 

100% identity. The reference protein-coding transcript from gene 

VIT_211s0065g00070 matched unnamed protein product (CBI24042.3 with E-value = 

0.0), with 100% query coverage and identity. The new Augustus gene prediction 

matched hypothetical protein (CAN82660.1 with E-value = 2E-35), with 57% query 

coverage and 85% identity, indicating novel gene identification on the reverse strand. 

Although the reference protein matched significantly in NR, for unknown reasons it did 

not lead to a new equivalent prediction through Augustus. Further supporting evidence 

is needed before this annotation event and prediction could be accepted with 

confidence, as the only evidence supporting the novel prediction was a single unique 

peptide. 
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Figure 5.4 Novel gene prediction via a reverse strand event 

A reverse strand event inferred from the novel and unique peptides. The novel peptide 

“KVEENLNNEAR” and reference gene VIT_211s0065g00070 used as a hint for Augustus gene 

prediction did not result in a new gene. However, peptide “ELSNYMQPIHIHTIYLPILLLIKMEK” 

contributed to a new Augustus gene prediction, flanking gene VIT_211s0065g00070. The intron (RNA-

seq evidence) hints in this region did not contribute to any new Augustus gene predictions. The region is 

also covered in a number of repeat regions. 

5.3.8 Translated UTR annotation 

There were 37 translated UTR annotations identified (Table 5.1), of which a large 

proportion were also identified as gene boundary and reverse strand annotations due to 

the peptide linkage distance including other genes in close proximity. However, the 

translated UTR annotations by their definition are limited to only directly overlapping a 

UTR gene region. Hence, the reason for just 40 such annotations, compared to the other 

distal events such as reverse strands (112) and gene boundaries (159), which were 

annotated purely on the inclusion of a gene within the peptide linkage distance of a 

peptide cluster. An example was with gene VIT_208s0058g01030, protein-coding 

transcript 1, with the peptide cluster also indicating a gene boundary with genes 

VIT_208s0058g01020, VIT_208s0058g01030 and VIT_208s0058g01040, as well as a 

reverse strand annotation with gene VIT_208s0058g01010, due to the peptide linkage 

distance and close proximity of these genes around gene VIT_208s0058g01030. This 

annotation was identified on chromosome 8, spanning positions 10,371,636 to 
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10,373,023, with an event probability of 100% and with 6 PSMs identifying 4 novel and 

unique peptides. Using the novel peptides, reference annotation and intron hints 

evidence for gene prediction, Augustus predicted two genes (Figure 5.5, and with 6 

supporting annotated MS/MS spectra in Appendix Figure 5.7). 

Performing a BLASTP search against the grape family in NR revealed that all 

novel peptides matched Prosaposin protein (XP_002268581.1 with E-value range: 

0.009 – 1E-11), with 100% query coverage and identity, the reference protein matched 

unnamed protein product (CBI18061.3 with E-value = 0.0), with 100% query coverage 

and identity; described as containing a Saposin-like type B domain. The two new 

Augustus gene predictions, g29772 and g29776, also matched unnamed protein product 

(CBI18062.3 for g29772 and CBI18061.3 for g29776, both with E-values = 0.0), with 

72% query coverage for g29772 and 87% query coverage for g29776, both with 100% 

identity; and both described as containing a Saposin-like type B domain. The two new 

gene predictions matching the same protein, have likely been split into two prediction 

based on the evidence. In addition, the intron evidence (Figure 5.5) indicates splicing 

across the whole length of the region from gene VIT_208s0058g01030, which also 

crosses the regions of both new predictions g29772 and g29776, thus providing further 

evidence that the two new gene predictions belong in a single prediction as opposed to 

two. 
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Figure 5.5 Translated UTR annotation 

A translated UTR event inferred from the novel and unique peptides. The novel peptides, reference gene 

VIT_208s0058g01030 and exon (EST and cDNA evidence) and intron (RNA-seq evidence) hints were 

incorporated into new Augustus gene predictions, however the predictions were split into two separate 

predictions both matching the same protein. A number of repeat regions were identified upstream of the 

5’ end of gene VIT_208s0058g01030. 

Another interesting translated UTR annotation was for gene 

VIT_207s0031g03000, with the peptide cluster also part of a larger peptide cluster 

indicating a reverse strand annotation for genes VIT_207s0031g02980, 

VIT_207s0031g02990, and VIT_207s0031g03010 further upstream and downstream, 

based on the peptide linkage distance. The gene VIT_207s0031g03000 and its single 

protein-coding transcript also contained a different peptide cluster, indicating an exon 

boundary annotation, which is discussed later in Section 5.3.10. The translated UTR 

annotation for gene VIT_207s0031g03000 was identified on chromosome 7, spanning 

positions 19,731,734 to 19,731,934 with an event probability of 100%, with 90 PSMs 

identifying 4 unique and 5 shared novel peptides. Additionally, using the novel 
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peptides, reference annotations, intron and exon hints, Augustus predicted a new gene 

(Figure 5.6 (translated UTR peptide cluster outlined in dash dotted line), and with a 

sample of 9 of 90 supporting annotated MS/MS spectra in Appendix Figure 5.8). 

Performing a BLASTP search against the grape family in NR revealed that all 

novel peptides matched the ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) large subunit (AFG24212.1 with E-value range: 4E-05 - 8E-14) with 100% 

query coverage and identity. The reference protein matched unnamed protein product 

(CBI21646.3 with E-value = 2E-62), with 100% query coverage and identity; described 

as containing a RuBisCo large chain domain. The new Augustus gene prediction 

matched hypothetical protein (CAN63541.1 with E-value = 5E-166) with 77% query 

coverage and 99% identity; also described as containing a RuBisCo domain. 

All evidence indicated that the identified and refined protein-coding gene was a 

RuBisCo large subunit, which is widely known as a dominant protein in the plant 

kingdom found more abundantly in leaves, a major source of peptides in this study. 

However, the protein, in particular the large subunit, was found exclusively in 

chloroplasts. False identifications such as these would be expected to match randomly 

across the genome by chance alone, but they are distributed across the length of this 

gene. The single protein-coding transcript from gene VIT_207s0031g03000 also 

matched RuBisCo large subunit, as does the new Augustus gene model. This indicated 

that either this was the first likely known case of an actual RuBisCo gene encoded on 

chromosomes in the nucleus, which seems improbable, or there is some over-assembly 

of the reference genome sequence, with chloroplast reads being incorporated into the 

chromosome 7 assembly. Further evidence as to the origin of this gene and the overall 

region in which the gene is found is needed before any further conclusions can be 

drawn. A good indication that over-assembly is the likely cause can be seen from the 

large number of chromosome fragments and the large unassigned chromosome 
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(ChrUn), as pointed out previously in Section 5.3.3, in regards to sources of false 

positives. Highly fragmented genomes with a large number of unassigned chromosomes 

can often indicate an underlying problem with the assembly, either indicating 

unresolved repeat regions at the ends of the scaffolds or co-assembly with nuclear 

chromosome reads and contaminant reads (e.g. incorporating reads from the 

chloroplast) leading to over-assembly; both of which would significantly hamper 

attempts to join scaffolds, leaving the assembly in a disjointed state and fragmented. 
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Figure 5.6 Translated UTR and exon boundary annotation 

An exon boundary (dashed line) and translated UTR (dash dotted line) inferred from the novel and unique 

peptides. The novel peptides, reference gene VIT_207s0031g03000, exon_part (EST and cDNA 

evidence) hints were incorporated into the Augustus gene prediction. A number of repeat regions were 

identified upstream of the 5’ end of gene VIT_207s0031g03000. The new Augustus gene prediction was 

also predicted to be spliced, with GT-AG (U2 spliceosome) donor-acceptor sites, however no other 

evidence indicated splicing across this region. 
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5.3.9 Novel splice annotation 

One novel splice annotation was identified (Table 5.1) for gene VIT_201s0011g05110 

and its single protein-coding transcript. The novel peptide was also identified as a gene 

boundary annotation for a number of other genes in close proximity, including genes 

VIT_201s0011g05082, VIT_201s0011g05090, VIT_201s0011g05100, 

VIT_201s0011g05110, VIT_201s0011g05120, VIT_201s0011g05130, and 

VIT_201s0011g05140. The novel splice annotation event was identified on 

chromosome 1, spanning positions 4,748,591 to 4,761,837, with an event probability of 

99.396% and 1 PSM identifying a single novel and unique peptide. Additionally, using 

the novel spliced peptide to identify a new or revised Augustus gene prediction did not 

lead to any predictions (Figure 5.7, and with 1 supporting annotated MS/MS spectrum 

in Appendix Figure 5.9). 

Performing a BLASTP search against the grape family in NR revealed the novel 

peptide matched hypothetical protein (CAN83049.1 with E-value = 0.012), with 75% 

query coverage and 100% identity. The reference protein also matched the same 

hypothetical protein (CAN83049.1 with E-value = 2E-165), with 100% query coverage 

and identity, described as containing a hydrophobic ligand binding site domain of a 

major pollen allergen. The novel peptide showed only 75% coverage as the N-terminal 

end of the peptide resided within the protein, and the C-terminal resided further 

downstream within an intergenic space. However, there was no evidence to support the 

inferred intron from the proteogenomics analysis, which indicated a GT-GC donor-

acceptor site (U2 spliceosome) at positions 4,748,617 to 4,761,824. To see if this 

putative splice site could be identified via a different strategy, the genomic region 

spanning the exon where the N-terminal end of the novel peptide resided was extracted 

up to 20 bp beyond the C-terminal mapped end of the novel peptide, and was given to 

the NetGene2 splice site prediction web server using Arabidopsis thaliana as a model 
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[579]. No donor or acceptor sites matching those predicted by the proteogenomics 

analysis could be found (Appendix File 5.7). Although the intron hints contained a 

number of introns across the region none spanned the entire length of the region where 

the proteogenomics evidence indicated, which suggested that the novel spliced peptide 

was probably a false positive. 
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Figure 5.7 Novel splice annotation 

A novel splice annotation inferred from the novel and unique peptide. The novel peptide could not be 

incorporated into the Augustus gene prediction. Only the genes in the region from the 12Xv2.1 annotation 

led to Augustus gene predictions that were supported by mapped known peptides. There were also no 

introns identified among the intron hints from the RNA-seq evidence that spans the entire range inferred 

by the novel spliced peptide. There are also a number of repeat regions dotted across the length of the 

region. 

5.3.10 Exon boundary annotation 

There were 16 exon boundary annotations identified (Table 5.1), a number of which 

were also identified as gene boundary and reverse strand annotations due to the peptide 

linkage distance including other genes in close proximity, as well as a few novel exons 



 

 171 

identified from different protein isoforms from the same gene. An example of an exon 

boundary annotation was with gene VIT_207s0031g03000, mentioned previously 

containing a translated UTR annotation, with the peptide cluster also part of a larger 

peptide cluster indicating a reverse strand annotation for genes VIT_207s0031g02980, 

VIT_207s0031g02990, and VIT_207s0031g03010 further upstream and downstream. 

The exon boundary annotation for gene VIT_207s0031g03000 and its single protein-

coding transcript was identified on chromosome 7, spanning positions 19,731,614 to 

19,731,721 with an event probability of 100%, and 59 PSMs identifying five novel and 

unique peptides. Using the novel peptides and the current annotation as hints, Augustus 

predicted a new gene model (Figure 5.6 (exon boundary peptide cluster outlined in 

dashed line), and with a sample of 5 of 59 supporting annotated MS/MS spectra in 

Appendix Figure 5.10). 

Performing a BLASTP search against the grape family in NR revealed that all 

the novel peptides matched unnamed protein product (CBI21646.3 with E-value range:  

2E-04 - 8E-20), with 100% query coverage and identity, described as containing a 

RuBisCo large chain domain, which is in agreement with the findings from the 

translated UTR event described previously for the same gene. The reference protein and 

Augustus gene prediction matched unnamed protein product (CBI21646.3) and 

hypothetical protein (CAN63541.1), respectively, as described previously in Section 

5.3.8 for a translated UTR annotation. 

Another interesting exon boundary annotation was for gene 

VIT_206s0004g04440 and its single protein-coding transcript, with the peptide cluster 

also indicating a gene boundary annotation for genes VIT_206s0004g04410, 

VIT_206s0004g04430 and VIT_206s0004g04460, as well as a reverse strand 

annotation for genes VIT_206s0004g04420, VIT_206s0004g04450 and 

VIT_206s0004g04470, due to the peptide linkage distance and close proximity of these 
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genes around gene VIT_206s0004g04440. This annotation was identified on 

chromosome 6 spanning positions 5,401,503 to 5,401,583, with an event probability of 

99.999% and 12 PSMs identifying 2 novel and unique peptides. Using the novel 

peptides and current annotation as hints, Augustus predicted a new gene model (Figure 

5.8, and with 12 supporting annotated MS/MS spectra in Appendix Figure 5.11). 

Performing a BLASTP search against the grape family in NR revealed that the 

novel peptides matched osmotin-like protein (XP_002281193.1 with E-value range: 2E-

19 – 2E-22), with 100% query coverage and identity. The reference protein also 

matched osmotin-like protein (XP_002281193.1 with E-value = 0.0), with 91% query 

coverage and 100% identity and the Augustus gene prediction also matched osmotin-

like protein (XP_002281193.1 with E-value = 0.0), with 94% query coverage and 100% 

identity. The revised gene prediction showed an improvement on the original gene 

prediction of 3% coverage, extending the original exon 1 and merging it with exon 2. In 

addition, the identified osmotin-like protein was also supported by EST and mRNA 

evidence on chromosome 6 within the same genomic coordinates as this annotation 

event. 
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Figure 5.8 Exon boundary annotation 

An exon boundary event inferred from the novel and unique peptides. The novel peptides, reference gene 

VIT_206s0004g04440, exon_part (EST and cDNA evidence) hints were incorporated into the Augustus 

gene prediction. The new Augustus gene prediction was also predicted with a spliced region containing 

GT-AG (U2 spliceosome) donor-acceptor sites. However, no intron (RNA-seq) evidence indicated 

splicing across the region indicated by the prediction. 

5.3.11 Frame-shift annotation 

There were 5 frame-shift annotations identified (Table 5.1), a number of which were 

also identified as gene boundary and reverse strand annotations due to the peptide 

linkage distance including other genes in close proximity. An example of a frame-shift 

annotation was with gene VIT_200s1339g00010 and its single protein-coding 

transcript, with the peptide cluster also indicating a gene boundary annotation for gene 

VIT_200s1343g00010 and a reverse strand annotation for genes VIT_200s1338g00010 

and VIT_200s1338g00020, due to the peptide linkage distance. This annotation was 

identified on chromosome Un, spanning positions 38,615,528 to 38,615,653, with an 

event probability of 99.998% and 3 PSMs identifying 2 novel and unique peptides. 

Frame-shift events can also be identified due to incorrect CDS phase. Numerous CDS 

phase were found to be incorrect throughout the 12Xv2.1 annotation and were not 
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solely limited to those identified in the proteogenomics analysis. All CDS phase in the 

genome annotation were subsequently corrected using GenomeTools [542]. The CDS 

phase corrected reference annotation was then used as hints along with the identified 

novel frame-shift peptides using Augustus to improve the predictions and create a new 

gene model (Figure 5.9, and with 3 supporting annotated MS/MS spectra in Appendix 

Figure 5.12). 

Performing a BLASTP search against the grape family in NR revealed the novel 

peptides matched a hypothetical protein (CAN63109.1 with E-value ranges: 2E-07 – 

5E-21), with 100% query coverage and identity, described as containing a Ribonuclease 

T2 domain. The reference protein matched a hypothetical protein (CAN63794.1 with E-

value = 3.3), with 65% query coverage and 50% identity, described as containing a 

retrotransposon gag protein domain. The Augustus gene prediction matched the same 

hypothetical protein as the novel peptides (CAN63109.1 with E-value = 0.0), with 97% 

query coverage and 98% identity. The BLASTP evidence indicated that the original 

reference protein had a poor match to a hypothetical protein, while the revised Augustus 

gene prediction found a significant match to a hypothetical protein, with a good protein 

alignment that included the novel peptides. In addition, the novel peptides and Augustus 

gene prediction both matched exactly the same protein, described as containing a 

Ribonuclease T2 domain implicated in plant leaf senescence, which correlates well with 

the source of the proteomics data, mainly being derived from plant leaf shoot tips. This 

proteogenomics evidence has led to a significant overall improvement to the annotation 

of this gene. 
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Figure 5.9 Frame-shift annotation 

A frame-shift event inferred from the novel and unique peptides. The novel peptides, gene 

VIT_200s1339g00010, exon and exon_part (EST and cDNA) and intron (RNA-seq) evidence were used 

as hints for the Augustus gene prediction. All hints were incorporated into the prediction except for the 

hints from gene VIT_200s1339g00010, which had a CDS region in a different frame (frame -1) than that 

of the novel peptides (frame -2). A region further downstream contained a number of repeats. 

5.3.12 Novel exon annotation 

There were 9 novel exon annotations identified (Table 5.1), with a number also 

identified as gene boundary, reverse strand and translated UTR annotations, due to the 

peptide linkage distance including other genes in close proximity. An example of a 

novel exon annotation was with gene VIT_217s0000g02480, the same peptide cluster 

was also categorised as a gene boundary annotation for genes VIT_217s0000g02470, 

VIT_217s0000g02490 and VIT_217s0000g02500 due to the peptide linkage distance. 

This annotation was identified on chromosome 17, spanning positions 2,264,427 to 

2,264,591, with an event probability of 99.999% and 15 PSMs identifying 3 novel and 

unique peptides. The novel peptides and the reference annotation were then used as 

hints for Augustus gene prediction, resulting in the incorporation of the novel peptides 

into a new gene model with complete removal of the intron (Figure 5.10, and with 15 
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supporting annotated MS/MS spectra in Appendix Figure 5.13). 

Performing a BLASTP search against the grape family in NR revealed the novel 

peptides matched calcium-binding allergen Ole e 8 (XP_010663678.1 with E-value 

ranges: 2E-07 – 2E-15), with 100% query coverage and identity. The reference protein 

matched unnamed protein product (CBI15562.3 with E-value = 2E-97), with 100% 

query coverage and identity, described as containing an EF-hand calcium-binding 

domain. The Augustus gene prediction matched calcium-binding allergen Ole e 8 

(XP_010663678.1 with E-value = 2E-176), with 100% query coverage and identity. 

Overall, the new Augustus gene prediction had a better match to the calcium-binding 

protein when the novel peptides were included and the intron was removed. 
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Figure 5.10 Novel exon annotation 

A novel exon event inferred from the novel and unique peptides. The novel peptides, gene 

VIT_217s0000g02480, exon and exon_part (EST and cDNA) evidence were incorporated into the 

Augustus gene prediction, bridging the two exon/CDS regions in the original prediction into one 

exon/CDS region. 

5.3.13 N-terminal acetylated peptides 

Protein N-terminal acetylation contributes to many functional changes in proteins, from 

signalling, regulation of protein-protein interactions, and transportation of proteins to 

their target, such as embedding in membranes [580]. The identification of any N-

terminal acetylated peptides not at the N-terminal ends of a known protein could 

potentially indicate an over-predicted gene requiring re-annotation, but could also 

indicate an alternative protein isoform with a different translation initiation start (TIS) 

site. 

No N-terminal acetylated peptides were identified from the 133 novel peptides 
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(Table 5.1), however, a total of 192 N-terminal acetylated peptides were identified 

among the known 12Xv2.1 predicted proteins and 80 were identified from 77 high 

confidence proteins (>2 peptides with at least 1 unique). Of the total proteins, 5 shared 

N-terminal acetylated peptides were identified as conflicting with the 12Xv2.1 

annotation (Appendix File 5.8), thus indicating a possible alternative TIS site, while 

none were identified from the high confidence proteins. 

The first of these peptides was shared peptide 

“LQGEAVQDWREIVTYFSYPLR” identified in two different locations: 1) on 

chromosome 4, at positions 19,930,049 to 19,930,316, on gene VIT_204s0023g03370 

with a single protein-coding transcript; and 2) on chromosome 18, at positions 

12,303,451 to 12,304,114 on gene VIT_218s0001g14310 with a single protein-coding 

transcript. The suggestion of an alternative TIS site was not supported by the Augustus 

gene prediction, showing only one protein prediction in agreement with the 12Xv2.1 

annotation, which was true for both predictions on chromosome 4 and 18. An example 

of the mapped peptides including the N-terminal acetylated peptide for chromosome 4 

can be seen in Figure 5.11 (Supported with 1 annotated MS/MS spectrum in Appendix 

Figure 5.14). The N-terminal acetylated peptide was also found to be a spliced peptide 

in both identified locations and the spectral E-value for this identification was ~7.0E-14, 

indicating a significant spectral interpretation. Both proteins were found to share 

extensive sequence homology by Muscle alignment (data not shown). 

Performing a BLASTP search against the grape family in NR, the single protein-

coding transcript from gene VIT_204s0023g03370 was found to match naringenin,2-

oxoglutarate 3-dioxygenase (NP_001268034.1 with E-value = 0.0) on chromosome 4, 

and the single protein-coding transcript from gene VIT_218s0001g14310 was found to 

match flavanone 3-dioxygenase (XP_002275563.1 with E-value = 0.0) on chromosome 

18. Both proteins had their own unique peptides, but both also shared common peptides 
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including the N-terminal acetylated peptide. In addition, both peptides also contained 

unmodified shared peptide “GGFIVSSHLQGEAVQDWREIVTYFSYPLR”, of which 

the N-terminal acetylated peptide was a sub-string, indicating that the N-terminal 

acetylated peptide could have been a representative of an alternative isoform. However, 

the inferred translation initiation codon for both peptide locations on chromosome 4 and 

18 is CAT, which does not appear to be a known alternative translation initiation codon 

in plants [581-584]. In addition, there were no GT-AG, GC-AG (U2 spliceosome) or 

AT-AC (U12 spliceosome) donor-acceptor sites preceding the peptide to use for 

splicing for an initiation codon further upstream. It is possible that other non-AUG TIS 

sites not commonly known of could explain the presence of the N-terminal acetylated 

peptide. Further evidence would be needed to confirm this potential alternative TIS site 

and/or protein isoform, particularly given that the peptide was also identified from 

multiple locations. 
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Figure 5.11 Known N-terminal acetylated peptide on chromosome 4 

The known N-terminal acetylated peptide “LQGEAVQDWREIVTYFSYPLR”, was shown to be a 

spliced peptide. However, there was no other evidence to indicate translation begins with this peptide and 

Augustus did not predict isoforms in agreement with it. The same was true for the peptide on 

chromosome 18, with similarly mapped peptides and gene prediction. 

The second of these N-terminal acetylated peptides in conflict with the 12Xv2.1 

annotation was shared peptide “MDTFLFTSESVNEGHPDK”, identified in three 

different locations: 1) on chromosome 6, at positions 17,979,019 to 17,979,072 on gene 

VIT_206s0061g00500 with a single protein isoform; 2) on chromosome 8, at positions 

18,919,477 to 18,919,530 on gene VIT_208s0007g05000 with two protein isoforms; 

and 3) on chromosome 14, at positions 451,155 to 451,208 on gene 

VIT_214s0060g00480 with four protein isoforms. Only the peptide identified on 

chromosome 6 at positions 17,979,019 to 17,979,072 was, however, in disagreement 

with the 12Xv2.1 annotations. Also, the suggested alternative TIS site was not 

supported by the Augustus gene prediction (Figure 5.12, and with 7 supporting 
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annotated MS/MS spectra in Appendix Figure 5.15). The spectral E-values for this 

identification across the different locations range from 1.0E-12 to 1.0E-15, indicating 

significant MS/MS spectral interpretations. All mapped proteins share a number of 

peptides, including the N-terminal acetylated peptide, and they also share extensive 

sequence homology, as indicated by Muscle alignment (data not shown). 

Performing a BLASTP search against the grape family in NR, the single protein-

coding transcript from gene VIT_206s0061g00500 was found to match S-

adenosylmethionine synthase 1 isoform X1 (XP_002273336.1 with E-value = 0.0) on 

chromosome 6. Protein-coding transcripts from gene VIT_208s0007g05000 matched S-

adenosylmethionine synthase 3 (XP_003632745.1 with E-value = 0.0) on chromosome 

8. The four protein-coding transcripts from gene VIT_214s0060g00480 matched S-

adenosylmethionine synthase 4 (XP_010659744.1 with E-value = 0.0) on chromosome 

14. The inferred translation initiation codon is GTG, and is identified as a non-AUG 

translation initiation codon in Arabidopsis thaliana [583] Rhabdopleura compacta 

[585], Ascidian mitochondria [586] and chloroplasts [587]. There were also no splicing 

acceptor sites prior to the peptide, only an AG beginning 4 bp upstream within an 

already identified intron. Due to the validation of the GTG codon being identifiable as a 

known alternative translation initiation codon in plants, this peptide may indicate an 

alternate TIS and/or isoform. However, due to the presence of the peptide in multiple 

similar proteins in other locations, this annotation will remain ambiguous until further 

evidence can be presented. 
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Figure 5.12 Known N-terminal acetylated peptide on chromosome 6 

The known N-terminal acetylated peptide “MDTFLFTSESVNEGHPDK” resides 2 bp into the second 

exon, following a spliced region and the N-terminal end correlates with a known alternative translation 

initiation codon (GTG). However, Augustus did not predict any alternative protein-coding transcripts in 

agreement with it. 

The third of these N-terminal acetylated peptides in conflict with the 12Xv2.1 

annotation was shared peptide “FMIQTGDPLGDGTGGQSIWGREFEDEFHK”, 

identified on chromosome 6, at positions 19,528,020 to 19,528,106 on gene 

VIT_206s0061g01590 with three protein isoforms. Also, the suggested alternative TIS 

site was not supported by the Augustus gene prediction (Figure 5.13, and with 1 

supporting annotated MS/MS spectrum in Appendix Figure 5.16). The spectral E-value 

for this identification is ~9.0E-13, indicating a significant MS/MS spectral 

interpretation. 

Performing a BLASTP search against the grape family in NR the protein-coding 

transcript 1 from gene VIT_206s0061g01590 was found to match unnamed protein 

product (CBI17058.3 with E-value = 0.0), transcript 2 was found to match peptidyl-

prolyl cis-trans isomerase CYP71 (XP_010651713.1 with E-value = 0.0) on 
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chromosome 6, and transcript 3 was found to match a hypothetical protein 

(CAN66191.1 with E-value = 0.0). No other known peptides were found to map to gene 

VIT_206s0061g01590 and the N-terminal acetylated peptide was only identified from 1 

PSM. The inferred translation initiation codon is GGC, however it does not appear to be 

a known alternative translation initiation codon in plants [581-584]. There was also no 

splicing acceptor site, intron region directly prior to the peptide, or intron region 

supported by the hints, only an AG motif beginning 4 bp upstream. There was only 

supporting exon evidence indicating further sites of translation upstream. Although the 

evidence in support of this possible alternative TIS site/protein isoform is lacking, it is 

possible that other non-AUG TIS sites not commonly known of could explain its 

presence. Therefore, more evidence is required, such as in the form of more supporting 

peptides mapped to the gene and preferably with at least 1 unique peptide identified 

from more than 1 PSM, to remove any ambiguity with the identification as well as any 

further EST, cDNA and RNA-seq evidence. 
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Figure 5.13 Known N-terminal acetylated peptide on chromosome 6 

The known N-terminal acetylated peptide “FMIQTGDPLGDGTGGQSIWGREFEDEFHK” was located 

in the middle of one of the exons. However, there was no other evidence to indicate translation begins 

with this peptide, no known translation initiation codon or splice acceptor sites prior to the peptide, and 

Augustus did not predict any protein-coding transcripts in agreement. 

The fourth of these N-terminal acetylated peptides in conflict with the 12Xv2.1 

annotation was shared peptide “ANAASGMAVHDDCK”, identified in three different 

locations: 1) on chromosome 6, at positions 5,236,863 to 5,236,904 on gene 

VIT_206s0004g04280, protein-coding transcript 2; 2) on chromosome 8, at positions 

14,331,406 to 14,331,447 on gene VIT_208s0040g03360, protein-coding transcripts 3 

and 4; and 3) on chromosome 13, at positions 2,558,362 to 2,558,403 on gene 

VIT_213s0019g00550, protein-coding transcripts 1, 2 and 3. However, only the peptide 

identified on chromosome 8 at positions 14,331,406 to 14,331,447 was in disagreement 

with the 12Xv2.1 annotations. Also, the suggested alternative TIS site was not 

supported by the Augustus gene prediction (Figure 5.14, and with a sample of 5 of 23 

supporting annotated MS/MS spectra in Appendix Figure 5.17). The spectral E-values 

for this identification across the different locations range from 2.0E-12 to 5.0E-20, 

indicating significant MS/MS spectral interpretations. All mapped proteins share a 
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number of peptides, including the N-terminal acetylated peptide, but none were unique 

which made it impossible to determine if any one or all of them were being expressed 

due to the protein inference problem. In addition, the proteins shared extensive 

sequence homology, as indicated by Muscle alignment (data not shown). 

Performing a BLASTP search against the grape family in NR, protein-coding 

transcript 2 for gene VIT_206s0004g04280 matched actin-depolymerizing factor 2 

(XP_002284292.1 with E-value = 3.0E-100), on chromosome 6. The protein-coding 

transcripts 3 and 4 from gene VIT_208s0040g03360 both matched actin-

depolymerizing factor 1-like (XP_002273958.2 with E-value = 6.0E-138 and 4.0E-99, 

respectively) on chromosome 8. Protein-coding transcripts 1, 2 and 3 from gene 

VIT_213s0019g00550 all matched actin-depolymerizing factor 2-like isoform X1 

(XP_002284029.1 with E-value = 5.0E-100) on chromosome 13.  

Preceding the N-terminal acetylated peptide on chromosome 8 at positions 

14,331,406 to 14,331,447 the inferred initiation codon was CAG, but it does not appear 

to be a known alternative translation initiation codon in plants [581-584]. However, it is 

possible that other non-AUG TIS sites not commonly known of could explain its 

presence. The presence of the peptide could also be explained through the identification 

of AUG translation initiation codons found through splicing. There is a GT-AG or GC-

AG (U2 spliceosome) donor-acceptor site within an already identified intron prior to the 

peptide, with the acceptor AG at position 14,331,404, and further upstream at position 

13,330,577 for GC, and position 13,330,051 for GT. Although the evidence suggested 

that this could lead to an alternative initiation codon since the peptide is backed up by 

23 PSMs, each with significant spectral E-values and potential donor acceptor sites for 

5’ Methionine capping, the peptide could also simply be identified due to the expression 

of the other proteins making the N-terminal acetylated peptide the most abundant form. 

As any one protein could not be identified as being expressed over the others due to the 



 

 186 

protein inference problem, further evidence is needed before claiming it as an 

alternative TIS site/protein isoform. 

Figure 5.14 Known N-terminal acetylated peptide on chromosome 8 

The known N-terminal acetylated peptide “ANAASGMAVHDDCK” was located at the start of the 

second CDS in 2 out of the 4 protein-coding transcripts. There were no known initiation codons prior to 

the peptide, however there was an AG acceptor site and two possible GT or GC donor sites further 

upstream. In addition, these peptides were shared with other similar proteins in the genome, which had 

annotations in agreement with the N-terminal acetylated peptide. Augustus did not predict any isoforms 

for this gene given the exon, exon_part and intron extrinsic hints. Taken together, this indicated that the 

inferred alternative isoform and TIS site for this gene was ambiguous, requiring further evidence. 

The fifth and final N-terminal acetylated peptide in conflict with the 12Xv2.1 

annotation was shared peptide “ALPNQQTVDYPSFK” identified in four different 

locations: 1) on chromosome 4, at positions 4,517,741 to 4,517,782, on gene 

VIT_204s0008g05020, protein-coding transcript 1; 2) on chromosome 4, at positions 

4,522,707 to 4,522,748 on gene VIT_204s0008g05030, protein-coding transcript 1; 3) 

on chromosome 9, at positions 5,754,839 to 5,754,880 on gene VIT_209s0002g05940, 

with a single protein-coding transcript; 4) on chromosome 11, at positions 4,088,884 to 

4,088,925 on gene VIT_211s0016g04780, with a single protein-coding transcript. Only 
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the peptide identified on chromosomes 9 and 11 at positions 5,754,839 to 5,754,880 and 

4,088,884 to 4,088,925, respectively, were in disagreement with the 12Xv2.1 

annotation. The suggested alternative TIS site was not supported by the Augustus gene 

predictions, showing only one isoform prediction for each gene region in agreement 

with the 12Xv2.1 annotation. An example of the mapped peptides for chromosome 9, 

including the N-terminal acetylated peptide, can be seen in Figure 5.15 (Supported with 

2 annotated MS/MS spectra in Appendix Figure 5.18). The spectral E-values for this 

identification ranged from 6.0E-13 to 6.0E-14, indicating a significant MS/MS spectral 

interpretation. All mapped proteins shared a number of peptides, including the N-

terminal acetylated peptide, but none were unique, making it impossible to determine if 

any one or all of them were being expressed due to the protein inference problem. The 

proteins additionally shared extensive sequence homology, as indicated by Muscle 

alignment (data not shown). 

Performing a BLASTP search against the grape family in NR, protein-coding 

transcript 1 from gene VIT_204s0008g05020 found a match to GTP-binding nuclear 

protein Ran-3-like (XP_002284967.1 with E-value = 3.0E-167) on chromosome 4. 

Protein-coding transcript 1 from gene VIT_204s0008g05030 matched GTP-binding 

nuclear protein Ran-3-like (XP_002284971.1 with E-value = 2.0E-167) on chromosome 

4. Protein-coding transcript 1 from gene VIT_209s0002g05940 matched GTP-binding 

nuclear protein Ran-3-like (XP_002285307.2 with E-value = 0.0) on chromosome 9, 

and protein-coding transcript 1 from gene VIT_211s0016g04780 matched GTP-binding 

nuclear protein Ran-3-like (XP_002285018.2 with E-value = 0.0) on chromosome 11. 

Preceding the N-terminal acetylated peptide on chromosome 9 and 11 at 

positions 5,754,839 to 5,754,880 and 4,088,884 to 4,088,925, respectively, the inferred 

translation initiation codon in each case was TAG, located within the intron, but this is a 

stop codon not an initiation codon, and does not appear to be a known alternative 

http://www.ncbi.nlm.nih.gov/protein/225430204?report=genbank&log$=prottop&blast_rank=1&RID=BRKY7574016
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translation initiation codon in plants [581-584]. However, it is possible that other non-

AUG TIS sites not commonly known of could explain its presence. The presence of the 

peptide could also be explained through the identification of an AUG translation 

initiation codon found through splicing. For chromosome 9 there was a GT-AG (U2 

spliceosome) donor-acceptor site within an already identified intron, with the GT donor 

site at position 5,754,701 and the AG acceptor site at position 5,754,837. Similarly, on 

chromosome 11 there was a potential GT donor site at position 4,088,830 and at 

position 4,088,684. The evidence suggested that this could lead to an alternative 

initiation codon, with 2 PSMs, significant spectral E-values, and likely donor-acceptor 

sites for 5’ Methionine capping. However, the peptide could also be derived from the 

other two proteins where the N-terminal acetylated peptide agreed with the annotation. 

Any one protein cannot be identified as being expressed over the others due to the 

protein inference problem, with no proteins identified from any unique peptides to 

pinpoint the most likely expressed protein candidate. Further evidence is therefore 

needed before claiming this as an alternative TIS site/protein isoform. 
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Figure 5.15 Known N-terminal acetylated peptide on chromosome 9 

The known N-terminal acetylated peptide “ALPNQQTVDYPSFK” was located at the start of the second 

CDS. There appeared to be no known initiation codons prior to the peptide, however there was an AG 

acceptor site at position 5,754,837 and a GT donor site at position 5,754,701. In addition, these peptides 

were shared with other similar proteins in the genome that have annotations in agreement with the N-

terminal acetylated peptide. Augustus did not predict any other protein isoforms for this gene, given the 

extrinsic evidence (exon, exon_part and intron hints). Taken together, this indicated that the inferred 

alternative TIS site/protein isoform for this gene was ambiguous and so required further evidence. The 

same was true for the corresponding peptide on chromosome 11, with similarly mapped peptides and 

prediction. 

From the 5 shared N-terminal acetylated peptides that appeared to conflict with 

the 12Xv2.1 annotation, there was no conclusive evidence, except for peptides 

“ALPNQQTVDYPSFK” and “ANAASGMAVHDDCK”, which could possibly be 

accounted for due to nearby splicing donor and acceptor sites, and peptide 

“MDTFLFTSESVNEGHPDK” which had a known alternative translation initiation 

codon at its N-terminal end. However, due to the protein inference problem and with no 

unique peptides identified to unambiguously identify the most likely protein the N-

terminal acetylated peptides are derived from, further evidence would be needed. 

Interestingly, all 5 shared peptides lacked their 5’ Methionine cap at their N-terminal 

most-end, which 1) indicates that N-terminal Methionine Excision (NME) [248] has 
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likely occurred and 2) that there may be other peptides with retained 5’ Methionine caps 

which are unable to be identified through the current proteogenomics methodology. 

Revisiting the analysis in the future, by generating further MS/MS spectral 

datasets selected only for peptides from the N-terminal end of proteins using N-

terminomics [452], could improve the coverage at the N-terminal end. Particularly in 

combination with multiple replicates and proteases to reduce the ambiguity of which 

protein the N-terminal peptide is represented from, and which could identify non-AUG 

translation initiation codons as well as a variety of non-acetylated N-terminal peptides. 

To account for peptides with a retained 5’ Methionine cap, an additional protein sample 

could be digested, followed by N-terminal peptide enrichment with an addition of 

Methionine aminopeptidase to cleave all N-terminal most Methionine residues in vitro. 

The peptides could then be mapped to their genomic locations and compared to the 

untreated sample. In addition, methods from a proteomics-only context could be applied 

to resolve the protein inference problem, and help with validating the N-terminal end of 

the known proteins, such as those outlined in Section 2.3.7, listed in Table 2.6 and 

further discussed in Section 2.3.9. 

The use of N-terminomics and how best to resolve the protein inference problem 

in proteogenomics remains an open problem. At this time only complete coverage 

through strategies such as top-down proteomics can possibly resolve the ambiguities 

from the protein inference problem to confidently identifying the N-terminal end of 

putative proteins in a proteogenomics analysis. 

5.3.14 Impact of search space 

As highlighted in Section 2.4.2 the search space can have an impact on the sensitivity of 

a proteogenomics search, which was more pronounced in this study due to the larger 

search space of the grape genome. To improve the sensitivity of identifications two 
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different searches using 2.0 Da and 3.0 Da precursor mass tolerances were used, 

however the impact of the inflated search space was still evident using the combined 

FDR strategy. A total of 2,773 out of 55,373 proteins from the 12Xv2.1 annotation were 

identified during MS/MS database searches using MS-GF+, while the total number of 

mapped proteins was 7,536. Of these, 1,117 high confidence proteins had ≥2 peptides 

with 1 unique peptide (Table 5.1). When the same search was conducted against only 

the 12Xv2.1 protein predictions, combining the raw results from the 2.0 Da and 3.0 Da 

database searches, a total of 5,795 proteins were identified. Comparisons between 

proteomics- and proteogenomics-only searches revealed a loss of 3,022 proteins out of 

5,795 or a loss of 52%, which would also infer a significant loss to novel identifications. 

This was significantly higher than the 30% loss found in Section 4.3.13 or outlined in 

previous studies [81, 324, 439], due to the larger sized genome of V. vinifera of 487.1 

Mbp, compared to Arabidopsis thaliana with a genome size of 135 Mbp or 

Bradyrhizobium diazoefficiens with a genome size of 9.1 Mbp. This trend in the loss of 

sensitivity would most likely continue to increase as the genome size increased. This 

subject is addressed later in Chapters 6 and 7, by taking a different approach to MS/MS 

database searching and applying different FDR filtering approaches to improve known 

and novel peptide identification rates and to better discriminate between true and false 

positives. 

5.4 SUMMARY 

This study highlighted a number of advantages, as well as a few caveats in the course of 

conducting proteogenomics analysis, and which has provided a good example of how to 

bring different legacy –omics datasets (e.g. genomics, proteomics and transcriptomics) 

together for the genomic annotation of Vitis vinifera (grape). The proteogenomics 

analysis identified 133 novel peptides contributing to 341 novel annotation events (103 

exclusively), consisting of 5 frame-shifts, 37 translated UTRs, 16 exon boundaries, 1 
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novel splice, 9 novel exons, 160 gene boundaries (24 exclusively), 112 reverse strands 

(10 exclusively) and 1 novel gene event in a total of 216 genes (67 exclusively) and 326 

proteins (101 exclusively). 

Among these annotations, 110 novel peptides directly led to 57 predicted proteins 

via Augustus gene prediction. Through the identification of these annotation events a 

possible over-assembly of the genome was identified, putatively resulting from the 

incorporation of non-nuclear reads into the nuclear chromosome assemblies. In 

addition, a large proportion of the CDS phase throughout the 12Xv2.1 annotation were 

recognised as incorrect, and subsequently corrected for gene prediction. The methods 

employed in this study have identified improvements as well as gaps in the 

understanding of proteogenomics approaches. Specifically, the selection of multiple 

precursor mass tolerances for low-accuracy MS/MS spectra, with an aggregation of 

results, improved coverage, and that using the combined FDR strategy to conduct 

proteogenomics significantly reduced the sensitivity, particularly as the genome size 

increased. This finding indicates a need for a proteogenomics approach with more 

refined control on the search space and FDR filtering stage of analysis. This 

requirement could be achieved by segregating and reducing the search space to only 

necessary sequences for more sensitive identification of novel and known peptides and 

to provide better discrimination between true and false positives, as well as potentially 

reducing the post-processing overhead. 

5.5 CONCLUSIONS 

The present study was able to identify a significantly larger number of proteogenomics 

annotation events than previously reported in Chapman et al [8], by using an improved 

methodology with larger and more diverse datasets. However, the loss in sensitivity due 

to a proteogenomics search continued to be a problem, resulting in a loss of 52% of 
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known proteins when using a combined FDR strategy. The inclusion of a splice graph 

derived from a large RNA-seq dataset contributed to the exclusive identification of 15 

peptides identified in multiple annotation events, however only 1 novel splicing event 

was identified, which was proven to be a false positive and was not incorporated into 

the Augustus gene predictions. As previously demonstrated in Chapter 4, clustering 

MS/MS spectra and selecting the most appropriate precursor mass tolerances proved 

effective for selecting efficient parameters for proteogenomics searches. Applying 

multiple (2.0 Da and 3.0 Da) precursor mass tolerances, and merging the results, proved 

effective at improving the identification rate of PSMs when the mass accuracy of the 

MS/MS spectra was low. 

Annotation events in this study were screened by searching the identified novel 

peptides against NR, manually looking for identifications in known proteins located in 

the same genomic coordinates. Although this approach improved specificity and 

sensitivity, combined with the event probability, it also had a negative impact on 

throughput. Different strategies are needed when identifying outliers from the applied 

event probabilities to determine effective event probability thresholds, in the absence of 

a method to determine the annotation event FDR. These could take the form of 

improving throughput by using automated processes to interrogate unique peptide 

matches found from entries in NR. Or, for example, by increasing the stringencies of the 

match, such as only considering matches of unique peptides with 100% identity and 

coverage to highly curated entries in protein repositories such as RefSeq protein, and 

possibly removing the manual component to analysis entirely by automating checks in 

GenBank entries for genomic coordinates and orthogonal evidence. In addition, 23 

accepted novel peptides could not be included into the predictions. This posed some 

questions: were there any novel peptides included which should not have been 

included? And how could peptides such as these be excluded from peptide clusters and 
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annotation events to prevent similar situations in the future? One possible solution could 

be to apply further filtering steps when selecting novel peptides for inclusion into 

peptide clusters and annotation events using additional sources of evidence. Scenarios 

of this nature should be considered in future versions of the Enosi tool. 

Another caveat of the analysis was the use of a fixed peptide linkage distance 

that resulted in some annotation events being incorrectly categorized, as was previously 

illustrated as a problem in Section 4.3.4. This highlights a need to determine the peptide 

linkage distance for each peptide cluster dynamically. For example, by determining the 

likely distribution and size of genes in the local region and using machine-learning 

approaches, as well as assigning annotation events based on other additional evidence; 

such as known peptide evidence within the same gene being annotated or genes in close 

proximity, particularly those with the same frame located within close proximity. Any 

conflicts between the novel and known peptides from overlapping ORFs, could be 

resolved using parsimony of known versus novel peptides. This approach could remove 

much of the manual interpretation and validation of the annotation events required 

throughout analysis and would also improve the accuracy when assigning annotation 

event types, as well as when applying appropriate event probability thresholds, which 

could, as a result reduce the occurrence of false positive annotation events and 

predictions. 

 In addition, the Enosi tool did not automatically cater for some annotation 

events, such as over-predicted genes. These types of annotation events could be 

identified by N-terminal acetylated peptides located within the gene region not in 

agreement with the TIS site. This is difficult to interpret, primarily due to the protein 

inference problem, however the identification of proteins in the genome containing a 

unique N-terminal acetylated peptide could be used to unambiguously confirm the 

presence of such peptides to correct the annotation, given that the unique status of the 
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N-terminal peptide was accurate. Conversely, the identification of these N-terminal 

acetylated peptides could be used to validate the start sites of already known proteins, as 

was demonstrated in this study. However, it was also found that no TIS sites in the 

known proteins could be confidently identified and so a time-consuming manual 

approach was required. An approach of this type could feasibly be automated to 

improve throughput and could be integrated into the Enosi tool, potentially by 

identifying only unique N-terminal acetylated peptides to avoid ambiguity. A further 

means to resolve the identification of N-terminal acetylated peptides could be to 

perform a proteomics-only analysis and resolve the protein inference problem using 

approaches and tools like those listed in Table 2.6. Another alternative method could be 

to enrich for N-terminal peptides employed in methods such as N-terminomics [452]. 

A problem which became apparent during the analysis was the post-processing 

of large sets of results through the combined FDR strategy, requiring the merging of all 

results into 4 separate TSV files prior to FDR filtering to allow processing within a 

practical time-frame. However this would have negatively impacted on the accuracies 

of the applied FDR threshold and calculated local FDRs for each PSM, and 

consequently the event probabilities. In future studies, ways to limit this impact could 

be applied, such as improvements to the efficiency of the algorithm for FDR filtering 

and reducing the overall MS/MS spectral dataset and database size prior to FDR 

filtering. The benefits of such an approach would lead to improved sensitivity of the 

database searches and, at the same time reduce the overhead for processing the MS/MS 

spectral datasets and databases, thus enabling the results to be processed together and 

reducing or removing the negative impact of FDR and event probability accuracy. 

This study identified a possible over assembly with the 12X genome assembly. 

Some clues indicating that this was the case was with the large number of the 

unassigned chromosome sequences (ChrUn), fragmented chromosomes and the 
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identification of a number of reference proteins, Augustus gene predictions and novel 

peptides finding significant matches to chloroplast and mitochondrial proteins in NR. 

One convincing example was with a reference protein on chromosome 7, with both the 

original reference protein and the Augustus gene prediction matching significantly to 

ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCo large 

subunit), a highly abundant plant protein predominantly confined to the chloroplast 

genome. This prediction contained a high number of PSMs to both unique/shared novel 

and known peptides and highlighted two problems: 1) the genome was most likely over-

assembled due to the presence of contaminant non-nuclear genomic reads, which would 

have hampered proper assembly, and indicating that contaminant reads should have 

been filtered out prior to assembly (or optimally sequenced after chromosome sorting); 

and 2) the proteomics data, which unavoidably was legacy in nature should have been 

filtered by cell component and/or tissue fractionation prior to MS/MS analysis in order 

to improve the depth and breadth of coverage and also reduce contamination from non-

nuclear derived proteins which potentially contributed to false positive identifications. 

Apart from the issues posed by the possible over-assembly there were many 

revised annotations identified, including corrections to incorrect CDS phases that 

conflicted with the appropriate phase inferred from the reference protein prediction. 

This indicated a possible flaw in the method employed for the original reference 

annotation [7]. 

The proteogenomics annotation of grape should be re-visited in the future with a 

much larger MS/MS spectral dataset, preferably obtained from a higher accuracy mass 

spectrometer, such as an LTQ Orbitrap or QTOF, and with sufficient sampling depth 

and breadth of coverage, that tighter stringencies on MS/MS spectral quality thresholds 

could be afforded with little or no negative impact on overall peptide coverage. Such an 

approach was not feasible in the present study due to the relatively limited MS/MS 
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spectral dataset, which necessitated more careful filtering to prevent significant losses. 

The addition of proteomics data derived from Pinot Noir instead of Cabernet Sauvignon 

would keep the analysis consistent between the proteome and genome. Further RNA-

seq data could also be utilised, spanning other cultivars, for sequence variant 

identification, as previously undertaken [474]. Studies of this type would prove even 

more worthwhile once the question of genomic coverage and suspected over-assembly 

have been addressed, to reduce any spurious identifications. In the meantime, the 

assembly and annotation would benefit greatly from a review and assessment using 

tools such as BUSCO [588] to identify and resolve any caveats moving forward with 

improving the assembly and annotation. 
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6 HUMAN PROTEOGENOMICS 

6.1 INTRODUCTION 

The human genome has been the focus of intense study since it was sequenced in 2001 

[35], followed by the final accepted complete draft published in 2004 [49]. In more 

recent years several large scale studies have revealed more about the human genome, 

with one of these studies being the ENCyclopedia Of DNA Elements (ENCODE) 

project, which redefined genes and their transcription [589], leading to additional 

studies to define the coding, non-coding transcripts, transcriptional regulatory regions 

and more [30, 590]. A sub-project of ENCODE, called GENCODE was tasked with 

manually annotating the genome to identify the protein-coding transcripts. However, 

these transcripts were identified from indirect sources such as ESTs, and protein 

sequences available in repositories such as UniProtKB/SwissProt, which, as outlined in 

Section 2.4, only consists of 5% direct protein sequences. In addition, more than 50% of 

the transcripts that were identified have no protein-coding potential [590], and many 

could not be identified as non-coding RNAs either, leaving their interpretation 

ambiguous. 

 A recent proteogenomics study which sheds some light on the hidden protein-

coding regions of the human genome produced proteomics data from a number of 

different human cell lines, including the ENCODE Tier 1 cell lines K562 and GM12878 

[11], and later followed-up with a focus on GM12878, looking at the maternal and 

paternal genomic sequences from the diploid genome NA12878 [449], with both studies 

using the proteogenomics tool Peppy [591]. 

6.1.1 Outline of this study 

The present study improves upon that of previous work [11, 449], increasing sensitivity 

and identifying previously unidentified refinements to the current annotations, and 

highlights that there is still much room for improvement to highly curated data sets like 
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the human genome. The present study utilizes the MS/MS spectra generated from the 

study in [11], from cell line GM12878, the human genome sequence Hg19 (GRCh37 

patch 13), GENCODE v19 reference annotation and the ENCODE spliced alignment 

results for GM12878, to generate a splice graph database. The latest proteogenomics 

tool Enosi [82] was used to perform the proteogenomics analysis. 

As outlined in Section 2.4.2 the search space during a proteogenomics search can 

be a problem, particularly with larger genomes, and as demonstrated in Chapter 5, even 

with a 487.1 Mbp sized genome such as with Vitis vinifera there can be a loss of up to 

52% when looking at the identified known proteins. In the present study with a 3.3 Gbp 

human genome the loss would be significantly more pronounced. This issue is 

addressed using a two-pass search approach, combined with an improved two-stage 

false discovery rate (FDR) strategy over the more conservative strategy used in [474]. 

This enhanced methodology increases the sensitivity of the search, by optimising the 

search space and applying FDR filtering to discrete known and novel search spaces 

separately to improve the separation between true and false positives. 

6.2 MATERIALS AND METHODS 

6.2.1 Proteomics and genomics datasets 

The human genome assembly (Hg19 (GRCh37 patch 13)) and GENCODE v19 human 

genome annotation, which included the protein predictions and GFF file, were obtained 

from GENCODE, downloaded from the web site 

(http://www.GENCODEgenes.org/releases/19.html) (Appendix File 6.1). 

The MS/MS spectra used in the previous studies [11, 449] were generated from 

ENCODE tier 1 cell line GM12878, which is a lymphoblastoid cell line immortalized 

using Epstein Barr Virus (EBV). Proteins from the GM12878 cell line went through a 

series of processes before MS/MS analysis. The proteins first went through subcellular 

http://www.gencodegenes.org/releases/19.html
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fractionation, GELFREE fractionation [592], filter-aided sample preparation (FASP) 

[593] and finally microwave-assisted tryptic digestion [594] prior to analysis on an LTQ 

Orbitrap Velos mass spectrometer (Thermo Scientific). 

A total of 1,054,278 MS/MS spectra from cell line GM12878 were downloaded 

from The Giddings Lab at Boise State University web site 

(http://giddingslab.org/data/encode/proteome-commons), which in turn were generated 

from different cell component fractions, as outlined in [11]. The cell component 

fractions included cytosol, membrane, nuclear, mitochondria, and a whole cell lysate. 

The cytosol fraction was of poor quality as determined in [11], and was removed from 

that study. However, in the present study all cell component fractions were pooled, 

including cytosol, clustered and quality filtered to improve the overall quality of all 

MS/MS spectra. The benefit of using MS/MS spectra pooled from multiple cell 

component fractions is that it allows for the detection of both low and high abundant 

proteins, improves on the proteome coverage and could potentially increase the novel 

annotation event identification rate. 

As outlined in Section 3.1.1, a source of contaminants was appended to the 

protein sequence predictions from GENCODE v19 before being used in the MS/MS 

database search to identify any contamination. 

6.2.2 RNA-seq datasets 

A source of RNA-seq data to generate a splice graph for proteogenomics analysis was 

used. Instead of obtaining reads from the Sequence Read Archive (SRA) and running 

alignments, alignment results in the form of BAM files from the ENCODE project itself 

were employed. BAM files in the ENCODE project were generated using the spliced 

alignment tool, STAR [127]. The BAM files were obtained from the ENCODE project, 

through NCBI GEO accession GSE30567 and downloaded directly from the University 

http://giddingslab.org/data/encode/proteome-commons
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of California Santa Cruz (UCSC) Genome Bioinformatics web site 

(http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wGENCODECshlLongRnaSeq). 

6.2.3 MS/MS database searching  

The MS/MS database search was performed by MS-GF+, as outlined in Section 3.3. In 

this case study trypsin was used as the protease, the instrument was set to low-res LTQ 

(Ion Trap), and the precursor mass tolerance used was 9.0 ppm, as determined from a 

preliminary MS/MS spectral dataset assessment, detailed below in Section 6.2.4. 

6.2.4 Dataset processing 

The GENCODE v19 protein sequence FASTA file and GFF file required formatting 

into a compatible format for proteogenomics analysis, as outlined in Section 3.4.1. 

The total of 1,054,278 MS/MS spectra obtained for this study were first assessed 

by searching against the known proteome, examining the effects of using MS-Cluster to 

cluster the MS/MS spectra, PepNovo to quality filter the MS/MS spectra, and with an 

assessment of optimal precursor mass tolerances, as outlined in Section 3.4.6. Since all 

the MS/MS spectra were of high-accuracy, derived from an LTQ Orbitrap Velos mass 

spectrometer, this factor needed to be reflected in the search parameters. Therefore, an 

assessment of the optimal precursor mass tolerance was needed using a range of 

tolerances, 0.5, 1.0, up to 10.0 in 1.0 ppm increments, and then up to 100.0 ppm in 5.0 

ppm increments (Appendix File 6.2). 

All BAM files from the ENCODE project for cell line GM12878 were merged 

and used to generate a splice graph FASTA database. A six-frame translation of the 

genome was also generated. The steps involved in the generation of both splice graph 

and six-frame translation are outlined in Sections 3.4.4 and 3.4.5, respectively. 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq
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6.2.5 Proteogenomics pipeline 

The proteogenomics pipeline was used as outlined in Section 3.5, with an included two-

pass search approach, combined with an improved two-stage FDR strategy, which 

reduced the database size and applied discrete 1% peptide-spectrum match (PSM) FDRs 

to the separate known and novel search spaces. This greatly improved the 

discrimination between true and false positives and thus improved on the number of 

known and novel PSMs identified. After a preliminary assessment of the MS/MS 

spectra, as outlined previously in Section 6.2.4, the choice of clustering the MS/MS 

spectra and quality filtering to a PepNovo score threshold of 0.01 was decided, resulting 

in 613,432 clustered MS/MS spectra, and it was determined that the optimal precursor 

mass tolerance was 9.0 ppm. 

The total 613,432 MS/MS spectra were then split into separate MGF files of 

20,000 MS/MS spectra each, using an in-house MGF splitting tool, before running each 

MS/MS spectral file through MS-GF+ on a cluster against the known proteome, six-

frame translation and splice graph, using the two-pass search approach and then the 

improved two-stage FDR strategy as outlined in Section 3.5.1 and 3.5.2, respectively. 

The improved two-stage FDR strategy was applied in this study, as outlined in 

Section 3.5.2 and illustrated in Figure 3.1, to see how it could improve on the 

identification rate in comparison to the more conservative strategy in [474] and the 

more traditional combined FDR strategy. All three methods were compared in this 

study. For the conservative two-stage FDR strategy all MS/MS spectra identified as 

matching the known proteome and protein contaminants were removed. The remaining 

MS/MS spectra, now considered ‘novel’, were then searched against the 

proteogenomics search space, after which the now novel PSMs had a 1% PSM FDR 

applied. With the combined FDR strategy all MS/MS spectra identifying PSMs in both 

the known proteome and proteogenomics search space were used together and all 
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results were merged across 2 TSV files due to the processing limits on large result files 

(See Section 3.5), before a 1% PSM FDR was applied to both resulting TSV files 

(Appendix File 6.3). 

 The choice of parameters for the proteogenomics pipeline, as outlined in Section 

3.5, included a minimum event probability for novel genes, distal events and proximal 

events of 90%, a peptide linkage distance of 150,000 bp representing ≥95% of gene 

sizes in GENCODE v19, a minimum cluster size of 1, and a minimum of 1 unique 

peptide per cluster. 

 The annotation events were further screened, as mentioned in Section 3.5, 

however a number of differences were incorporated.  In Chapter 5, many of the 

accepted annotation events were heavily biased on sequence homology results, and 

manual visual inspection possibly led to higher false positive rates due to human error. 

In the present study novel genes and distal events were first screened with ≥2 unique 

peptides and/or ≥99.9% event probability and proximal events were filtered with an 

event probability of ≥99.8%. Any outliers, such as those derived from single and unique 

peptide annotation events were identified through BLASTP searches against the human 

curated protein repository NCBI RefSeq protein with support from known mapped 

peptides to the genes annotated, particularly for proximal events where the known 

peptides mapped to the same ORF as the novel peptide and spectral counts were also 

often an indication of a likely real annotation event that showed correlation with the 

event probability. In this study, to improve throughput of screening the outlier single 

unique peptide annotation events, the results from sequence homology searches to 

human proteins in RefSeq protein entailed acceptance of matches with 100% query 

coverage and a maximum of 2 mismatches with an E-value of at least 1E-03. 
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The investigation of a number of annotation events in Section 6.3 uses BLASTP 

searches against NCBI NR to broaden the range of evidence supporting the annotation 

during the discussion. Venny (http://bioinfogp.cnb.csic.es/tools/venny/) was used within 

this chapter to illustrate Venn diagrams of identified peptides across different methods. 

6.2.6 Improving gene predictions 

Once the novel annotations were filtered and reviewed the gene prediction tool 

Augustus [102] was used to improve the overall gene models of GENCODE v19. No 

training of Augustus was carried out in the present study, with only the available human 

gene model used from Augustus version 3.02. The novel annotations and GENCODE 

v19 annotations were used as hints for Augustus gene prediction, along with repeat 

region hints generated from the genome using RepeatMasker [576]. The Augustus gene 

prediction tool was then run using parameters as outlined in Section 3.5.3, except that 

only the novel peptides, GENCODE v19 gene models and repeats were used as hints. 

6.3 RESULTS AND DISCUSSION 

The present study outlined improvements to the GENCODE v19 annotation of Homo 

sapiens, demonstrating the benefits that proteogenomics presents by integrating the 

different –omics platforms used from the ENCODE project to contribute to human 

genome annotation and identifying 617 (126 exclusively) novel annotation events. The 

study also improved on the proteogenomics findings from the ENCODE project, by 

using a two-pass search approach with improved two-stage FDR strategy, and which 

was directly compared to previous methods: the combined FDR and ‘conservative’ two-

stage FDR strategy. The improved methodology is particularly useful for larger 

genomes that are accompanied by a reduced sensitivity and a higher false positive rate 

due to their larger proteogenomics search space. 

http://bioinfogp.cnb.csic.es/tools/venny/
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6.3.1 Evaluation of pre-processing MS/MS spectra 

Prior to running the proteogenomics pipeline, the MS/MS spectra were evaluated for the 

optimal pre-processing strategy and precursor mass tolerance (Appendix File 6.2). All 

1,054,278 MS/MS spectra were clustered by a factor of 1.54. It was found that 

clustering reduced the peptide FDR after an initial 1% PSM FDR filtering from 4.5% 

peptide FDR to 2.4% peptide FDR and reduced the protein FDR from 25.7% to 13.9% 

(Appendix Figure 6.1A-C). As can be seen in Appendix Figure 6.1A, the number of 

total MS/MS spectra lost after quality filtering can range from 3.2% at the lowest end to 

67.8% at the most stringent cut-off. Applying scores between 0.05 – 0.1, recommended 

by PepNovo (detailed in the Help File bundled with the tool), resulted in around 32.5% 

to 49.6% of the MS/MS spectra being lost, however at a score of 0.01 only 10.3% of 

MS/MS spectra were lost while maintaining a peptide FDR of ~2%, as well as retaining 

many PSMs and unique peptides that were lost when using a higher score than 0.01 

(Appendix Figure 6.1D-E). With higher losses in MS/MS spectra there was a reduced 

number of PSMs and unique peptides reported, and there was only negligible 

improvement in peptide FDR. This observation indicated that the dataset was not 

improving but was losing valuable MS/MS spectra, which could be used to identify 

novel proteogenomics annotations. 

 The results indicated that a clustered MS/MS spectral dataset with a PepNovo 

quality filtering score cut-off of 0.01 was most suitable for further proteogenomics 

analysis, as it resulted in the best balance between keeping the maximum number of 

PSMs and filtering out poor quality MS/MS spectra. 

6.3.2 MS/MS database search parameter optimization 

As outlined in Section 3.4.6 high-accuracy MS/MS spectra are well suited to precursor 

mass tolerance optimization since tighter tolerances often improve the sensitivity of 

PSM identification. This observation also held true for the present study as high-
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accuracy MS/MS spectra were obtained, generated from an LTQ Orbitrap mass 

spectrometer. 

 A clustered set of MS/MS spectra, quality filtered to a PepNovo score of 0.01, 

was used to assess the precursor mass tolerances over a range, as outlined in Section 

6.2.4 (Appendix File 6.2). It was determined from this analysis that 9.0 ppm was the 

optimal precursor mass tolerance to use (Appendix Figure 6.2). After ≤1% PSM FDR 

filtering the maximum number of PSMs obtainable was 97,930 at 9.0 ppm, while the 

peptide FDR was 2.13%. 

6.3.3 Proteogenomics pipeline 

A proteogenomics pipeline was customised using Enosi with MS-GF+, as outlined in 

Section 3.5 and illustrated in Figure 3.1. The pipeline included a two-pass search 

approach with improved two-stage FDR strategy by applying FDR filtering to the 

known and novel search spaces separately. This step reduced the search space and 

improved sensitivity and discrimination between true and false positives. 

The two-pass search approach with improved two-stage FDR strategy reduced 

the overall database size, and as a result the TSV file sizes were significantly reduced in 

size. In addition, the TSV files were split between the known identifications and the 

novel identifications, with a 1% PSM FDR applied to each. This change improved the 

accuracy of the FDR, since the results from the known search space and novel search 

space were aggregated in a separate TSV file for known and novel results as they have 

widely different false positive rates. 

The choice of key variables for the proteogenomics pipeline were chosen as they 

have been in preceding chapters. The peptide linkage distance was chosen based on the 

size of ≥95% of genes in the current genome annotation, which was found to be 150,000 

bp. As previously discussed in Section 5.3.6, the use of a fixed peptide linkage distance 
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across the entire genome brings with it the caveat that it inflates the number of gene 

boundary and reverse strand events, thus requiring manual validation and negatively 

impacting throughput, and which could lead to ambiguity with overlapping annotation 

event types. This ambiguity could also in turn lead to an increased false positive rate 

when applying event probability thresholds across the different annotation event types. 

This possibility becomes more of a problem in human, as the peptide linkage distance 

used is the largest used so far within this thesis. Therefore, how the peptide linkage 

distance is defined in Enosi needs to be addressed in future versions of the tool. Until a 

solution is reached manual screening and interpretation of the annotation events and 

also by exclusively assigning peptide clusters to annotation events to negate the impact 

of large peptide linkage distances is necessary to come to a closer value for the true 

number of different annotation event types, as well as the number of genes and proteins 

with inferred annotations. 

 Contamination was not an issue in this study, compared to Chapter 5 and the 

grape genome, where there may have been over-assembly of the genome, with 

chloroplast and mitochondrial reads inadvertently incorporated into the assembly. In 

this study there were no such findings, as would be expected from the human genome, 

which has benefitted from over a decade of sequencing and rigorous manual curation on 

an international level. Additionally, the mitochondrial genome was available in 

GENCODE v19, allowing for a known proteome target for any mitochondrial peptides 

that might have inadvertently been identified as novel within nuclear chromosomes by 

chance in its absence. Also, with the peptide mass spectrometry data being of higher 

accuracy, more specific matches with less error was possible. Additionally, the data 

were generated with proteogenomics in mind and cellular component fractionation 

carried out, thus improving coverage and allowing for the identification of some 
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proteins, which could have otherwise been masked by more abundant proteins from 

other cellular compartments. 

 Further screening of novel events was performed by accepting annotation events 

with high parsimony of unique peptides and/or more stringent event probabilities, with 

any outliers of single unique peptides identified by searching the unique peptides 

against well-curated human RefSeq protein database. This step provided a streamlined, 

faster and more confident approach, compared to screening each annotation event by 

manually checking against a combination of NR, RefSeq protein and SwissProt 

databases that may have resulted in human error. Although the matches were not 

rigorously validated against orthogonal evidence and genomic locations in GenBank, 

the majority of identifications via this method were also found with higher event 

probabilities and parsimony, including those annotation events already accepted at 

higher stringencies. To highlight that the applied method was a valid approach, several 

random annotation events were confirmed manually by checking the GenBank record to 

confirm that the genomic coordinates were often the same, in agreement with the 

proteogenomics analysis (Appendix File 6.3). This proved a viable approach in the 

present study to improve throughput and apply some control on FDR, although there 

was no way to determine how effective it was at the annotation event level as the tools 

to determine the annotation event FDR were not available. However, a more rigorous 

approach could be undertaken by automatically downloading and then screening the 

GenBank records after each BLASTP search to check for orthogonal evidence and 

genomic coordinates to back up the claims from each of the single unique peptide 

annotation events. The final minimum event probabilities after annotation event filtering 

were 99.986% for novel genes, 95.616% for distal events, and 98.237% for proximal 

events. 
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Similar but more powerful methods that could improve the rate of annotation 

event identification and validation could be achieved by spectral library searching to 

validate the identified novel MS/MS spectra, by searching against an already curated 

spectral library using tools such as Tremolo [397]. Which would have much more 

sensitive and specific matches than performing BLASTP searches, or as was previously 

suggested using spectral archives [398]. The spectral archives approach proposes a 

public repository of clustered MS/MS spectra that gradually improves as the public add 

further MS/MS spectra. This resource could then be used to validate annotation events, 

as well as identify truly novel annotation events when an annotation event finds no 

matching or weakly matching MS/MS spectra. These approaches use the MS/MS 

spectra to identify spectrum-spectrum matches (SSMs), which have much higher 

specificity compared to PSMs used in conventional database searches against 

sequences, which often lead to ambiguous identifications depending on the contents of 

the sequence database being searched (e.g. misidentifying variant sequences as 

containing post-translational modifications (PTMs)). 

 As was identified in previous chapters, a source of false positives can be the 

actual MS/MS spectra used in the analysis. For this analysis MS/MS spectra were 

derived from tier 1 cell line GM12878 that was immortalized using EBV. Genetic 

differences between GM12878 and GENCODE v19 may lead to numerous variant 

peptides interpreted from the MS/MS spectra which could further be misinterpreted as 

containing PTMs during the proteogenomics analysis, or lead to the identification of 

novel peptides in locations where none exist. A viable way to account for these variant 

peptide sequences, which may inadvertently lead to false positive identifications, is to 

perform variant call analysis using the same ENCODE alignment results, as previously 

demonstrated [474], to generate variant peptides that could contribute to the splice 

graph. This step could also produce some interesting insights into the genetic changes 
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occurring in GM12878 in becoming an immortalized cell line. However, the approach 

only became known late in the study and was not pursued, but could be re-visited in 

future studies. 

6.3.4 Proteogenomics analysis 

Using the two-pass search approach with improved two-stage FDR strategy, a total of 

593 novel peptides were identified with an event probability of ≥90%, at least 1 unique 

peptide and a minimum cluster size of 1. This is in contrast to the results obtained using 

the combined FDR and conservative two-stage FDR strategies, which resulted in 240 

and 8 novel peptides being identified, respectively. After filtering the novel annotation 

events and applying the same thresholds across all methods, a total of 77, 46 and 5 

novel peptides remained for the two-pass search approach with improved two-stage 

FDR, combined FDR and conservative two-stage FDR strategies, respectively (Figure 

6.1, Table 6.1 and Appendix Files 6.3 and 6.4). Compared to the combined FDR and the 

conservative two-stage FDR strategies, the two-pass search approach with improved 

two-stage FDR strategy was able to identify 35 more novel peptides, while the 

combined FDR strategy identified 4 novel peptides that neither of the other strategies 

were able to identify. Due to the lower FDR accuracy of identifications with the 

combined FDR strategy, these 4 novel peptides may have been false positives, 

incorrectly identified from ‘known’ MS/MS spectra or fallen just below the applied 

thresholds within the other two strategies. By comparison, the conservative two-stage 

FDR strategy only identified 5 novel peptides all of which were identified by both of 

the other strategies. These results indicate a large improvement in the rate of novel 

peptide identifications by restricting to separate known and novel search spaces using 

the two-pass search approach with improved two-stage FDR strategy. 
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Figure 6.1 Comparison of identified novel peptides between three methods 

A comparison between the numbers of identified novel peptides ≥90% event probability, 1 unique peptide 

per cluster and a minimum cluster size of 1, with (A) an unfiltered set with no screening of annotation 

events, and (B) after screening of annotation events using the same thresholds for all methods. 

A side-benefit of reducing the search space and applying FDR filtering on the 

known and novel search spaces separately was a reduced final merged TSV file size for 

each of the search spaces. Previously, in the combined FDR and conservative two-stage 

FDR strategy the final merged TSV files were much larger when using a large MS/MS 

spectral dataset and genome, requiring that they be split into two to four files to be able 

to process the files in a practical time-frame, which resulted in inaccurate PSM and 

local FDRs due to PSMs being distributed across the files. The two-pass search 

approach with improved two-stage FDR strategy reduced the size of the TSV files 

resulting in more efficient and faster processing time with more accurate FDR 

calculations. As pointed out in Section 5.4, a way to resolve this problem was needed. 

This method did resolve the problem with the added benefit of increasing the PSM 

identification rate for both known and novel PSMs. However, the problem may still 

arise if the number of MS/MS spectra and the genome is many times larger than used in 

this study. 

As was applied in the previous Chapter 5, Section 5.3.4, the exclusive number of 

annotation events for each peptide cluster, and their associated genes and proteins, were 
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also determined to account for the inflated number of gene boundary and reverse strand 

events, as shown in parenthesis in Table 6.1. This was more problematic in this study 

due to the much larger peptide linkage distance of 150,000 bp that further inflated the 

number of annotation events identified. 

The 77 novel peptides identified from the two-pass search approach with 

improved two-stage FDR strategy led to 617 annotation events (126 exclusively) 

amongst 147 genes (29 exclusively) and 609 proteins (116 exclusively) from the 

GENCODE v19 annotation. The novel annotations along with GENCODE v19 

reference annotations were then used as hints for Augustus gene prediction. A total of 

29,266 genes and 32,781 proteins (≥66 aa in length) were predicted (Appendix File 6.5), 

and of these, 52 predicted proteins had 66 novel peptides incorporated (Table 6.1), of 

which 48 novel peptides were unique and identified in 37 of the 52 predicted proteins 

(Appendix File 6.6). The number of protein-coding genes predicted by Augustus was 

much higher than the original reference GENCODE v19 predictions (Table 6.1). In 

addition to the new predictions previously not identified, the high number of predictions 

could also be attributed to two factors, as was outlined in Section 3.5.3. 

As previously discussed in Section 5.3.4 the reason why many novel peptides, in 

this case only 11, were not included in the predictions and by extension why peptides 

possibly included should not have been, needs to be addressed in future versions of the 

Enosi tool, to better screen novel peptides before inclusion into peptide clusters and 

annotation events. 

 By comparison with the combined FDR and conservative two-stage FDR 

strategies, the two-pass search approach with improved two-stage FDR strategy directly 

improved the quality of peptide clusters by including more novel peptides, and 

improved the accuracy of the event probabilities, allowing some annotation events to 
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now pass the applied event probability thresholds and identify more annotation events 

as a result. For example, compared to the combined FDR strategy, the number of novel 

gene annotations with ≥2 unique peptides increased from 4 to 5, and compared to the 

conservative two-stage FDR strategy, improved from 0 to 5 novel genes. Similarly, the 

number of proximal events, such as exon boundaries, went from 3 (1 peptide cluster) 

with the combined FDR strategy, 0 with the conservative two-stage FDR strategy to 27 

(7 peptide clusters) using the two-pass search approach with improved two-stage FDR 

strategy, when applying the same stringent thresholds across all methods. 

However, it is worth keeping in mind, the conservative two-stage FDR strategy, 

although limited in sensitivity, is highly specific. It was warranted in the study in which 

it was initially demonstrated, i.e. examining very large datasets of numerous variant 

peptides from cancer, in which the ‘known’ MS/MS spectra likely containing PTMs 

could have misidentified novel variants in the splice graph. 

To further enhance the improved two-stage FDR strategy to provide 

discrimination between novel and known identifications, the spectral E-value could be 

applied. This step could be achieved by comparing the spectral E-values between 

matches to the known sequences and novel peptide sequences, and accepting only the 

MS/MS spectra with better spectral interpretation while discarding matches with 

ambiguous equal spectral E-values, for example, between known protein sequences 

with PTMs versus the variant peptides in the splice graph. Such an approach would 

provide another level of discrimination without compromising on sensitivity, and it 

would not be influenced by the database as the spectral E-value is determined 

independent of the database. 

 The number of novel peptides incorporated into the predictions was reasonably 

high at 66 novel peptides (86%), which was relatively higher, by 3%, than the 
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proportion included in the previous study reported in Section 5.3.4. The higher number 

may be attributed to the differences in applied stringencies and the method of filtering 

single novel unique peptide annotation events between the two studies, as well as 

differences between the number and accuracy of the MS/MS spectra and genomes used 

within each study. Of the 66 novel peptides incorporated into the predictions, 8 were 

exclusively derived from the splice graph, while 2 were identified in both the six-frame 

translation and splice graph, with the remaining 56 identified exclusively in the six-

frame translation. 

As demonstrated previously in Section 5.3.4, BLASTP analysis was performed 

to show how the predictions changed from reference predictions. The analysis was 

performed by searching the 32,781 Augustus predicted proteins (Table 6.1) against the 

GENCODE v19 proteins, taking the top match with E-values ≤1E-10. Any sequences 

that did not match were considered novel predictions, sequences that had a query 

coverage ≥95% with at least 1 mismatch were considered to be the same prediction as 

the reference protein, and the remaining matches were considered to be modified 

predictions, either due to Augustus predicting slightly different models or modified as a 

direct result of the supporting evidence. From this analysis there were 4,620 non-

paralogous novel protein predictions, 12,116 modified predictions and 16,045 

predictions considered to be essentially the same as the reference. 

Searching all 52 protein predictions that had the novel peptide evidence 

incorporated, against the GENCODE v19 proteins, taking the top match with E-value 

≤1E-10, identified 41 protein predictions likely to be modified predictions, leaving 11 

protein predictions, that found no match and were considered as non-paralogous novel 

protein predictions (Table 6.1). 

Based on the annotation events incorporated into the Augustus gene predictions, 
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the minimum event probabilities which led to a new Augustus gene prediction were: 

novel gene event 99.986%, gene boundary, translated UTR, and exon boundary 

98.167%, reverse strand event 95.615%, novel exon 98.236% and frame-shift 99.799%. 
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Table 6.1 Summary of human proteogenomics annotations 

The results of the proteogenomics analysis of GENCODE v19 showing comparisons between the (1) 

combined FDR, (2) conservative two-stage FDR and (3) the two-pass search approach with improved 

two-stage FDR strategy. 

 

Two-Pass with 
Improved 

Two-Stage 
FDR 

Conservative 
Two-Stage 

FDR 

Combined 
FDR 

Total GENCODE v19 genes 57,820 57,820 57,820 

Total ‘known’ protein-coding genes 20,738 20,738 20,738 

Total ‘known’ proteins 95,309 95,309 95,309 

Raw MS/MS search ‘known’ protein matches ≤1% PSM FDR 6,618 6,607 3,715 

Proteogenomics mapping: Total 'known' proteins ≤1% PSM 
FDR 

27,839 27,796 20,793 

Proteogenomics mapping: Total ‘known’ proteins ≤1% PSM 
FDR (≥2 peptides with 1 unique) 

1,047 1,049 769 

 

Total identified 'novel' peptides ≤1% PSM FDR 667 28 270 

Raw MS/MS search ‘known’ peptides ≤1% PSM FDR 38,191 38,151 21,263 

Proteogenomics mapping: Total identified 'known' peptides 
≤1% PSM FDR 

38,028 37,987 21,170 

Proteogenomics mapping: Total identified 'known' peptides 
≤1% PSM FDR (≥2 peptides with 1 unique) 

9,507 9,512 5,191 

 

Frame-shifts 7 0 0 

Translated UTRs 4 0 3 

Exon boundaries 27 0 3 

Novel splices 0 0 0 

Novel exons 23 0 24 

Gene boundaries 289 (10) 19 (19) 130 (0) 

Reverse strands 262 (50) 9 (9) 77 (8) 

Novel genes 5 0 4 

 

Total annotation events 617 (126) 28 (13) 241(42) 

Total genes affected 147 (29) 8 (3) 62 (11) 

Total proteins affected 609 (116) 28 (13) 240 (41) 

Total novel peptides in affected genes/proteins 77 5 46 

 

Total Augustus protein-coding gene predictions 29,266 NA NA 

Total Augustus protein predictions 32,781 NA NA 

Total Augustus gene predictions with incorporated novel 
peptides 

49 NA NA 

Total Augustus protein predictions with incorporated novel 
peptides 

52 NA NA 

Total novel peptides incorporated into Augustus protein 
predictions 

66 NA NA 

Improved protein predictions with incorporated novel 
peptides 

41 NA NA 

Novel non-paralogous protein predictions with incorporated 
novel peptides 

11 NA NA 

NA: Not available 

Note: Numbers in parenthesis represent the exclusive numbers. The inflationary effect of a large peptide 

linkage distance on gene boundaries and reverse strands was removed by assigning a peptide cluster as 

either a proximal or distal event, not both, with preference placed on proximal events. 
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In the original proteogenomics study from the ENCODE project [11] a total of 

23,085 peptides were identified in both the known and novel search space. In the 

present study 38,028 known peptides and 77 novel peptides were identified, a total of 

38,105 peptides, which was 15,020 more peptides than the ENCODE study was able to 

identify. Of the 77 novel peptides identified, only 18 were also identified in the 

ENCODE study. However, the ENCODE study looked at Hg19 GRCh37 and 

GENCODE v7, while the present study examined Hg19 GRCh37 patch 13 and 

GENCODE v19. While the GENCODE version would unlikely affect the total known 

and novel peptides identified, slight differences between the patch versions of genome 

assembly may have resulted in slightly different numbers of identified peptides, but they 

would unlikely be as striking as 15,020 peptides. These further identifications were 

more likely to be due to the differences between the combined FDR strategy, which the 

ENCODE study used, and two-pass search approach with improved two-stage FDR 

strategy implemented in the present study. This conclusion was drawn, based on the 

observed similarities between the 21,533 identified peptides (Table 6.1) using the 

combined FDR strategy in this study, and the 23,085 peptides identified in the 

ENCODE project. 

6.3.5 Novel gene annotation 

A total of 5 novel genes (Table 6.1) were identified, all on unassigned chromosome 

fragments. An example of one of these novel genes was on unassigned chromosome 

fragment GL000251.1, spanning positions 2,836,635 to 2,837,405, with an event 

probability of 99.999%, consisting of 3 unique peptides with 10 PSMs assigned. In 

addition, Augustus gene predictions were carried out incorporating the novel peptides, 

predicting two new gene models, gene g28537 spanning positions 2,761,309 to 

2,836,886, and gene g28539 spanning positions 2,837,145 to 2,837,411 (Figure 6.2, and 

with 10 supporting annotated MS/MS spectra in Appendix Figure 6.3). 
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Performing a BLASTP search against human in NR revealed novel peptide 

“YFDTAMSR” matched a MHC class I antigen (AAB48498.1 with E-value = 0.045), 

novel peptide “APWIEQEGPEYWDRNTQIFK” matched MHC class I antigen 

(AHA90574.1 with E-value = 7E-17), and novel peptide “YLENGKDTLER” matched 

another MHC class antigen (AGZ87642.1 with E-value = 1E-04), all with 100% query 

coverage and identity. The Augustus gene prediction g28537 matched human leucocyte 

antigen B (CAA10522.1 with E-value = 6E-58), with 15% query coverage and 100% 

identity, also identified as a MHC class I antigen in GenBank, and gene g28539 

matched unnamed protein product (BAG64567.1 with E-value = 9E-60), with 100% 

query coverage and identity, also identified as a MHC class I antigen in GenBank. 

 Novel peptide “YLENGKDTLER” was incorporated into prediction g28537, 

while novel peptides “APWIEQEGPEYWDRNTQIFK” and “YFDTAMSR” were 

incorporated into prediction g28539, with both predictions matching two distinctively 

different MHC class I proteins in NR. However, prediction g28537 appeared to be over-

predicted, with only the first 85 aa (15% query coverage) of the prediction matching 

human leucocyte antigen B (CAA10522.1). The two 5’-most exons and CDS in the 

g28537 prediction, which were not supported by the single novel peptide, found no 

alignment with the human leucocyte antigen B protein, indicating that these two exons 

may be incorrectly predicted. In contrast, gene g28539, which had two novel peptides 

incorporated, found a good alignment to unnamed protein product (BAG64567.1), 

which was also identified as a MHC class I antigen. Therefore, both predictions were 

probably two distinct proteins. Further evidence, beyond that of the 3 novel peptides is 

needed to further refine this prediction. 



 

 219 

Figure 6.2 Novel gene annotation 

A novel gene annotation event is located on chromosome fragment GL000251.1, leading to two new gene 

predictions on the reverse strand. One novel peptide was incorporated into the large spliced Augustus 

predicted gene g28537 within the genes first exon/CDS, while the two other novel peptides were 

incorporated into the smaller neighbouring Augustus predicted gene g28539. Repeat regions span the 

length of the region, except where the novel peptides were located. 

6.3.6 Gene boundary and novel exon annotations 

There were 289 (10 exclusive) gene boundary and 23 novel exon annotation events 

identified (Table 6.1). An example of a gene boundary and two novel exon events were 

on chromosome 2, spanning positions 69,693,124 to 69,693,567 for the gene boundary 

event and spanning positions 69,693,124 to 69,693,171 and spanning positions 

69,693,190 to 69,693,222 for the two novel exon events, respectively. The gene 

boundary event was identified for genes ENSG00000115977.14, ENSG00000169599.8 

and ENSG00000198380.8, covering protein-coding transcripts ENST00000357308.4, 

ENST00000361060.5, ENST00000410022.2, ENST00000474230.1, 

ENST00000303698.3, ENST00000394305.1, ENST00000462320.1, 

ENST00000450796.2, ENST00000484177.1, ENST00000419370.1, 

ENST00000438184.2, ENST00000409085.4 and ENST00000406297.3, with an event 

probability of 99.999% and 3 PSMs identifying 3 novel and unique peptides. The two 

novel exon events were identified for gene ENSG00000115977.14, with transcript 

ENST00000409068.1, with an event probability of 99.80%, and 1 PSM identifying 1 
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novel and unique peptide for each of the two annotation events. Each of the three novel 

peptides from the gene boundary event was also identified as a novel exon event. Novel 

peptide “TQNNLESDYLAR” spanning positions 69,693,532 to 69,693,567, fell below 

the event probability threshold of 99.80% for proximal events, with an event probability 

of 98.98%, and was therefore removed from further analysis. However, when grouped 

together in a larger peptide cluster as with the gene boundary event it was included, and 

contributed to the higher event probability of the gene boundary event. Interestingly, the 

novel peptides also overlapped the long non-coding RNA (lncRNA) gene 

ENSG00000188971.4. 

Since gene ENSG00000115977.14 was in much closer proximity to the peptide 

cluster, which also annotated protein-coding transcript ENST00000409068.1 with a 

novel exon, it was the best candidate for an annotation event amongst the other genes, 

which were only included due to the large peptide linkage distance. In addition, there 

were known mapped peptides supporting this gene for these annotations: four shared 

known mapped peptides to protein-coding transcripts ENST00000406297.3 and 

ENST00000409085.4, and three shared known mapped peptides to protein-coding 

transcript ENST00000409068.1. Therefore, the three novel peptides were more likely to 

belong to this gene, and may extend the boundaries of transcripts ENST00000406297.3 

and/or ENST00000409085.4, with transcript ENST00000409068.1 being exclusive for 

the identified novel exons. Augustus gene predictions were carried out incorporating the 

novel peptides and reference annotations, predicting a gene model which was an 

extended version of the original reference gene ENSG00000115977.14, protein-coding 

transcript ENST00000409085.4, incorporating the novel peptides (Figure 6.3, and with 

3 supporting annotated MS/MS spectra in Appendix Figure 6.4). 

Performing a BLASTP search against human in NR, revealed that novel peptide 

“SSMAPSQPEESDVFLR” matched unnamed protein product (BAC86877.1 with E-
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value = 2E-09) with 100% query coverage and identity, novel peptide 

“VPNDDMDIFSK” matched alternative protein AAK1 (CCO13666.1 with E-value = 

5E-05) with 100% query coverage and identity, and novel peptide 

“TQNNLESDYLAR” matched an uncharacterised protein (Q6ZSR9.2 with E-value = 

2E-05) with 100% query coverage and identity. All were described as containing a 

BMP-2-inducible protein kinase C-terminus domain. The reference protein 

ENST00000406297.3 matched AP2-associated kinase 1 (AAI04843.1 with E-value = 

0.0) with 100% query coverage and 99% identity, and reference protein 

ENST00000409085.4 and ENST00000409068.1, both matched AP2-associated kinase 1 

(Q2M2I8.3 with E-value = 0.0) with 100% query coverage and identity, and 98% query 

coverage and 99% identity, respectively. The new Augustus gene prediction also 

matched AP2-associated protein kinase 1 (Q2M2I8.3 with E-value = 0.0) with 71% 

query coverage and 100% identity. 

The new prediction showed a 29% reduction in the query coverage compared to 

the original prediction due to the extension of the new protein prediction towards the 

proteins C-terminal end, which may be attributed to a single protein-coding transcript, 

or all transcripts, as evidenced by the known peptides, indicating that each protein 

isoform appeared to be expressed. Since the known peptides were shared, there was a 

concern that they were derived from different proteins, however this is not the case, as 

they were only identified within the same gene across the different protein isoforms 

within that gene. Overall, the prediction improved, extending the C-terminus of the 

protein. But further proteomics evidence is needed to improve the coverage of novel 

peptides across the region, helping to improve the confidence of this annotation event, 

and also to identify any unique known peptides to unambiguously identify at least one 

protein isoform as being expressed. 
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Figure 6.3 Gene boundary and novel exon annotations 

A gene boundary annotation (dashed lines) and two novel exon annotation events (dash dotted lines) were 

located on chromosome 2. These novel peptides led to a new prediction, extending the region of the 

original transcripts and including a new exon and CDS region previously unknown. Shared known 

peptides were also found mapping to each of the protein-coding transcripts involved in the annotation 

event. Repeats were also dotted across the gene region. 

6.3.7 Reverse strand and frame-shift annotation leads to new gene 

predictions 

There were 262 (50 exclusive) reverse strand annotation events identified (Table 6.1), 

and of these, 27 annotation events directly overlapped a gene/protein-coding transcript 
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(5 exclusively). An example of one of these 27 reverse strand events was on 

chromosome 10, spanning positions 115,609,828 to 115,654,858 for gene 

ENSG00000165806.15 with protein-coding transcripts ENST00000429617.1, 

ENST00000369331.4, ENST00000369321.2, ENST00000345633.4, 

ENST00000369318.3, ENST00000369315.1 and ENST00000452490.2; gene 

ENSG00000148735.10 with protein-coding transcripts ENST00000361048.1, 

ENST00000369312.4, ENST00000369310.3, ENST00000369309.1, 

ENST00000354462.3 and ENST00000448805.1; gene ENSG00000196865.4 with 

protein-coding transcript ENST00000369301.3; gene ENSG00000234631.1 with 

protein-coding transcript ENST00000451472.1; and gene ENSG00000043591.4 with 

protein-coding transcript ENST00000369295.2, with an event probability of 99.996% 

and 3 PSMs identifying 2 unique and 1 shared novel peptide. The majority of these 

genes were included due to the large 150,000 bp peptide linkage distance. The most 

likely gene for this annotation event was gene ENSG00000196865.4 with protein-

coding transcript ENST00000369301.3, which directly overlapped the peptide cluster. 

In addition, there was 1 unique known peptide supporting the original reference protein-

coding transcript ENST00000369301.3, with the unique peptide unambiguously 

indicating its expression. The peptide cluster also overlapped gene 

ENSG00000198924.3 with protein-coding transcripts ENST00000361384.2 and 

ENST00000369305.1, with one of the three novel peptides spanning positions 

115,609,828 to 115,609,857 inferring a frame-shift event, falling outside of the 99.80% 

event probability threshold for proximal events with a 99.799% event probability. This 

novel peptide was saved due to its presence in the reverse strand event, part of the larger 

peptide cluster with a 99.996% event probability. 

Augustus gene predictions were carried out incorporating the novel peptides and 

reference annotations and predicting two genes: one in line with the reference gene 
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ENSG00000196865.4 and protein-coding transcript ENST00000369301.3, and the 

other prediction on the reverse strand, incorporating two of the novel peptides. There 

was also a new prediction, incorporating the novel frame-shift peptide and separate 

from the other two novel peptides in the cluster which split the original reference gene 

ENSG00000198924.3 with protein-coding transcripts ENST00000361384.2 and 

ENST00000369305.1 into two predictions, by changing the frame of exon 2 halfway 

through (Figure 6.4, and with 3 supported annotated MS/MS spectra in Appendix 

Figure 6.5).  

Performing a BLASTP search against human in NR revealed the novel peptide 

“MGVAAHPK” matched protein S100-A8 (NP_002955.2 with E-value = 20) with 

100% query coverage and 88% identity, described as a S100 calcium-binding protein 

A8 (calgranulin A). Novel peptide “FLCTRHCSK” matched hCG1994383 

(EAW52580.1 with E-value = 4.8) with 66% query coverage and 100% identity, 

described as a provisional hypothetical protein, both of which led to the reverse strand 

prediction. The novel peptide which led to the frame-shift event and resulting revised 

prediction was novel peptide “KMMTAVVFLK” which matched SLC35E1 protein 

(AAH14557.1 with E-value = 9.8) with 80% query coverage and 70% identity, 

described as containing a Triose-phosphate Transporter family domain. Many of these 

novel peptides matched proteins in NR with poor significance because all were quite 

short (≤10aa). For the reference proteins and new Augustus gene predictions in which 

the novel peptides were incorporated, the majority of the matches were significant. The 

reference protein ENST00000369301.3 from gene ENSG00000196865.4, for which the 

reverse strand event was identified, matched NHL repeat-containing protein 2 

(NP_940916.2 with E-value = 0.0) with 100% query coverage and identity. Reference 

proteins ENST00000361384.2 and ENST00000369305.1 from gene 

ENSG00000198924.3, for which the frame-shift event was identified, both matched 



 

 225 

DNA cross-link repair 1A protein (NP_055696.3 with E-value = 0.0) with 100% query 

coverage and identity. The new Augustus gene prediction g13908 on the reverse strand 

matched growth-inhibiting protein 6 (ACA14135.1 with E-value = 0.28) with 20% 

query coverage and 58% identity, indicating what is possibly a truly novel 

identification. Augustus gene prediction g13909 matched NHL repeat-containing 

protein 2 isoform X1 (XP_011538071.1 with E-value = 0.0) with 88% query coverage 

and 100% identity (mostly in line with the original reference prediction on the forward 

strand). The predictions inferred from the novel frame-shift peptide was gene g13906, 

which matched DNA cross-link repair 1A protein (NP_055696.3 with E-value = 0.0) 

with 100% query coverage and identity; and gene g13907 in which the novel frame-

shift peptide was incorporated matched DNA cross-link repair 1A protein 

(NP_055696.3 with E-value = 1E-150) with 76% query coverage and 100% identity. 

 The new gene prediction g13908 on the reverse strand was further supported by 

one of the novel peptides at the N-terminal-most end, which was N-terminal acetylated, 

indicating that the start of translation predicted by Augustus also agreed with the PTM 

presented by the proteomics evidence, thus further supporting the identification of a 

novel gene on the reverse strand (Figure 6.4). Although the peptide cluster identified a 

reverse strand annotation with two of the three novel peptides contributing to a likely 

novel gene prediction on the reverse strand, the single outlying novel peptide that 

instead identified a frame-shift indicated that not all peptides should belong within the 

same peptide cluster. Particularly as this peptide was previously removed as a frame-

shift event due to its lower event probability, possibly as a result of only being a single 

peptide annotation event with a relatively lower intensity MS/MS spectrum when 

compared to the other MS/MS spectra (Appendix Figure 6.5C). Situations such as these 

indicate that more stringent MS/MS spectra quality filtering should be considered, given 

enough MS/MS spectra to tolerate the MS/MS spectral losses with relatively limited 
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negative impact on the identification rate. The other alternative would be to simply 

accept the cost of losing a large proportion of MS/MS spectra from a relatively small 

MS/MS spectral dataset to improve specificity and reduce errors such as these. Another 

alternative could be for a re-consideration to how annotation events are filtered, perhaps 

requiring that all annotation events are further screened to identify unique and novel 

peptides from smaller annotation events within other larger annotation events, which 

have previously been filtered out to reduce ambiguity and keep annotation event 

filtering consistent. 

 The prediction resulting from the frame-shift peptide had its second exon split 

into two different frames resulting in two different predictions, with both matching the 

same protein, DNA cross-link repair 1A protein (NP_055696.3). When looking at the 

proteins corresponding gene DCLRE1A in GenBank, there was sufficient RNA-seq 

coverage across the gene, particularly across the exon that was split in the new 

prediction. Given this evidence, the new prediction as a result of the frame-shift peptide, 

was most likely a false positive. As a result, this particular annotation event should be 

either discarded or at the very least require further evidence before it could be accepted. 

Careful screening of any new predictions which are a direct result of proteogenomics 

annotation should therefore be conducted by comparison with the previous predictions, 

particularly when the previous predictions were manually curated and considered to be 

of high confidence, and supported by numerous types of other orthogonal evidence such 

as RNA-seq and EST. Overall, there were another 7 frame-shift events, derived from 

only 2 peptide clusters, which were above the event probability threshold. However, 

these could not be incorporated into gene predictions indicating the possibility that all 

frame-shift events throughout this particular study were false positives, particularly 

when considering the annotation events directly challenged the highly curated 

predictions that contained multiple sources of orthogonal evidence. 
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Based on this observation, many of the new predictions that were a result of 

dramatic changes (i.e. such as changes in frame) to the current well-curated GENCODE 

v19 annotations, were possibly false positives. The likely exceptions being annotation 

events such as novel genes, translated UTRs, reverse strand and exon boundary events 

that do not drastically conflict with but only add to or extend the annotation. In less 

adequately curated reference annotations, this judgement would likely not hold true. 
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Figure 6.4 Reverse strand and frame-shift annotation 

A reverse strand annotation event (dashed lines) and a frame-shift annotation event (dash dotted lines) 

were located on chromosome 10. An N-terminal acetylated peptide was also identified within the reverse 

strand event (square dotted lines). These novel peptides led to two new predictions; a novel gene 

prediction on the reverse strand with the incorporated N-terminal acetylated peptide agreeing with the 

genes translation initiation start (TIS) site, and a modified prediction from the frame-shift event, possibly 

a false positive. Repeats were also dotted across the gene regions. 

6.3.8 Exon boundary and translated UTR annotation 

Four translated UTR annotations and 27 exon boundary annotations were identified 

(Table 6.1). An example of an exon boundary and a translated UTR annotation was on 

chromosome 1, spanning positions 45,213,052 to 45,213,121, where a translated UTR 
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annotation was identified for gene ENSG00000142945.8 with protein-coding transcript 

ENST00000372222.3, and an exon boundary was identified for the same gene, with 

protein-coding transcripts ENST00000452259.1, ENST00000372224.4, 

ENST00000372218.4, ENST00000455186.1 and ENST00000372217.1. Both 

annotation events had an event probability of 98.167% with 1 PSM identifying 1 novel 

and unique peptide. In addition, supporting these two annotations, there were known 

mapped peptides, with 9 mapping to protein-coding transcript ENST00000372222.3, 2 

mapping to ENST00000452259.1, 11 mapping to ENST00000372224.4, 9 mapping to 

ENST00000372218.4, 4 mapping to ENST00000455186.1 and 10 mapping to 

ENST00000372217.1. However, none of the known peptides were unique, making it 

impossible to determine which protein-coding transcript was more likely to be 

expressed over the others, and also made it difficult to determine the protein-coding 

transcript to which the annotation event most probably belonged. Additionally, the 

annotation event may be a translated UTR or an exon boundary for one or all of these 

protein-coding transcripts. Augustus gene predictions were carried out incorporating the 

novel peptide and reference annotations, predicting a gene model in line with the 

original reference gene model ENSG00000142945.8, and also with an additional 

protein-coding transcript with a longer exon extended in the 5’ direction incorporating 

the novel peptide (Figure 6.5, and with one supporting annotated MS/MS spectrum in 

Appendix Figure 6.6). 

Performing a BLASTP search against human in NR revealed the novel peptide 

matched kinesin-like protein KIF2C isoform 2 (NP_001284584.1 with E-value = 8E-16) 

with 100% query coverage and 96% identity. The reference protein 

ENST00000372222.3, with which the exon boundary event was identified for, matched 

kinesin-like protein KIF2C isoform 1 (NP_006836.2 with E-value = 0.0), with 100% 

query coverage and identity. The reference proteins which had translated UTR events 
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identified were ENST00000452259.1 which matched kinesin-like protein KIF2C 

isoform 2 (NP_001284584.1 with E-value = 0.0) with 100% query coverage and 

identity; ENST00000372224.4 which matched kinesin-like protein KIF2C isoform 1 

(NP_006836.2 with E-value = 0.0) with 100% query coverage and identity; 

ENST00000372218.4 which matched kinesin-like protein KIF2C isoform 2 

(NP_001284584.1 with E-value = 0.0) with 100% query coverage and identity; 

ENST00000455186.1 which matched mitotic centromere-associated kinesin 

(AAC27660.1 with E-value = 0.0) with 95% query coverage and 99% identity; and 

ENST00000372217.1 which matched kinesin-like protein KIF2C isoform 2 

(NP_001284584.1 with E-value = 0.0) with 100% query coverage and identity. The new 

Augustus gene prediction contained two protein-coding transcripts, the first transcript 

being the altered prediction containing an extended exon, g772 transcript 1, which 

matched kinesin-like protein KIF2C isoform 1 (NP_006836.2 with E-value = 0.0) with 

100% query coverage and 97% identity; and g772 transcript 2 was unaltered, in line 

with the original prediction which matched kinesin-like protein KIF2C isoform 1 

(NP_006836.2 with E-value = 0.0) with 100% query coverage and identity. 

 The novel peptide overlapped the exon in the 5’ direction by 1 aa and led to a 

new transcript prediction g772 transcript 1, which extended the exon by 20 aa in the 5’ 

direction and accounted for the 97% identity with its match to the target sequence in 

NR: kinesin-like protein KIF2C isoform 1. However, the g772 transcript 2 prediction 

reproduced the original reference protein, and showed full alignment with the protein 

with 100% identity. The presence of known peptides around the region of the novel 

peptide improved the confidence of the annotation event by implying that it was being 

expressed. However, the known peptides were shared in multiple other identifications in 

different protein isoforms within the same gene and also found matches in a few other 

paralogous genes making the identification ambiguous. Although the presence of this 



 

 231 

novel peptide, identified as both a translated UTR and exon boundary, looked 

promising, further evidence will be needed to support and confirm this annotation event 

and prediction. 
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Figure 6.5 Exon boundary and translated UTR annotation 

An exon boundary annotation event and a translated UTR annotation event for the same novel peptide 

cluster were located on chromosome 1. This novel peptide was incorporated into a new prediction, 

predicting a new transcript in addition to the original transcript from the reference gene, by extending the 

exon region in the 5’ direction (dashed lines). Repeats were also dotted across the gene region. 

There were another 3 translated UTR annotation events identified from a single 

peptide cluster on chromosome 18, spanning positions 3,978,073 to 3,978,145, for gene 

ENSG00000170579.10, with transcripts ENST00000315677.3, ENST00000515196.2 
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and ENST00000581527.1 with an event probability of 99.997%, and with 5 PSMs 

identifying 2 novel and unique peptides. This peptide cluster also happened to overlap 

an already identified pseudogene ENSG00000250933.1, with transcript 

ENST00000509132.1. The pseudogene in question was glyceraldehyde 3-phosphate 

dehydrogenase 66 (GAPDHP66), which is known to be expressed in ENCODE tier 1 

cell line GM12878 probably as a consequence of genetic changes during 

immortalization of the cell line using EBV. Since the reference proteome used in the 

present study was GENCODE v19, this expressed pseudogene was not accounted for 

among the known proteins and was misinterpreted as a translated UTR in this instance. 

This finding outlines a need for caution when using datasets to perform proteogenomics 

annotations, due to the differences in various cell lines. At the very least, if available, 

the known proteome for that cell line should complement the target known proteome to 

remove any inconsistencies between the proteomics data source and target genome 

annotation. The finding also outlined the lack of any support from the Enosi tool, with 

the identification of expressed pseudogenes or non-coding RNA genes, which could 

have identified the annotation event instead of it being misinterpreted as a translated 

UTR and requiring further manual parsing of the results for correct interpretation. 

Continuing the theme of expressed pseudogenes: one identified pseudogene, 

ENSG00000257907.2, with transcript ENST00000547505.2 and classified as 

translation elongation factor 1 alpha 1 pseudogene 17, contained unique and novel 

peptide “SGDAAIVDMVPGKPMCVESFSVYPPLSR” on chromosome 12, spanning 

positions 44,054,701 to 44,054,784. The novel peptide was primarily identified by 

proteogenomics analysis as a gene boundary and reverse strand event with an event 

probability of 98.167% for a number of genes in the region. However, no other novel 

peptides were in close proximity to indicate a gene spanning this region, possibly 

indicating a misidentified annotation event, solely based on the peptide linkage distance. 
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A BLASTP search of the novel peptide revealed a match to a protein-coding gene 

translation elongation factor 1 alpha 1 (NP_001393.1 with E-value = 4E-19) with 100% 

query coverage and 93% identity on chromosome 6, however the alignment contained 2 

mismatches. It is quite possible that the peptide was derived from an actual protein-

coding translation elongation factor 1 alpha 1 from cell line GM12878 elsewhere in the 

genome and, due to sequence variation, found a match to identified pseudogene 

ENSG00000257907.2. Further novel peptides mapping to the pseudogene would need 

to be identified before it would be feasible to re-annotate this pseudogene as a 

functional protein-coding gene. 

6.3.9 N-terminal acetylated peptides 

Protein N-terminal acetylation is known to contribute to many functional changes in 

proteins and the identification of such changes in conflict with the known proteome can 

potentially indicate over-predicted genes requiring re-annotation, but could also indicate 

an alternative protein isoform with a different translation initiation start (TIS) site. A 

total of 729 N-terminal acetylated peptides were identified amongst 2,949 proteins in 

the GENCODE v19 annotation and 136 were identified from 131 high confidence 

proteins (≥2 peptides with at least 1 unique), using the two-pass search approach with 

improved two-stage FDR strategy. 

Many of the N-terminal acetylated peptides appeared to agree with the TIS sites 

of the reference proteins, whereas others did not. These conflicts could not be accounted 

for because the N-terminal acetylated peptides were shared with other proteins, which 

supported their TIS sites. Due to the large number of these peptides a thorough manual 

validation was not practical, requiring a way to automate the process. However, even if 

this were done, numerous N-terminal acetylated peptides would still be shared between 

many other proteins due to the protein inference problem, with the problem amplified in 

this case by the presence of numerous isoforms in GENCODE v19. Thus making any 

http://www.ncbi.nlm.nih.gov/protein/4503471?report=genbank&log$=prottop&blast_rank=1&RID=RDTYTSSK014
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findings that have conflicts with the annotation ambiguous, as found in Section 5.3.13. 

Therefore, to improve the specificity of any findings only unique known N-terminal 

acetylated peptides were identified, as these could more confidently be assigned as 

alternate TIS sites. Alternatively, as discussed in the previous chapter (Section 5.3.13), 

N-terminomics [452] and other methods, such as heuristic approaches and top-down 

proteomics, could be used in the future to resolve such ambiguous analysis. 

From the 729 N-terminal acetylated peptides, 132 were found to be unique 

amongst 123 proteins, all of which did not conflict with the GENCODE v19 annotation. 

Of the 77 novel peptides identified (Table 6.1), 4 were found to be N-terminal 

acetylated (Appendix File 6.7). Of these, 3 were found to be unique, 2 of which were 

incorporated into different gene predictions at the N-terminal most-end, and one could 

not be incorporated into the prediction. The fourth peptide was a shared peptide, found 

in a peptide cluster consisting of two other novel peptides, but it was also mapped to 76 

other genome locations. In one of these other locations within the same chromosome, 

the novel peptide was incorporated into a new gene prediction. 

The first of the novel N-terminal acetylated peptides was unique peptide 

“LTNQDCPGRER“, spanning positions 19,524,186 to 19,524,218, on chromosome 8, 

identified within a gene boundary event and reverse strand event with an event 

probability of 99.927%, and with 1 annotated MS/MS spectrum in Appendix Figure 6.7. 

This particular peptide could not be incorporated into any gene prediction. 

 The second novel N-terminal acetylated unique peptide was “MGVAAHPK”, 

spanning positions 115,654,835 to 115,654,858 on chromosome 10, identified within a 

gene boundary event and reverse strand event with an event probability of 99.996%, 

with 1 annotated MS/MS spectrum (Appendix Figure 6.5A). This peptide was 

incorporated into Augustus gene prediction g13908 at the N-terminal-most end, 
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highlighted previously as an example of a reverse strand annotation, also shown in 

Figure 6.4, further supported by N-terminal proteomics evidence. 

 The third novel N-terminal acetylated unique peptide was “MTLRGCNQK”, 

spanning positions 16,027,267 to 16,027,293, on chromosome 6, identified within a 

gene boundary event and reverse strand event with an event probability of 99.995% and 

with 1 annotated MS/MS spectrum in Appendix Figure 6.8. This peptide was 

incorporated into Augustus gene prediction g8234 at the N-terminal-most end, spanning 

positions 16,027,267 to 16,100,195, which found no known matches to proteins in NR, 

indicating the identification of a truly novel gene, further supported by N-terminal 

proteomics evidence. Interestingly, the protein sequence of g8234 contains a long chain 

of arginine, lysine and glutamic acid residues, all of which are highly charged, 

potentially indicating an important role in ligand binding and protein-folding. 

 The fourth and final novel N-terminal acetylated shared peptide was 

“PGDSIRSHR”, spanning positions 16,165,749 to 16,165,775 on chromosome 6, 

identified within the same gene boundary event and reverse strand event as peptide 

“MTLRGCNQK”, with 2 annotated MS/MS spectra in Appendix Figure 6.9. The 

peptide was not incorporated into a gene prediction at this location; however, the 

peptide was found with 76 other genomic locations. At one of these locations, 

specifically spanning positions 83,808,134 to 83,808,160 on the same chromosome 6, 

residing within an intron region of gene ENSG00000083097.10 with protein-coding 

transcripts ENST00000349129.2, ENST00000237163.5, ENST00000536812.1, and 

ENST00000369739.3, there was a possible novel exon event. This particular annotation 

event was not formally identified because it was filtered out as it only contained shared 

peptides. At this location the novel peptide was incorporated into Augustus gene 

prediction g8936 within exon 2 and CDS 2, shared by two transcripts, which spanned 

positions 83,806,697 to 83,877,886. 



 

 237 

Performing a BLASTP search of the two protein-coding transcripts from gene 

g8936 against human in NR revealed that protein-coding transcripts 1 and 2 matched 

protein dopey-1 isoform b (NP_001186871.1 with E-value = 0.0) with 100% query 

coverage and 99% identity and 100% query coverage and 98%, respectively, within the 

same chromosome 6 and within the same genomic region. However, the region where 

the novel peptide was incorporated did not show complete homology with the protein, 

indicating a potential new gene structure or isoform for this protein. Because the peptide 

was also located in another 75 locations, it was likely that the N-terminal acetylated 

status of the peptide agrees more with one of the other locations, and due to the protein 

inference problem the true location of this particular peptide will remain ambiguous 

until further evidence becomes available. 

6.3.10 Impact of search space 

The impact that an inflated search space has on proteogenomics analysis has often been 

a challenge, as outlined previously in Chapters 4 and 5. The combined FDR strategy has 

been shown to be limited in its sensitivity and reduces the identification rate in both 

known and novel search spaces. While the conservative two-stage FDR strategy 

outlined in [474] showed improved identification rate of known proteins, it was overly 

conservative for the novel identifications and did not take advantage of improved 

sensitivity using a two-pass search approach such as that mentioned in [427]. The 

enhanced method of controlling FDR by implementing the use of a two-pass search 

approach with improved two-stage FDR strategy demonstrated better balance of FDR 

control, improved the discrimination between true and false positives in the known and 

novel search spaces, and allowed for more peptides and proteins to be identified when 

compared to the combined FDR and conservative two-stage FDR strategies (Table 6.1). 

This was accomplished by reducing the impact that the proteogenomics search space 

has on analysis, through a reduction in the size of the search space to only sequences 

http://www.ncbi.nlm.nih.gov/protein/315709510?report=genbank&log$=prottop&blast_rank=1&RID=EVS62Y1C014
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containing likely matches to either the known or novel search spaces, prior to 1% PSM 

FDR filtering. 

At the known protein level protein identification rates during MS/MS database 

search changed from 3.9% of all proteins with combined FDR, to 6.93% with the 

conservative two-stage FDR, and 6.94% with the two-pass search approach with 

improved two-stage FDR strategy. Overall, there were 44% more known proteins 

identified with the two-pass search approach with improved two-stage FDR strategy 

than compared with the combined FDR strategy. At the novel peptide level, 

identification rates during MS/MS database search changed from 270 with combined 

FDR, down to 28 with the conservative FDR (a 10x drop in sensitivity), with an 

increase to 667 with the two-pass search approach with improved two-stage FDR 

strategy (a 2.5x improvement over the combined FDR strategy) (Table 6.1). This new 

method resulted in improvements in sensitivity, where previous losses were towards 

30% of the known proteins demonstrated in Chapter 4 and 52% of the known proteins 

demonstrated in Chapter 5. Using the new method, no losses of known proteins were 

observed. Instead, slight gains in the identification of known proteins could be seen 

using the two-pass search approach when compared to the conservative two-stage FDR 

strategy, which did not implement a two-pass search approach. However, the opposite 

was true for the high confidence protein identifications, although this was a negligibly 

small difference. Future algorithmic improvements will likely result in better 

identification rates and provide a means of reducing the impact that the proteogenomics 

search space has on analysis. 

6.4 SUMMARY 

This study integrated different –omics platforms: genomics, proteomics and 

transcriptomics, available from a previous proteogenomics study which was part of the 
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ENCODE project, and identified an improved methodology for conducting 

proteogenomics. This new methodology, which improves on the sensitivity and 

specificity of a proteogenomics search, was directly compared to two previous methods: 

the combined FDR and ‘conservative’ two-stage FDR strategy. In addition, this study 

identified 15,020 more peptides when compared to the previous ENCODE 

proteogenomics study. 

 The present study made a significant contribution to the annotation of the human 

genome, identifying 77 novel peptides contributing to 617 novel annotation events (126 

exclusively), consisting of 7 frame-shifts, 4 translated UTRs, 27 exon boundaries, 23 

novel exons, 289 gene boundaries (10 exclusively), 262 reverse strands (50 

exclusively), and 5 novel gene events, amongst a total of 147 genes (29 exclusively) and 

609 proteins (116 exclusively). 

Of these annotations 66 novel peptides directly led to 52 predicted proteins via 

Augustus gene prediction. The two-pass search approach with improved two-stage FDR 

strategy proved that after filtering it was able to identify 35 more novel peptides than 

either the combined FDR or conservative two-stage FDR strategies, and as a result it 

identified more annotation events, thus reducing the negative impact of the inflated 

proteogenomics search space and reducing the overhead for the post-processing of raw 

results. 

The number of annotation events identified in this study was far higher than the 

relatively few peptides identified, and more pronounced than found in the previous 

study in Chapter 5, due to the much larger peptide linkage distance used in this study, as 

was explained in Section 6.3.4. Although this caveat was accounted for by also 

providing the number of exclusive annotation events and associated genes and proteins, 

the problem still remains and should be addressed appropriately in future studies by 
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applying a novel way to determine the most appropriate peptide linkage distance for 

each peptide cluster. Other identified caveats included misidentified annotation events 

due to the lack of proper annotation event coverage; such as the absence of a way to 

identify expressed pseudogenes and non-coding RNAs, discrepancies between the 

proteome of GENCODE v19 and cell line GM12878 and overlapping annotation events 

causing ambiguities when annotation events were filtered, leading to false positive 

predictions. 

6.5 CONCLUSIONS 

The implementation of a two-pass search approach with improved two-stage FDR 

strategy proved highly effective at improving the PSM identification rate, and which 

reduced losses of known proteins as the searches were conducted separately and did not 

impact on the sensitivity of known and novel peptide sequence identification within 

their respective searches. This can be seen when comparing the identified known 

proteins between the two-stage FDR strategy and the combined FDR strategy (Table 

6.1), as well as from the proteomics-only searches during the precursor mass tolerance 

optimization step from Section 6.4.1. As a result, this led to improvements in the 

discrimination of true and false positives and also reduced the overhead needed to 

process the results for FDR filtering. 

As in the previous studies presented in Chapters 4 and 5, clustering MS/MS 

spectra and selecting the most appropriate precursor mass tolerances was also effective, 

particularly with the high-accuracy MS/MS spectra utilized in the present study. 

Although higher stringency MS/MS spectral quality filtering may have improved 

specificity and reduced the occurrence of some identified false positives found during 

analysis, this would have been at the cost of impacting true positive identifications. 

Much larger MS/MS spectral datasets may afford such higher MS/MS spectral quality 



 

 241 

stringencies with a relatively limited negative impact on the identification rates. 

 The present study was compared to the ENCODE study from [11]. In this study, 

a total of 38,105 peptides were identified, of which 77 were novel peptides. Compared 

to the original ENCODE study, an additional 14,961 known peptides and 59 novel 

peptides were identified. 

 In the absence of a method to determine the annotation event FDR to identify 

appropriate event probability thresholds, the screening of annotation events by applying 

tighter stringencies when searching against RefSeq protein proved an effective way of 

identifying more annotation events outside of the applied stringent event probability 

thresholds. 

 An issue arose in Section 6.3.7 where a frame-shift peptide with an event 

probability below the applied threshold was incorporated into a larger peptide cluster 

with a higher event probability, identified as a reverse strand event. Because the single 

frame-shift peptide was still retained, this led to a probable false positive prediction. 

Suggestions to resolve this issue could be that, when applying filtering, an additional 

level of filtering should be applied to further remove any single unique and novel 

peptide annotation events that have been previously filtered out. This step could be 

achieved by also filtering from larger annotation events, thus reducing ambiguity, 

improving specificity and ensuring consistency across all annotation event filtering, as 

well as avoiding the occurrence of false positive annotation events being included in the 

revised annotation. 

 Another issue arose in Section 6.3.8, with the identification of a false positive 

translated UTR event, which was really a protein-coding pseudogene, namely 

glyceraldehyde 3-phosphate dehydrogenase 66 (GAPDHP66), identified as only a 

protein-coding gene in GM12878. This finding highlighted two problems: 1) the 
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proteome from GENCODE v19 did not reflect the proteome of cell line GM12878, 

which should be appended, if possible; and 2) the Enosi tool did not accommodate the 

identification of possible coding pseudogenes and/or non-coding RNA genes, and 

instead misidentified an annotation event, which required further manual curation of all 

identified annotation events. The ability to identify such annotation events automatically 

is important, as it removes the possibility of misidentifications and ambiguity, and time 

spent manually interpreting the results. Enabling such a feature could be relatively 

simple as interpreting the reference annotations and creating a new annotation event 

type, or running the analysis in parallel with other proteogenomics tools, such as 

PGTools [496], which can handle such annotation events. 

 Another caveat of the analysis, which was highlighted in the previous two 

chapters, was how annotation events could be better defined using other evidence, such 

as known peptides in close proximity, and dynamically defined peptide linkage 

distances across the genome for each peptide cluster. 

Another consideration for improving how annotation events could be defined 

came to light during the analysis in Section 6.3.7 with the application of N-terminal 

acetylated peptides, by examining the location of unique N-terminal acetylated peptides 

in the context of the peptide cluster, to define the cluster boundaries. However, this 

tactic would be conditional on the fact that the provided genome was near complete 

with little fragmentation, in order to reduce as much as possible the unambiguity when 

assigning an N-terminal acetylated peptide as unique. 

 Four N-terminal acetylated novel peptides were identified in this study, with 

three being unique, of which, two were included in Augustus gene predictions at the N-

terminal-most end, while there were numerous known N-terminal acetylated peptides, 

with 132 found to be unique among 123 proteins, none of which conflicted with the 
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GENCODE v19 annotation. 

 Besides the use of unique peptide parsimony, other methods to identify these N-

terminal acetylated peptides in the context of known proteins and novel annotations are 

needed, e.g. in a proteomics-only context using tools such as those listed in Table 2.6, 

top-down proteomics and N-terminomics [452]. 

 Future studies on the human genome could further expand on this work by 

including other cell lines, besides GM12878, e.g. K562: an immortalized cell line 

produced from a female patient with chronic myelogenous leukaemia (CML); A549: an 

adenocarcinomic human alveolar basal epithelial cell line; H1 human embryonic stem 

cell line: H1-neuron cell line from neurons derived from H1 embryonic stem cells; and 

A431: a human vulvar cancer cell line. All of these cell lines are publically available 

from ENCODE and other sources. In addition, much larger comprehensive data sources 

could be obtained from previous proteogenomics studies, such as the recent human 

proteome mapping study [450, 451], which mapped the proteome from multiple cell 

lines and tissues. Sources of RNA-seq data could be obtained from large comprehensive 

studies, such as those conducted in the 1,000 Genome Project [65], a large international 

project to sequence 1,000 genomes and identify genomic variants. Such studies would 

greatly benefit from using comparable proteomics data from the same biological 

samples to be truly meaningful, thus providing a means of confidently identifying 

variant peptides between different individuals. 
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7 WHEAT PROTEOGENOMICS 

7.1 INTRODUCTION 

Bread wheat (Triticum aestivum) is a major food crop for human consumption, 

contributing to a large proportion of our staple diet, comprising approximately 20% of 

calories consumed, being a good source of protein, vitamins and minerals, and also as a 

good livestock feed. Originally derived from a cross-hybridization of cultivated 

tetraploid emmer wheat (AABB, Triticum dicoccoides) and diploid goat grass (DD, 

Aegilops tauschii) approximately 8,000 years ago, the net result was a allohexaploid 

genome (6x), consisting of an A, B and D genome with a combined genome size of 17 

Gbps, making it one of the largest known plant genomes around [595, 596]. 

Recently, the International Wheat Genome Sequencing Consortium (IWGSC) 

sequenced and assembled the genome of Triticum aestivum cultivar Chinese Spring 

done on a per chromosome arm basis, by isolating and sorting each chromosome arm 

prior to sequencing [12]. A total of 124,201 gene loci were identified, evenly distributed 

across the chromosomes and subgenomes. In the same study, the dissertation author 

contributed towards proteogenomics analysis, which validated 50 high confidence 

genes, and identified 16 novel peptides which contributed to 33 novel annotations in 13 

genes: 4 frame-shifts, 3 translated UTRs, 2 exon boundaries, 13 novel exon events, 4 

gene boundary events, 2 reverse strand events and 5 novel gene events. However, the 

proteogenomics study was limited in scope with only 11,334 MS/MS spectra and 

implementing an earlier version of the Enosi tool, with no splice graph to define the 

splice junction search space, and with no method employed to address the huge loss in 

sensitivity resulting from searching a six-frame translation of the 17 Gbp genome [12]. 

7.1.1 Outline of this study 

The present study re-visited the proteogenomics annotation and addressed the 

limitations from the earlier study by the dissertation author within the study by Mayer 
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and colleagues [12] by adding an additional sources of MS/MS spectra: 1) Wheat flour 

from cultivar Butte 86 under three different digest protocols (Trypsin (as per the same 

as the previous proteogenomics study in [12]), chymotrypsin, and thermolysin [13]); 

and 2) meiotically developing anthers from a cross between rye (Secale cereale cultivar 

Petkus) and wheat (Triticum aestivum cultivar Chinese Spring), digested with trypsin 

and AspN [14]. The analysis utilised an improved Enosi tool, with incorporated MS-

GF+ MS/MS database search tool and a splice graph derived from a large source of 

RNA-seq data. The splice graph included RNA-seq data used in the study from [12], 

RNA-seq data derived from maturing grain in a related study [15], as well as a selection 

of four publically available datasets from the Sequence Read Archive (SRA). The loss 

in sensitivity was also addressed by applying a two-pass search approach with improved 

two-stage false discovery rate (FDR) strategy, which aimed to improve the sensitivity 

and discrimination between true and false positive identifications. In addition, due to the 

complexity of the allohexaploid wheat genome combined with the highly fragmented 

draft assembly, the difficulties of performing proteogenomics annotation and accurately 

predicting genes with such a dataset were highlighted. 

7.2 MATERIALS AND METHODS 

7.2.1 Proteomics and genomics datasets 

The latest version of the assembled Triticum aestivum genome sequence and Wheat 

MIPS version 2.2 annotations as GTF file and protein FASTA file from the study by 

Mayer and colleagues [12] were downloaded from the URGI web site 

(https://urgi.versailles.inra.fr/download/iwgsc/). The GTF file was subsequently 

converted to GFF, using the gtf2gff perl script supplied with the Augustus gene 

prediction tool (Appendix File 7.1). 

https://urgi.versailles.inra.fr/download/iwgsc/
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The MS/MS spectra for this study were derived from a number of different 

sources. The first source was from the study in [13], totalling 42,909 MS/MS spectra 

from trypsin (11,334), thermolysin (16,776) and chymotrypsin (14,799) digests. The 

proteins were extracted from finely ground Triticum aestivum wheat flour cultivar Butte 

86 and run on a 2D electrophoresis gel, with 233 spots excised and separately digested 

with trypsin, chymotrypsin and thermolysin. The resulting digests were then run on a 

QSTAR Pulsar i quadrupole time-of-flight mass spectrometer (QTOF) (Applied 

Biosystems/MDS Sciex), with attached nano-electrospray source and nano-flow HPLC. 

The MS/MS spectra were kindly provided and downloaded from Susan Altenbach and 

William Vensel at USDA (California), co-authors of a prior proteomics study [13]. 

The second source of MS/MS spectra was derived from meiotic tissue from the 

anthers of a wheat-rye hybrid with Ph1 deletion (Ph-) from the study in [14], totalling 

42,528 MS/MS spectra from a trypsin digest, with a sub-fraction of 5,392 MS/MS 

spectra digested with trypsin and AspN. The wheat-rye hybrid came from a cross 

between rye (Secale cereale cultivar Petkus) and wheat (Triticum aestivum cultivar 

Chinese Spring). Protein extracts from the anthers, were run on a 1D gel, 8 bands were 

excised and digested using trypsin with 1 band digested with trypsin and AspN. The 

samples were then run on an LTQ Orbitrap (Thermo Scientific) mass spectrometer with 

attached nano-flow HPLC. The MS/MS spectra was kindly provided and downloaded 

from Ali Pendle and Graham Moore, co-authors of a prior proteomics study [14]. 

The protein sequence predictions from the Wheat MIPS version 2.2 annotations 

were appended to a source of contaminants before being used in the MS/MS database 

search as outlined in Section 3.1.1, to identify any contamination. In this study, for the 

thermolysin and AspN specific searches, thermolysin and AspN contaminant sequences 

downloaded from UniProtKB/Swiss-Prot were also added to account for the protease 

used in both cases. 
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7.2.2 RNA-seq datasets 

Illumina RNA-seq datasets were obtained from six different sources. One source was 

obtained from the Triticum aestivum cultivar Chinese Spring study [12], derived from 

five tissues (root, leaf, stem, spike and grain) of 5 different pooled conditions (SE 

library). In addition, RNA-seq data that was not used in the study from [12] were used, 

which included the same five tissues from 5 different conditions and 3 different 

developmental stages (PE library). These datasets were downloaded from URGI 

(http://wheat-urgi.versailles.inra.fr/Seq-Repository/RNA-Seq). 

The second source of data was obtained from a different study [15], which ran in 

parallel with [12], derived from the aleurone layer of developing endosperm tissue at 

different time points from the Triticum aestivum cultivar Chinese Spring. These datasets 

were kindly provided by Odd-Arne Olsen one of the co-authors from the studies [12, 

15]. 

The third to sixth sources of data were obtained from the Sequence Read 

Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) via the DNA Nexus 

(http://sra.dnanexus.com/). The identifiers used were: SRA053323 (a study which 

looked at the alueurone layer and starchy endosperm layer at different developmental 

time points); SRA048049 (a study which examined different tissues from cultivar 

Kukri); SRA059240 (a study which surveyed various cultivars for variation, including 

AC_Barrie, Alsen, Baxter, Chara, Excalibur, Kukri, Pastor, RAC875, Westonia, 

Xianyon54, Volcani, Yitpi, Steele, Stephens, Truman, Caledonia, Grandin, ID0444, 

Jaypee, and Jupateco); and SRA071558 (a study which looked at heat stress of cultivar 

HD2985 (thermotolerant) and HD2329 (thermosusceptible)). 

7.2.3 MS/MS database searching  

The MS/MS database search was performed by MS-GF+, as outlined in Section 3.3. In 

this case study, trypsin, chymotrypsin, thermolysin and AspN were used as the 

http://wheat-urgi.versailles.inra.fr/Seq-Repository/RNA-Seq
http://www.ncbi.nlm.nih.gov/sra
http://sra.dnanexus.com/
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proteases for the different sources of MS/MS spectra. For the wheat flour dataset 

digested with protease trypsin, chymotrypsin and thermolysin, the instrument was set to 

TOF (QTOF) and for the meiotic tissue dataset, digested with trypsin, with one sub-set 

dataset digested with trypsin and AspN, the instrument was set to low-res LTQ (Ion 

Trap). MS-GF+ does not have thermolysin as an option for protease and therefore 

‘unspecific cleavage’ as the protease was chosen, based on evidence where MS-GF+ 

has previously been shown to identify peptides from unspecified proteases, such as αLP, 

outperforming Mascot [292]. The MS-GF+ results from unspecified cleavage 

(thermolysin), were then screened for peptides which contained >1 missed cleavage 

sites, based on the enzyme chemistry for thermolysin according to the Expasy peptide 

cutter tool (http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html). The R 

package ‘cleaver’ [597] from Bioconductor was used to identify which peptides 

contained >1 missed cleavage, and these peptides were then removed from further 

downstream analysis. 

7.2.4 Dataset processing 

The Wheat MIPS version 2.2 protein sequence FASTA file and GFF file required 

formatting into a compatible format for proteogenomics analysis, as outlined in Section 

3.4.1. In particular, the exon coordinates in the GFF file were in the wrong orientation 

on the reverse strand, in a 5’ to 3’ direction, and were subsequently corrected to a 3’ to 

5’ orientation using an in-house script. 

The total 85,437 MS/MS spectra from all datasets obtained for this study, were 

first assessed by searching against the known proteome, examining the effects of using 

MS-Cluster to cluster the MS/MS spectra, PepNovo to quality filter the MS/MS spectra, 

and an assessment of optimal precursor mass tolerances, as outlined in Section 3.4.6. 

Since all the MS/MS spectra were of high-accuracy, derived from a QTOF and also an 

LTQ Orbitrap mass spectrometer, this factor needed to be reflected in the search 

http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html
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parameters. Therefore, assessment of the optimal precursor mass tolerance, involved 

using a range of tolerances, 0.5, 1.0, up to 10.0 in 1.0 ppm increments, and then up to 

150.0 ppm in 5.0 ppm increments (Appendix File 7.2). 

All RNA-seq data were pre-processed for quality and aligned to the wheat 

genome as detailed in Section 3.4.3. The resulting alignment BAM files were then 

merged and used to generate a splice graph FASTA database. A six-frame translation of 

the genome was also created for proteogenomics analysis. The methods used for both 

splice graph and six-frame translation generation are outlined in Sections 3.4.4 and 

3.4.5, respectively. When running a MS/MS database search using the larger precursor 

mass tolerances for trypsin and chymotrypsin digests, as outlined below in Section 

7.2.5, smaller file sizes for the six-frame translation, of around 50 MB, were needed to 

keep the MS/MS database search within the walltime. 

7.2.5 Proteogenomics pipeline 

The proteogenomics pipeline used a two-pass search approach, combined with an 

improved two-stage FDR strategy as outlined in Section 3.5. The choice of not 

clustering the MS/MS spectra and not quality filtering with PepNovo was selected due 

to the small dataset size and the significant loss of MS/MS spectra when quality 

filtering. Based on the preliminary assessment outlined in Section 7.2.4, 75.0 ppm, 

110.0 ppm, 5.0 ppm, 10.0 ppm and 5.0 ppm precursor mass tolerances were chosen for 

the wheat flour trypsin digest, chymotrypsin digest, thermolysin digest, meiotic tissue 

trypsin digest, and meiotic tissue AspN digests, respectively. 

Using MS-GF+ on a cluster, the MS/MS spectra from each dataset were 

searched against the known proteome, six-frame translated genome and splice graph, 

and further processed using the two-pass search approach, and then the improved two-

stage FDR strategy as outlined in Section 3.5.1 and 3.5.2, respectively. 
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The choice of parameters for the proteogenomics pipeline, as outlined in Section 

3.5, included a minimum event probability for novel genes, distal events and proximal 

events of 90%, a peptide linkage distance of 8,500 bp representing ≥95% of gene sizes 

in the Wheat MIPS version 2.2 annotation, a minimum cluster size of 1, and a minimum 

of 1 unique peptide per cluster. 

The annotation events were further screened, as outlined in Section 3.5 and 

taking the same approach as in Section 6.2.5, accepting novel gene and distal events 

with ≥2 unique peptides and/or ≥99.9% event probability and proximal events filtered 

with an event probability of ≥99.8%. Single unique peptide annotation events identified 

outside these thresholds were screened against a protein repository before acceptance. 

However, the protein repository used in this study was NCBI NR, instead of NCBI 

RefSeq protein as was used in the previous chapter, because no wheat proteins (apart 

from mitochondrial and chloroplast) were represented in the highly curated RefSeq 

protein repository. Therefore, the NR protein repository was used to screen against with 

a higher level of specificity to account for the lack of a curated protein database. The 

outliers were identified through BLASTP searches against bread wheat in NR, with 

100% query coverage, no mismatches, and an E-value of at least 1E-03, with any 

peptides matching required to have a length of >10aa. The findings outlined later in 

Section 7.3 also used BLASTP searches against bread wheat in NR to identify 

supporting evidence for discussion. 

7.2.6 Improving gene predictions 

Once the novel annotations were filtered and reviewed, the gene prediction tool 

Augustus [102], was used to improve the overall gene models of the Wheat MIPS 

version 2.2 annotation. Augustus was first trained with 6,137 filtered FL-cDNA from 

Komugi-TriFLDB (http://trifldb.psc.riken.jp/download.pl) and 1,286,040 EST 

sequences from NCBI to generate a base gene model. The training was kindly 

http://trifldb.psc.riken.jp/download.pl
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conducted by Stefanie Koenig, from Mario Stanke’s group (http://bioinf.uni-

greifswald.de/bioinf/group/), the developer of Augustus. The novel annotation events, 

reference Wheat MIPS version 2.2 annotations and other additional extrinsic hints were 

then used as hints during gene prediction. Stefanie generated the additional extrinsic 

hints by: 1) masking the wheat genome using RepeatMasker [576] and generating 

repeat hints; 2) aligning 6,137 filtered FL-cDNA from Komugi-TriFLDB and all 

available EST sequences from NCBI, to the masked wheat genome using BLAT [122]; 

and 3) aligning all RNA-seq reads available from the URGI web site (http://wheat-

urgi.versailles.inra.fr/Seq-Repository/RNA-Seq) using Bowtie2/Tophat2 [126]. The 

Augustus gene prediction tool was then run on a compute cluster, as mentioned in 

Section 3.4.3, across all chromosome fragments, split into 10 MB sizes to improve 

throughput in a highly parallel manner, and using parameters as outlined in Section 

3.5.3, except that Augustus version 3.03 was used, and parameters “UTR” and 

“singlestrand” were set to on and off, respectively. The need to change some of the 

applied parameters arose due to a different version of Augustus (v3.03), which allowed 

for UTR predictions in this instance but not on both strands independently, which may 

have also been due to specific features of the Augustus wheat gene model prepared by 

Stefanie.  

7.3 RESULTS AND DISCUSSION 

The present study outlined improvements to the Wheat MIPS version 2.2 annotation of 

Triticum aestivum cultivar Chinese Spring, demonstrating the benefits of 

proteogenomics by integrating –omics datasets from genomics, proteomics and 

transcriptomics. Primarily, the study identified 189 (187 exclusively) novel annotation 

events, value-adding to the previous proteogenomics annotation by the dissertation 

author [12], outlining the benefits of performing a two-pass search approach with two-

stage FDR strategy, suitable for very large plant genomes, and also highlighting the 

http://wheat-urgi.versailles.inra.fr/Seq-Repository/RNA-Seq
http://wheat-urgi.versailles.inra.fr/Seq-Repository/RNA-Seq
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challenges for proteogenomics with fragmented genomes. 

7.3.1 Evaluation of pre-processing MS/MS spectra 

Prior to running the proteogenomics pipeline the MS/MS spectra were evaluated for the 

optimal pre-processing strategy and precursor mass tolerance (Appendix File 7.2). It 

was decided that clustering should not be used due to the small dataset size, with 

>100,000 MS/MS spectra being ideal, while quality filtering negatively impacted on 

each of the MS/MS spectral datasets, resulting in the majority of the MS/MS spectra 

being filtered out, which would have resulted in very few or no annotation events being 

identified in the downstream analysis. 

For the trypsin-digested wheat flour dataset, quality filtering reduced the peptide 

FDR after an initial 1% peptide-spectrum match (PSM) FDR filtering from 2.99% to 

1.88%, and the protein FDR from 11.59% to 3.8%, at the most stringent PepNovo 

quality score of 0.2 (Appendix Figure 7.1B-C). However, as can be seen in Appendix 

Figure 7.1A, the total number of MS/MS spectra lost after quality filtering ranged from 

15.52% at the lowest end to 62.33% at the most stringent cut-off. Applying scores 

between 0.05 – 0.1, as recommended by PepNovo (detailed in the Help File bundled 

with the tool), resulted in around 43.57% - 52.73% of the MS/MS spectra being lost. 

Approximately half of the MS/MS spectra were lost when using a mid-range score 

threshold, while the peptide FDR was maintained at around 2% - 3% with no 

improvements noticed. In addition, the number of MS/MS spectra, PSMs, and unique 

peptides dropped dramatically from 11,334 to 4,270, from 1,667 to 213, and from 535 

to 106, respectively, at the highest stringency (Appendix Figure 7.1A, D-E). 

For the chymotrypsin-digested wheat flour dataset, quality filtering reduced the 

peptide FDR after an initial 1% PSM FDR filtering from 2.44% to 0.00%, probably due 

to inaccuracies because of the small peptide numbers, and the protein FDR from 5.55% 
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to 0.00%, also likely due to inaccuracies with small protein numbers, at the most 

stringent PepNovo quality score of 0.2 (Appendix Figure 7.2B-C). However, as can be 

seen in Appendix Figure 7.2A, the total number of MS/MS spectra lost after quality 

filtering ranged from 10.61% at the lowest end to 74.49% at the most stringent cut-off. 

Applying scores between 0.05 – 0.1, as recommended by PepNovo, resulted in around 

53.56% - 64.36% of the MS/MS spectra being lost. Approximately half of the MS/MS 

spectra were lost when using a mid-range score threshold, while the peptide FDR was 

seen to vary widely. In addition, the number of MS/MS spectra, PSMs, and unique 

peptides dropped dramatically from 14,799 to 3,775, from 213 to 53, and from 41 to 6, 

respectively, at the highest stringency (Appendix Figure 7.2A, D-E). 

For the thermolysin-digested wheat flour dataset, which required MS/MS 

searching with ‘unspecific cleavage’, quality filtering reduced the peptide FDR after an 

initial 1% PSM FDR filtering from 6.98% to 3.30%, and the protein FDR from 19.51% 

to 7.14%, at the most stringent PepNovo quality score of 0.2 (Appendix Figure 7.3B-C). 

However, as can be seen in Appendix Figure 7.3A, the total number of MS/MS spectra 

lost after quality filtering ranged from 11.77% at the lowest end to 71.88% at the most 

stringent cut-off. Applying scores between 0.05 – 0.1, as recommended by PepNovo, 

resulted in around 51.35% - 61.56% of the MS/MS spectra being lost. Approximately 

half of the MS/MS spectra were lost when using a mid-range score threshold, while the 

peptide FDR was seen to increase and then drop significantly at the higher quality score 

cut-offs. In addition, the number of MS/MS spectra, PSMs, and unique peptides 

dropped dramatically from 16,776 to 4,718, from 1,036 to 183, and from 129 to 30, 

respectively, at the highest stringency (Appendix Figure 7.3A, D-E). 

 For the trypsin-digested wheat meiotic tissue dataset, quality filtering reduced 

the peptide FDR after an initial 1% PSM FDR filtering from 1.25% to 0.8%, and the 

protein FDR from 2.6% to 0.97%, at the most stringent PepNovo quality score of 0.2 
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(Appendix Figure 7.4B-C). However, as can be seen in Appendix Figure 7.4A, the total 

number of MS/MS spectra lost after quality filtering ranged from 63.43% at the lowest 

end to 94.42% at the most stringent cut-off. Applying scores between 0.05 – 0.1, as 

recommended by PepNovo, resulted in around 88.74% - 91.78% of the MS/MS spectra 

being lost. More than three quarters of the MS/MS spectra were lost when using a mid-

range score threshold, while the peptide FDR was maintained at around 1%, with no 

improvements noticed. In addition, the number of MS/MS spectra, PSMs, and unique 

peptides dropped dramatically from 42,528 to 2,371, from 5,324 to 258, and from 4,250 

to 243, respectively, at the highest stringency (Appendix Figure 7.4A, D-E). 

For the AspN-digested wheat meiotic tissue dataset, a small sub-set of the 

trypsin digest dataset, quality filtering reduced the peptide FDR after an initial 1% PSM 

FDR filtering from 0.91% to 0.00%, probably due to inaccuracies because of the small 

peptide numbers, and the protein FDR from 1.25% to 0.00%, also likely due to 

inaccuracies associated with small protein numbers, at the most stringent PepNovo 

quality score of 0.2 (Appendix Figure 7.5B-C). However, as can be seen in Appendix 

Figure 7.5A, the total number of MS/MS spectra lost after quality filtering ranged from 

66.64% at the lowest end to 95.73% at the most stringent cut-off. Applying scores 

between 0.05 – 0.1, as recommended by PepNovo, resulted in around 90.28% - 92.97% 

of the MS/MS spectra being lost. Almost all of the MS/MS spectra were lost when 

using a mid-range score threshold, while the peptide FDR was essentially 0% due to the 

small number of peptides. In addition, the number of MS/MS spectra, PSMs, and unique 

peptides dropped dramatically from 5,392 to 230, from 116 to 8, and from 110 to 8, 

respectively, at the highest stringency (Appendix Figure 7.5A, D-E). 

These results indicated that the datasets were not improving as further MS/MS 

spectra were removed. Also, any apparent improvements, such as reduced peptide FDR, 

were inaccurate because the small numbers made any statistical analysis difficult, and 
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any numbers that appeared to improve were likely due to the significant losses of 

MS/MS spectra on such small datasets. Additionally, if any quality filtering was to be 

applied to these datasets, very few or no annotations would likely be identified further 

downstream in analysis due to the FDR inaccuracies from such small datasets. 

The results indicated no clustering and no PepNovo quality filtering should be 

applied as clustering was not suitable for small MS/MS spectral datasets, and quality 

filtering reduced the dataset sizes significantly, resulting in too many lost MS/MS 

spectra and as a result poor accuracy of the statistical calculations required to ascertain 

any improvements to the dataset. Although no quality filtering was applied, as 

mentioned in Section 4.3.1, MS-GF+ applied a level of quality filtering based on log-

likelihood ratios [292], and so sufficiently poor MS/MS spectra would still have been 

removed from the analysis to reduce potential false positives. 

7.3.2 MS/MS database search parameter optimization 

As outlined in Section 3.4.6, high-accuracy MS/MS spectra are well suited to precursor 

mass tolerance optimization. This held true for the present study, as high-accuracy 

MS/MS spectra were generated from a QTOF and LTQ Orbitrap mass spectrometer. 

The original MS/MS spectra, with no clustering and quality filtering, were used 

to assess the precursor mass tolerances over a range, as outlined in Section 7.2.4 

(Appendix File 7.2). From this analysis it was determined that for the trypsin-digested 

wheat flour, chymotrypsin-digested wheat flour, thermolysin-digested wheat flour, 

trypsin-digested meiotic tissue and the AspN-digested meiotic tissue, that the optimal 

precursor mass tolerance should be 75.0 ppm, 110.0 ppm, 5.0 ppm, 10.0 ppm, and 5.0 

ppm, respectively (Appendix Figures 7.6, 7.7, 7.8, 7.9 and 7.10). After ≤1% PSM FDR 

filtering the following number of PSMs and peptide FDRs were obtained for each 

dataset. For the trypsin-digested wheat flour the maximum number of PSMs obtainable 
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was 2,755 at 75.0 ppm, while the peptide FDR was 3.5%. For the chymotrypsin-

digested wheat flour the maximum number of PSMs obtainable was 713 at 110.0 ppm, 

while the peptide FDR was 4.49%. For the thermolysin-digested wheat flour the 

maximum number of PSMs obtainable was 274 at 5.0 ppm, while the peptide FDR was 

4.08%. For the trypsin-digested meiotic tissue the maximum number of PSMs 

obtainable was 5,352 at 10.0 ppm, while the peptide FDR was 1.2%. For the AspN-

digested meiotic tissue the maximum number of PSMs obtainable was 126 at 5.0 ppm, 

while the peptide FDR was 0.8%. 

7.3.3 Proteogenomics pipeline 

A proteogenomics pipeline was customised using Enosi with MS-GF+, as outlined in 

Section 3.5, and illustrated in Figure 3.1. As in Chapter 6, for each MS/MS spectral 

dataset that was processed a two-pass search approach with improved two-stage FDR 

strategy was used. 

As was similarly applied in previous chapters, key variables for the 

proteogenomics pipeline were chosen. The peptide linkage distance was chosen based 

on the size of ≥95% of genes in the Wheat MIPS version 2.2 genome annotation, which 

was found to be 8,500 bp. As previously determined, a fixed peptide linkage distance 

brings with it problems when defining annotation events. However, in this study, due to 

the highly fragmented genome the peptide linkage distance now overshot the size of 

many smaller scaffolds containing genes, which could further contribute to 

misidentified annotation event types. 

Contamination was also not an issue in this study, as compared with Chapter 5, 

with no noticeable over-abundance of peptides matching chloroplast and/or 

mitochondrial proteins. In all MS/MS spectral datasets, digests were obtained from 1D 

and 2D gels, acting as a filtering step and improving the abundance of target proteins 
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within a given mass range. No fractionation of samples by tissue or cellular components 

was conducted, except for filtration by 1D and 2D gels. However, this filtration resulted 

in significant losses, as shown from the limited number of MS/MS spectra obtained, but 

was partially compensated for by using different tissues (flour and meiotic tissue) and 

proteases in an attempt to improve the peptide coverage. 

As applied previously in Section 7.2.5, the screening of novel and unique 

peptides in the novel annotation events was performed by accepting annotation events, 

that contained ≥2 unique peptides, and/or more stringent event probabilities, with single 

unique peptide outliers identified from homology searches against bread wheat in NR 

(Appendix Files 7.3 and 7.4). It was found that many accepted annotation events above 

the event probability/parsimony threshold also matched well to wheat proteins in NR. 

The majority of the outliers were found to just fall outside the event 

probability/parsimony thresholds applied, implying that for some annotation event 

types, further refinement of the applied thresholds could improve annotation event 

identification rates without relying so much on homology searches for their 

identification. This method is thus a viable approach to help define appropriate event 

probability thresholds when lacking a direct method to determine the annotation event 

FDR for a given event probability. The final minimum event probabilities after the 

applied filtering were 95.284% for novel genes, 95.615% for distal events and 98.167 

for proximal events. 

Similarly, as outlined in Chapter 6, due to the multiple sources of MS/MS 

spectra and RNA-seq data used in this analysis, with some being derived from different 

cultivars, there was the possibility of a number of variant sequences being 

misinterpreted as post-translational modifications (PTMs), or the false identification of 

novel peptides in incorrectly identified locations, both of which would affect the 

calculated event probabilities. These possibilities could be accounted for by including 
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and identifying known variants in the splice graph, as was previous demonstrated [474]. 

However, as mentioned in previous chapters, this approach only became known late in 

the study and so it was not pursued. The approach could, however, be used in a later 

wheat proteogenomics studies to compare variants from different cultivars that could 

account for differences in traits and gene expression profiles. Another source of false 

positives could be derived from the poor coverage of the assembly, which was more of 

an issue in this study, and could be addressed via a number of possible approaches, as 

previously mentioned in other chapters. For example: de novo sequencing, matching 

MS/MS spectra against closely homologous sequences, or modifications to approaches 

such as template proteogenomics. 

Another caveat was that due to the highly fragmented nature of the wheat 

genome, a number of genes probably span across multiple scaffolds in the assembly, 

thus artificially inflating the number of identified gene regions, which could also 

hamper attempts to identify novel and unique coding regions. Therefore, revisiting a 

proteogenomics annotation as the draft assembly improves is an important consideration 

in future studies, as the status of unique/shared peptides and the peptide linkage distance 

of annotation events and consequently their event probabilities may well change. 

Additionally, in the future, adding a larger source of MS/MS spectra and RNA-seq data 

with a focus on a single cultivar, as well as specifically targeting the identification of 

variants between cultivars, will further improve the annotation and improve the event 

probabilities of annotation events that fell below the set thresholds in the present study. 

 During the screening of annotation events containing single novel and unique 

peptides no obvious correlation could be found with spectral counts as the event 

probability increased. This was probably due to the relatively small number of MS/MS 

spectra used. A number of novel and unique peptides had very high spectral counts 

compared to other annotation events (Appendix File 7.3) and so were considered as 
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possible contaminants from chloroplast and/or mitochondria, as was found in Chapter 5. 

However, after screening of a number of these particular unique and novel peptides, no 

evidence could be found to indicate that these were indeed peptides derived from 

chloroplasts and/or mitochondria. The novel peptides with high spectral counts were 

mostly distributed amongst the novel gene and distal events, where false positive rates 

are often higher and may also be due to the draft genome being highly fragmented, with 

a higher proportion of MS/MS spectra being misinterpreted to the same sequence, due 

to the limited coverage and also possibly because no MS/MS spectral quality filtering 

was applied. 

7.3.4 Proteogenomics analysis 

A total of 6,834 novel peptides were identified with an event probability of ≥90%, at 

least 1 unique peptide per cluster and a minimum cluster size of 1, using the two-pass 

search approach with improved two-stage FDR strategy. After filtering the novel 

annotation events as detailed in Section 7.2.5, there were a total of 290 novel peptides 

remaining (Table 7.1 and Appendix Files 7.3 and 7.4). 

 The final 290 novel peptides led to 189 novel annotation events (187 

exclusively) in total amongst 96 genes (96 exclusively) and 189 proteins (187 

exclusively) from the Wheat MIPS v2.2 annotation. The novel annotations along with 

the Wheat MIPS v2.2 reference annotation, and the extrinsic hints as generated by 

Mario Stanke’s group outlined in Section 7.2.6, were then used as hints for Augustus 

gene prediction. A total of 413,587 genes and 426,007 proteins (≥66 aa in length) were 

predicted (Appendix File 7.5), and of these, 70 predicted proteins had 180 novel 

peptides incorporated (Table 7.1), of which 80 novel peptides were unique and 

identified in 49 of the 70 predicted proteins (Appendix File 7.6). The number of protein-

coding genes and proteins predicted by Augustus was far higher than the original 

reference Wheat MIPS v2.2 predictions (Table 7.1). In addition to the new predictions 
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previously not identified, the high number of predictions could also be attributed to two 

factors, as outlined in Section 3.5.3. 

 The number of novel peptides incorporated into the predictions was reasonably 

high at 180 novel peptides (62%), but relatively lower compared to the previous two 

chapters by about 20%, probably due to some genes which were unable to be predicted 

within short scaffolds, as well as the relatively lower number of MS/MS spectra due to 

the limited dataset size and absence of MS/MS spectra quality filtering. Of the 180 

incorporated novel peptides 20 were exclusively derived from the splice graph, 62 were 

identified in both the six-frame translation and splice graph, with the remaining 98 

identified exclusively in the six-frame translation. 

As demonstrated previously in Section 6.3.4, BLASTP analysis was performed 

to show how the predictions changed from the reference predictions. This was 

undertaken by searching all 426,007 Augustus predicted proteins (Table 7.1) against the 

Wheat MIPS v2.2 proteins, taking the top match, with E-value ≤1E-10. Any sequences 

that did not match were considered novel predictions, sequences that had a query 

coverage ≥95% with at least 1 mismatch were considered to be the same prediction as 

the reference protein, and the remaining matches were considered to be modified 

predictions, either due to Augustus predicting slightly different models or as a direct 

result of the supporting evidence. From this analysis, there were 257,341 non-

paralogous novel protein predictions, 111,004 modified predictions and 57,662 

predictions considered to be essentially the same as the reference. 

Searching all 70 protein predictions that had the novel peptide evidence 

incorporated, against the Wheat MIPS v2.2 proteins, taking the top match with E-value 

≤1E-10, identified 46 protein predictions likely to be modified predictions, leaving 24 

protein predictions, that found no match and were considered as non-paralogous novel 
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protein predictions (Table 7.1). 

Based on the annotation events incorporated into the Augustus gene predictions, 

the minimum event probabilities which led to a new Augustus gene prediction were: 

novel gene event 98.785%, gene boundary 99.639%, reverse strand event 99.899%, 

translated UTR and frame-shift 99.8%. No filtered annotation events from exon 

boundaries and novel exons could be incorporated into the Augustus gene predictions. 

Of the 290 novel peptides identified in this study, 127 were derived from the 

trypsin-digested wheat flour, of which 86 were included in new predictions, with 41 

unique peptides. A total of 97 peptides were derived from chymotrypsin-digested wheat 

flour, of which 68 were included in new predictions, with 19 unique peptides. A total of 

3 peptides were derived from thermolysin-digested wheat flour, of which 2 were 

included in new predictions, 1 of which was a unique peptide. A total of 55 peptides 

were derived from trypsin-digested meiotic tissue, of which 20 were included in new 

predictions, 16 of which were unique. A total of 9 peptides were derived from AspN 

digested meiotic tissue, of which 4 were included in new predictions with 3 unique. One 

novel peptide was identified in both trypsin-digested wheat flour and trypsin-digested 

meiotic tissue. 

In the initial study 16 novel peptides were identified in 33 novel annotation 

events [12]. Of these 5 novel peptides were re-identified from the 290 identified in this 

study, 127 of which were from the trypsin-digested wheat flour. This demonstrated that 

the present study was able to significantly improve upon the previous work, even 

though in this study tighter event probability stringencies were applied. Including the 

novel peptides derived from the trypsin-digested wheat flour which were not re-

identified in this study, overall this new study demonstrated a ~8x improvement in the 

novel peptide identification rate. Overall, compared to the initial study, a total of 156 
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additional novel annotation events were identified. 

 The reason why an additional 122 novel peptides were identified from the 

trypsin-digested wheat flour in this study was probably due to a number of factors: 1) 

the use of MS-GF+ over InsPecT; 2) a tighter precursor mass tolerance (75.00 ppm 

versus 2.0 Da); 3) the two-pass search approach with improved two-stage FDR strategy 

versus the combined FDR strategy; and 4) the application of a later version of the 

Wheat MIPS annotation (November 2013 version used in the previous proteogenomics 

study [12] versus July 2014 (v2.2) for this study). 

 The previous study [12] validated 50 high confidence proteins, consisting of 152 

peptides, whereas in this study 107 high confidence proteins were identified consisting 

of 557 peptides (Table 7.1). Of the 557 peptides that were mapped to 107 high 

confidence proteins, 174 peptides were derived from trypsin-digested wheat flour, and 

of these 54 peptides were re-identified from the 50 validated proteins from the previous 

study. The differences in identification could be attributed to the same reasons for the 

novel peptides mentioned above, as well as the difference in method used to identity 

high confidence proteins. In the previous study, the protein probability was used based 

on the product of the local FDR of mapped peptides, whereas in this study the use of 

protein probability was discarded from the proteogenomics pipeline in favour of simply 

identifying proteins containing at least 2 peptides with at least 1 unique peptide. 
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Table 7.1 Summary of wheat proteogenomics annotations 

The results of the proteogenomics analysis of the Wheat MIPS v2.2 annotation, using the two-pass search 

approach with improved two-stage FDR strategy. 

Total Wheat MIPS v2.2 genes 99,386 

Total ‘known’ protein-coding genes 99,386 

Total ‘known’ proteins 293,053 

Raw MS/MS search ‘known’ protein matches ≤1% PSM FDR 1,970 

Proteogenomics mapping: Total 'known' proteins ≤1% PSM FDR 16,635 

Proteogenomics mapping: Total ‘known’ proteins ≤1% PSM FDR (≥2 peptides with 1 unique) 107 

 

Total identified 'novel' peptides ≤1% PSM FDR 14,151 

Raw MS/MS search ‘known’ peptides ≤1% PSM FDR 4,471 

Proteogenomics mapping: Total identified 'known' peptides ≤1% PSM FDR 4,474 

Proteogenomics mapping: Total identified 'known' peptides ≤1% PSM FDR (≥2 peptides with 1 unique) 557 

 

Frame-shifts 46 

Translated UTRs 9 

Exon boundaries 17 

Novel splices 0 

Novel exons 39 

Gene boundaries 17 (15) 

Reverse strands 24 (24) 

Novel genes 37 

 

Total annotation events 189 (187) 

Total genes affected 96 (96) 

Total proteins affected 189 (187) 

Total novel peptides in affected genes/proteins 290 

 

Total Augustus protein-coding gene predictions 413,587 

Total Augustus protein predictions 426,007 

Total Augustus gene predictions with incorporated novel peptides 67 

Total Augustus protein predictions with incorporated novel peptides 70 

Total novel peptides incorporated into Augustus protein predictions 180 

Improved protein predictions with incorporated novel peptides 46 

Novel non-paralogous protein predictions with incorporated novel peptides 24 

Note: Numbers in parenthesis represent the exclusive numbers. The inflationary effect of a large peptide 

linkage distance on gene boundaries and reverse strands was removed by assigning a peptide cluster as 

either a proximal or distal event, not both, with preference placed on proximal events. 

7.3.5 Novel gene annotation 

A total of 37 novel genes (Table 7.1) were identified. An example of one of these novel 

genes was on chromosome 5BL, fragment 5BL10923515, spanning positions 6,935 to 

8,434, with an event probability of 100%, consisting of 5 unique and 3 shared peptides 

and with 24 PSMs assigned, derived from trypsin-digested wheat flour protein. In 

addition, an Augustus gene prediction was carried out incorporating the novel peptides, 

exon, exon_part and intron hints, predicting 1 new gene model (Figure 7.1, and with a 

sample of 14 of 24 representative MS/MS spectra supporting annotated MS/MS spectra 



 

 265 

in Appendix Figure 7.11). 

Performing a BLASTP search against bread wheat in NR revealed that novel 

peptide “AFLQPSHYDADEIAFVR” matched an unnamed protein product 

(CDM82143.1 with E-value = 1.6), with 35% query coverage and 100% identity; novel 

peptide “ALAFPQQAR” matched gamma-gliadin (AGZ20266.1 with E-value = 1.6) 

with 88% query coverage and 75% identity; novel peptide “AQPESVFVAGPQQQR” 

matched globulin 3B (ACJ65515.1 with E-value = 0.17) with 53% query coverage and 

88% identity; novel peptide “EGDVFVIPAGSIVYSANTHR” matched storage protein 

(AAA34269.1 with E-value = 6E-04) with 90% query coverage and 72% identity; novel 

peptide “EGEGVLVLLR” matched unnamed protein product (CDM83362.1 with E-

value = 1.3) with 80% query coverage and 88% identity; novel peptide 

“GGGGGSGSEKEDIQPR” matched homeobox protein (BAH03543.1 with E-value = 

0.96) with 50% query coverage and 100% identity; novel peptide “IYIVVEGR” 

matched CBL-interacting protein kinase 23 (AFR90218.1 with E-value = 5.0) with 75% 

query coverage and 83% identity; and novel peptide “SLTGEKPR” matched 

phenylalanine ammonia-lyase (AAA50849.1 with E-value = 6.5) with 87% query 

coverage and 86% identity. The Augustus gene prediction g265543 matched to storage 

protein (AAA34269.1 with E-value = 1E-54) with 94% query coverage and 38% 

identity. The most significant novel peptide “EGDVFVIPAGSIVYSANTHR” and the 

Augustus gene prediction g265543 both matched a storage protein. Many of these 

matches were also of low coverage, identity and E-value, indicating that the new gene 

prediction may be a truly novel gene, possibly a storage protein homolog or similarly 

functional protein. 

http://www.ncbi.nlm.nih.gov/protein/669029220?report=genbank&log$=prottop&blast_rank=1&RID=W655AZMT014
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Figure 7.1 Novel gene annotation 

A novel gene annotation event was located on chromosome 5BL, fragment 5BL10923515, and led to a 

new gene prediction. The novel peptides were incorporated into the Augustus predicted gene g265543. 

Extrinsic hints from EST, cDNA and RNA-seq evidence indicate exon, exon_part and intron hints, in 

agreement with the novel peptides and new prediction. 

7.3.6 Gene boundary annotation event leads to a new gene prediction 

There were 17 (15 exclusive) gene boundary annotation events identified (Table 7.1). 

An example of a gene boundary annotation event was on chromosome 1AL, fragment 

1AL3923345, spanning positions 10,484 to 12,796, with an event probability of 100%, 

consisting of 8 unique and 14 shared peptides, and with 50 PSMs assigned, 38 derived 

from trypsin-, 11 derived from chymotrypsin- and 1 derived from thermolysin-digested 

wheat flour protein. The gene boundary event was identified for gene 

Traes_1AL_52FE5D716, protein-coding transcripts 2 and 3. In addition, an Augustus 

gene prediction was carried out incorporating the novel peptides, reference gene 

Traes_1AL_52FE5D716 and exon_part and intron hints, predicting two new gene 

models. One gene was an identical prediction to the reference gene 

Traes_1AL_52FE5D716, whereas the other gene was a completely novel prediction in 

close proximity to the reference gene Traes_1AL_52FE5D716 prediction (Figure 7.2, 

and with a sample of 25 of 50 supporting annotated MS/MS Appendix Figure 7.12). 
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Performing a BLASTP search against bread wheat in NR revealed the 22 novel 

peptides matched to a high molecular weight (HMW) glutenin (CAC84119.1, P02861.1, 

CAC84121.1, CAC40684.1, CAC83002.1, AAA62315.1, CAE00624.1 and 

BAN29068.1 with E-value range: 0.086 – 2E-24) with 100% query coverage and 

identity. The two reference protein-coding transcripts 2 and 3 matched a protein kinase 

(ABG68041.1 with E-value = 0.0) with 100% query coverage and 95% identity, and an 

unnamed protein product (CDM85023.1 with E-value = 3.3) with 30% query coverage 

and identity, respectively. The Augustus gene prediction g4797 matched a HMW 

glutenin (AHZ62762.1 with E-value = 0.0) with 100% query coverage and 96% 

identity, and gene g4798 matched a protein kinase (ABG68041.1 with E-value = 0.0) 

with 100% query coverage and 96% identity. 

The novel peptide “QPGYYSTSPQQLGQGQPR” (Figure 7.2), which matched 

a HMW glutenin (BAN29068.1) was not incorporated into the prediction and was a 

shared peptide, probably derived from a different genomic region, and also probably 

from a HMW glutenin gene. The novel peptide and hints evidence (Figure 7.2) 

indicated that the gene boundary annotation identified was actually a novel gene 

annotation, and probably a HMW glutenin. No known peptides were identified for the 

reference gene Traes_1AL_52FE5D716, and both gene predictions g4797 and g4798 

matched to two different proteins in NR, indicating that it was unlikely that these two 

genes were simply a fragmented Augustus gene prediction. 

The misidentification of this annotation as a gene boundary event also 

highlighted again the difficulty of using a fixed value peptide linkage distance to 

conduct proteogenomics analysis. If the peptide linkage distance were significantly 

shorter (i.e. the distance between the peptide cluster and the neighbouring reference 

gene), this annotation would have been identified correctly as a novel gene instead of a 

gene boundary annotation. To improve the accuracy of the assignment of annotation 

http://www.ncbi.nlm.nih.gov/protein/110341803?report=genbank&log$=prottop&blast_rank=1&RID=W69BDZPY015
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event types such as these, the determination of a peptide linkage distance through a 

dynamic approach using additional sources of evidence could be used. 

Figure 7.2 Novel gene annotation misidentified as a gene boundary event 

A gene boundary annotation event that led to two gene predictions; g4798 in line with the original 

reference gene Traes_1AL_52FE5D716 and gene g4797 a new gene prediction in close proximity to the 

reference gene on chromosome 1AL, fragment 1AL3923345. The novel peptides and exon_part hints led 

to a novel gene prediction, while the reference Traes_1AL_52FE5D716 gene, exon_part, and intron hints 

led to a similar prediction to the reference. No known peptides were identified for the reference gene 

indicating that both gene predictions were unlikely to be simply fragmented predictions. 

7.3.7 Reverse strand annotation 

There were 24 (24 exclusive) reverse strand annotation events identified (Table 7.1). An 

example of a reverse strand annotation event was on chromosome 3AL, fragment 

3AL4447768, spanning positions 2,753 to 2,968, with an event probability of 99.90%, 
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consisting of 1 unique and 2 shared peptides, and with 3 PSMs assigned, derived from 

trypsin-digested meiotic tissue. The reverse strand event was identified for gene 

Traes_3AL_8EF777719, and its single protein-coding transcript. In addition, an 

Augustus gene prediction was carried out, incorporating the novel peptides, reference 

gene Traes_3AL_8EF777719 and exon_part hints, predicting a new gene model on the 

opposite strand and removing the previous reference prediction. This indicated that the 

original reference gene was predicted on the wrong strand (Figure 7.3, and with 3 

supporting annotated MS/MS spectra in Appendix Figure 7.13). 

Performing a BLASTP search against bread wheat in NR revealed that the three 

novel peptides matched to an unnamed protein product (CDM87003.1 with E-value 

range: 1.1 – 6E-07) with 100% query coverage and percentage identity ranging between 

92% and 100%. The single reference protein-coding transcript matched to wall-

associated kinase-like 1 (AAY34779.1 with an E-value = 0.47) with 25% query 

coverage and 34% identity. The Augustus gene prediction g50683 matched unnamed 

protein product (CDM87003.1 with E-value = 3E-86) with 90% query coverage and 

89% identity. This evidence indicated that the novel peptides and the new prediction 

found a better match to a Triticum aestivum protein than the reference protein from the 

Wheat MIPS v2.2 annotation, confirming the proteogenomics annotation was probably 

correct. 
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Figure 7.3 Reverse strand annotation 

A reverse strand annotation event, located on chromosome 3AL, fragment 3AL4447768, where the 

original Traes_3AL_8EF777719 prediction was predicted on the forward strand. An Augustus gene 

prediction on the reverse strand was suggested with incorporated novel peptides and exon_part hints. 

7.3.8 Translated UTR annotation hides an exon boundary event 

There were 9 translated UTR annotation events identified (Table 7.1). An example of a 

translated UTR annotation event was on chromosome 1DL, fragment 1DL2289899, 

spanning positions 56 to 2,161, with an event probability of 100%, consisting of 3 

unique and 16 shared peptides, and with 34 PSMs assigned, 5 derived from trypsin- and 

14 derived from chymotrypsin-digested wheat flour protein. The translated UTR event 

was identified for gene Traes_1DL_757719220 and protein coding transcript 4, which 

also directly overlapped protein coding transcripts 2 and 3, both of which had a 41 bp 

region of ambiguous X amino acid residues at the 5’ end of their protein predictions 

(Appendix File 7.1). In addition, an Augustus gene prediction was conducted 

incorporating the novel peptides, reference gene Traes_1DL_757719220 and exon_part 

and intron hints, predicting a gene model, and revised from the original reference 

prediction, replacing the intron from the reference gene with an exon region by 

incorporating the novel peptides (Figure 7.4, and with a sample of 25 of 34 supporting 

annotated MS/MS spectra in Appendix Figure 7.14). 
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Performing a BLASTP search against bread wheat in NR revealed that the novel 

peptides matched to a HMW glutenin (AAS67321.1, ABB05179.1, AEF32781.1, 

AEL99901.1, AHI62992.1, BAH96595.1, CAC40684.1 and P02861.1 with E-value 

range: 0.003 – 7E-21) with 100% query coverage and identity. The reference protein-

coding transcript 4 matched protein kinase (ABG68032.1 with E-value = 2E-13) with 

71% query coverage and 93% identity, while reference protein-coding transcripts 2 and 

3 matched HMW glutenin (AAS67319.1 with E-value = 9E-55 and AAS67320.1 with 

E-value = 1E-46, respectively) with 46% query coverage and 100% identity, and 66% 

query coverage and 96% identity, respectively. The Augustus gene prediction g307507 

matched HMW glutenin (P08489.1 with E-value = 0.0) with 99% query coverage and 

identity, with the 1% coverage in disagreement located at the 5’-most end of the 

prediction. 

The novel peptides, reference protein-coding transcripts 2 and 3, and the revised 

prediction all matched HMW glutenin in NR, while the reference protein-coding 

transcript 4, which was identified specifically for this annotation event, matched protein 

kinase. In addition, all novel peptides and the 7 identified known peptides were within 

the same frame as transcripts 2 and 3 (frame +2), while transcript 4 was in a different 

frame (frame +3) (Figure 7.4). The revised prediction failed to predict the exon/CDS 

region of transcript 4, which also lacks support from the extrinsic exon_part and intron 

hints (Figure 7.4). Additionally, the 5’ region of the gene prediction appeared truncated, 

with a different exon in an alternate frame (frame +1) and an intron, which conflicted 

with all the evidence, including the BLASTP results, which found inconsistencies with 

the 5’ end of the match to a HMW glutenin. This is because there was only one 

Methionine translation initiation codon (ATG) located at the 5’ end of the scaffold, in 

agreement with the Augustus gene prediction. The absence of any more translation 

initiation sites further upstream was probably because the actual gene overlapped the 
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edge of the scaffold. This could also explain why the original reference protein-coding 

transcripts 2 and 3 were truncated at the 5’ end with a 41 bp ambiguous X protein 

sequence in their protein predictions, because the available evidence used for the Wheat 

MIPS v2.2 predictions overlapped the end of the scaffold and, instead of producing half 

a protein sequence, X residues were used instead to indicate incompleteness. 

Although this annotation event was identified as a translated UTR event for 

transcript 4, it was also unreported by Enosi as an exon boundary event for transcripts 2 

and 3. The annotation event did not completely agree with the hints evidence, however 

it is worth noting that many of the extrinsic hints were also originally used for the 

Wheat MIPS v2.2 annotation, and so should not be considered as complete evidence. 

An exon boundary event was never identified for transcripts 2 and 3 because the only 

identified unique peptides within the peptide cluster mapped within their 5’ regions 

which, as described previously, contained a 41 bp region with ambiguous X amino acid 

residues and so were never identified as known peptides belonging to those transcripts. 

This is because, as described in Section 3.5, this analysis only accepts peptide clusters 

with at least 1 unique peptide. However, if the unique peptides were identified mapping 

to transcripts 2 and 3, they would have been identified as known peptides and therefore 

the annotation event would not have been identified. If, to allow detection of this 

annotation event, the analysis was to accept all annotation events with a minimum of 

zero unique peptides, then the annotation event would have been identified in this case. 

However, all possible events would have also been identified, including many which are 

ambiguous due to multiple locations across the genome, which would have inflated the 

FDR at the annotation event level. 

Overall, the evidence was in agreement with transcripts 2, 3 and the revised 

Augustus gene prediction, but required a correction to exon 1 and further extension to 

the 5’ region of the gene. Further extending the scaffold towards the 5’ region would 
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improve the prediction and also resolve the 41 bp ambiguous X amino acid residue 

region of the original transcript 2 and 3 protein predictions, which should then reach full 

coverage and identity with the identified HMW glutenin. 
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Figure 7.4 Exon boundary annotation via a translated UTR event 

An exon boundary annotation identified via a translated UTR event, located on chromosome 1DL, 

fragment 1DL2289899. The novel peptides appeared within the untranslated UTR region of transcript 4 

but within a different frame and they also appeared as an exon boundary for transcripts 2 and 3, within the 

same frame. Known peptides appeared mapped to both transcripts 2 and 3, within the same frame as the 

novel peptides. The evidence indicates an annotation event more in line with transcripts 2 and 3. There 

was also no hints evidence for many of the novel peptides spanning the intron region. The four 5’-most 

novel peptides map to a 41 bp ambiguous X amino acid region at the 5’ end of transcripts 2 and 3 

indicating incompleteness of the prediction. The revised Augustus gene prediction agrees with transcripts 

2, 3 and the novel peptides. 
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7.3.9 Exon boundary annotation 

There were 17 exon boundary annotation events identified (Table 7.1). An example of 

an exon boundary annotation event was on chromosome 6AL, fragment 6AL2841856, 

spanning positions 6 to 71, with an event probability of 99.899%, consisting of 1 unique 

and 1 shared peptide, and with 2 PSMs assigned, derived from trypsin-digested meiotic 

tissue. The exon boundary event was identified for gene Traes_6AL_895062375 and its 

single protein-coding transcript. In addition, an Augustus gene prediction was carried 

out incorporating the novel peptides, reference gene Traes_6AL_895062375 and 

exon_part hints. However, no Augustus gene prediction could be generated, regardless 

of the proteogenomics evidence and hints supplied. This was likely due to the small 

fragment size of 6AL2841856 which was just 315 bp in size, with only 3 Methionine 

translation initiation codons across the entire length of the fragment, and no translation 

initiation codons towards the 5’ region of the original Traes_6AL_895062375 gene 

where the novel peptides were mapped. Also, in the absence of a suitable translation 

initiation codon, Augustus probably penalises any evidence and resulting prediction. 

Extending this fragment length further given the supporting evidence would probably 

see a prediction along the length of this chromosome fragment (Figure 7.5, and 2 

supporting annotated MS/MS spectra in Appendix Figure 7.15). 

Performing a BLASTP search against bread wheat in NR revealed the novel 

peptides matched to a putative pyruvate dehydrogenase (ADD73514.1 with E-value 

range: 0.002 – 2E-08) with 100% query coverage and identity. The single reference 

protein-coding transcript matched putative pyruvate dehydrogenase (ADD73514.1 with 

E-value = 1E-55) with 100% query coverage and 99% identity. The 1% discrepancy in 

identity was attributed to a region missing from the original prediction, of around 77 bp 

according to a BLASTP alignment to the putative pyruvate dehydrogenase in NR. All 

other exon boundary events identified in this study could not be incorporated into 



 

 276 

Augustus gene predictions, some probably due to their small fragment sizes and/or 

missing appropriate translation initiation start (TIS) sites, while others were possibly 

due simply to false positive peptide identifications. 

As pointed out with this annotation event, and the translated UTR event 

previously discussed in Section 7.3.8, the fragmented nature of the genome can be a 

limiting factor for gene prediction. In addition, many scaffolds making up the genome 

were smaller than the peptide linkage distance. This size constraint further limited the 

approach to recruit more genes and peptide clusters into annotation events, reducing the 

upper bounds for the identification of novel annotation events and also further 

increasing the chances of misidentifying an annotation event. As a result, it is important 

to revisit the proteogenomics analysis as future versions of the wheat genome assembly 

become available. 

Figure 7.5 Exon boundary annotation 

An exon boundary annotation event, located on chromosome 6AL, fragment 6AL2841856. Two novel 

peptides overlapped the exon boundary of gene Traes_6AL_895062375, which was supported by 

exon_part hints. This evidence, as well as the reference gene was used as hints for gene prediction. 

However, no prediction resulted, probably due to the short fragment length of 315 bp, resulting in a 

missing TIS site from further upstream needed for Augustus gene prediction. Later extensions of his 

fragment on chromosome 6AL will likely allow for a prediction, given the supporting evidence that is 

already available. 

7.3.10 Frame-shift annotation 

There were 46 frame-shift annotation events identified (Table 7.1). An example of a 

frame-shift annotation event was on chromosome 1AL, fragment 1AL3886502, 

spanning positions 4,108 to 4,197, with an event probability of 99.80%, consisting of 1 
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unique peptide, and with a single PSM assigned, derived from trypsin-digested meiotic 

tissue. The frame-shift event was identified for gene Traes_1AL_C8971FBEE and its 

single protein-coding transcript. In addition, an Augustus gene prediction was carried 

out incorporating the novel peptide, reference gene Traes_1AL_C8971FBEE, exon_part 

and intron hints, which predicted a gene model revised from the original reference 

prediction, by splitting the original prediction with 1 exon/CDS into a gene prediction 

with 2 exons/CDS, with the novel peptide incorporated into the first exon/CDS in a 

different frame to that that of the original (Figure 7.6, and a single supporting annotated 

MS/MS spectrum in Appendix Figure 7.16). 

Performing a BLASTP search against bread wheat in NR revealed the novel 

peptide matched to an unnamed protein product (CDM84219.1 with E-value = 6.3) with 

53% query coverage and 57% identity. The single reference protein-coding transcript 

matched unnamed protein product (CDM82578.1 with E-value = 1.5) with 16% query 

coverage and 29% identity. The Augustus gene prediction g2008 matched unnamed 

protein product (CDM81340.1 with E-value = 0.026) with 36% query coverage and 

41% identity. 

The novel peptide, reference protein-coding transcript and gene prediction 

g2008 all matched different unnamed protein products. However, of significant note 

was that the E-value, query coverage and percentage identity of gene prediction g2008 

were better than that found with the reference protein-coding transcript. One shared 

known peptide was mapped to the reference protein-coding transcript and also appeared 

in the g2008 gene prediction. Additionally, as can be seen in Figure 7.6, many of the 

hints appeared located around the two new exons, more so around exon 2 which can be 

seen when the exon_part hints are not stacked on one another indicating potential 

splicing patterns, even though there were no intron hints to indicate definitive evidence. 

Many of the other 45 frame-shift events also contained single unique peptides, all with 
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the same event probability and most with the same or similar number of PSMs 

identified. 

Of the remaining 45 frame-shift events, 27 were incorporated into predictions. 

These were visually inspected and appeared to conflict with the available hints. Also, in 

some instances a number of known peptides mapped to the same region as the frame-

shift novel peptide, indicating a direct conflict within the proteogenomics evidence 

itself. This demonstrated that careful consideration of all the provided evidence, 

particularly with the frame of mapped peptides, is needed before acceptance of a new 

annotation and the inferred prediction, and that the acceptance of an annotation event 

should never solely rely on the confidence of the event probability alone, particularly 

when the evidence is only in the form of a single unique peptide. 

Figure 7.6 Frame-shift annotation 

A frame-shift annotation event located on chromosome 1AL, fragment 1AL3886502. A novel and unique 

peptide was identified in a different frame to reference gene Traes_1AL_C8971FBEE. The novel peptide, 

reference gene Traes_1AL_C8971FBEE, and exon_part and intron hints were incorporated into new 

prediction g2008, which consisted of two exons in two different frames, in agreement with the novel 

peptide, and also the single supporting known mapped peptide. 
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7.3.11 Novel exon annotation 

There were 39 novel exon annotation events identified (Table 7.1). An example of a 

novel exon annotation event was on chromosome 1DS, fragment 1DS1899380, 

spanning positions 5,423 to 5,449, with an event probability of 99.80%, consisting of 1 

unique peptide, and with a single PSM assigned, derived from chymotrypsin-digested 

wheat flour. The novel exon event was identified for gene Traes_1DS_947F6918F, 

protein-coding transcript 1, 2 and 3. In addition, an Augustus gene prediction was 

carried out using the novel peptides, reference gene Traes_1DS_947F6918F and 

exon_part and intron hints. However, the Augustus gene prediction did not incorporate 

the novel peptide, only the reference gene, exon_part and intron hints (Figure 7.7, and a 

single supporting annotated MS/MS spectrum in Appendix Figure 7.17). 

Performing a BLASTP search against bread wheat in NR revealed that the novel 

peptide matched to an unnamed protein product (CDM83565.1 with E-value = 2.2) with 

88% query coverage and 75% identity. The three reference protein-coding transcripts 

matched chloroplast MDAR6 protein (AKA43771.1 with E-value range: 2E-06 – 4E-

07) with ~48% query coverage and 32% identity. 

The three reference protein-coding transcripts appeared to be poorly annotated, 

with no entries in NR, since they found no matches with significant coverage. However, 

the proteins did have 11 shared peptides mapped, supporting their prediction, ranging in 

lengths from 7 aa to 24 aa. By comparison, the novel peptide only found poor 

significant matches to known proteins in NR, with a relatively short peptide of only 9 aa 

and with little supporting evidence, indicating that the annotation event may be a false 

positive. 

None of the other 38 novel exon annotations identified in the proteogenomics 

analysis led to new predictions, with the majority of novel exon annotations appearing 
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to conflict with the extrinsic EST, cDNA and RNA-seq evidence from the exon, 

exon_part and intron hints. However, in a few novel exon annotation events, including 

this example novel exon event for gene Traes_1DS_947F6918F, there appeared be to 

intron and exon_part hints across the same region (Figure 7.7), which may account for 

the single novel exon peptide identified. Until further evidence comes to light in support 

of these novel exon annotation events, it is assumed that all novel exon annotation 

events in the present study are likely false positives. 

Figure 7.7 Novel exon annotation 

A novel exon annotation event located on chromosome 1DS, fragment 1DS1899380. A novel and unique 

peptide was identified in the middle of an intron from gene Traes_1DS_947F6918F. The reference gene, 

novel peptide, exon_part and intron hints were used for gene prediction. All but the novel peptide could 

be incorporated into the prediction, even though some exon_part hints can be seen spanning the intron 

region. 
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7.3.12 N-terminal acetylated peptides 

As applied in previous chapters and the overall study, N-terminal acetylation was used 

as a variable modification to infer the location of TIS sites, in order to further validate 

novel annotation events and identify potentially over-predicted known genes, or identify 

alternative protein isoforms with different TIS sites. A total of 87 N-terminal acetylated 

peptides were identified among 348 genes (795 protein isoforms) in the Wheat MIPS 

v2.2 annotation (Appendix File 7.7), and 10 were identified from 10 high confidence 

proteins (≥2 peptides with at least 1 unique). Of the total 348 genes there were 208 

genes (~60%) that had N-terminal acetylated peptides in agreement with their TIS sites, 

and the other 140 genes (~40%) had N-terminal acetylated peptides in disagreement 

with their TIS sites. Due to the protein inference problem only unique N-terminal 

acetylated peptides were considered and these were found to map to 11 genes (11 

protein isoforms), all of which were in agreement with their TIS sites. 

 Among the 290 novel peptides identified (Table 7.1), 12 were found to be N-

terminal acetylated (Appendix File 7.7). Of these, 11 were unique and 1 was shared, 

with 10 of the unique peptides not incorporated into any Augustus gene predictions. The 

two remaining novel N-terminal acetylated peptides incorporated into gene predictions 

were not incorporated at the N-terminal-most end of the predictions, but instead resided 

towards the C-terminal or the middle of the predictions. 

The one unique N-terminal acetylated peptide “RRGGQGIWRRH” was 

incorporated into Augustus gene prediction g151373, located at positions 18,926 to 

24,839, inferred by a novel gene annotation event, on chromosome 2BL, fragment 

2BL8085194, spanning positions 18,334 to 21,094. The N-terminal acetylated peptide 

was located well within the prediction at positions 21,062 to 21,094, conflicting with its 

suggested TIS site. The ambiguity that the locations of these N-terminal acetylated 

peptides presents could probably be attributed to the level of fragmentation of the 
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genome, with the large number of missing sequence regions causing misrepresentation 

of the majority of truly unique and shared peptides within the genome. 

The single shared N-terminal acetylated novel peptide “RWERRPR” was 

identified within a gene boundary event on chromosome 1AS, fragment 1AS3271894, 

spanning positions 3,166 to 3,186, for gene Traes_1AS_16ED0B5C3 and its two 

protein-coding transcripts, as well as gene Traes_1AS_70E8717D0 and its single 

protein-coding transcript. The N-terminal acetylated peptide was, however, incorporated 

into two Augustus gene predictions: g12834 and g320082, located on chromosome 

1AS, fragment 1AS3271894, and spanning positions 3,094 to 3,715, in line with the 

proteogenomics evidence, and on chromosome 2DL, fragment 2DL9871754, spanning 

positions 1 to 785, respectively. The location of the peptide from gene g320082 on 

chromosome 2DL was not reported within any novel annotation events, due to the lack 

of at least a single unique and novel peptide within the peptide cluster at that genomic 

location. 

There were only 11 unique and known N-terminal acetylated peptides identified 

amongst the known proteins and only 1 unique and 1 shared novel N-terminal 

acetylated peptide identified amongst the novel annotation events, probably due to the 

high level of fragmentation of the genome. As a result, the ability to identify all of these 

N-terminal acetylated peptides as unique and thus provide a level of unambiguity to 

reliably identify alternative TIS sites is sorely lacking. Moving forward, this would 

require the genome to be further assembled before any enhanced interpretation of the 

locations of these N-terminal acetylated peptides. 

Methods to further assist in identifying the N-terminal ends of proteins to help 

validate the known proteins and improve the identification of novel annotation events 

could be implemented through the use of N-terminomics [452], and other methods such 
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as heuristic and database techniques, as well as top-down proteomics, as was outlined in 

the preceding two chapters (Sections 5.3.13 and 6.3.9). 

7.3.13 Impact of search space 

Applying the two-pass search approach with two-stage FDR strategy, as previously 

demonstrated in Chapter 6, significantly reduced the impact that the search space had on 

the proteogenomics analysis. Using the same strategy in the present study 1,970 of 

293,053 proteins from Wheat MIPS v2.2 annotation were identified during the MS/MS 

database searches using MS-GF+, while the total number of proteins mapped by 

proteogenomics was 16,635. Of these, 107 high confidence proteins had ≥2 peptides 

with 1 unique peptide. 

7.4 SUMMARY 

This present study has highlighted the advantages of proteogenomics and how different 

legacy –omics datasets from genomics, proteomics and transcriptomics can be 

repurposed for genomic annotation. Primarily, the study made a significant contribution 

to the genome annotation of Triticum aestivum (Bread wheat), specifically the Wheat 

MIPS v2.2 annotation, and which further contributed to the dissertation author’s 

previous proteogenomics study [12]. The present study identified 290 novel peptides 

contributing to 189 novel annotation events (187 exclusively), consisting of 46 frame-

shifts, 9 translated UTRs, 17 exon boundaries, 39 novel exons, 17 gene boundaries (15 

exclusively), 24 reverse strands (24 exclusively), and 37 novel gene events, among a 

total of 96 genes (96 exclusively) and 189 proteins (187 exclusively). Among these 

annotations, 180 novel peptides directly led to 70 predicted proteins via Augustus gene 

prediction. This study, which implemented a new methodology, benefitted from 

utilising MS/MS spectra over a range of proteases and tissues and contributed a large 

RNA-seq dataset as a splice graph, which will become a valuable resource for further 
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wheat proteogenomics studies in the future. This study also identified some key 

highlights for consideration in future proteogenomics analysis: 1) the high level of 

fragmentation of the genome caused problems with annotation event identification and 

gene prediction; 2) the large fixed peptide linkage distance caused misidentified 

annotation events, as has been found to be the case in previous chapters, which also 

impacted the identification of annotation events where the scaffolds are much shorter 

than the peptide linkage distance used; and 3) the spectral datasets used were small and 

derived from gels which prevented clustering and quality filtering and probably resulted 

in retained spurious spectra. 

7.5 CONCLUSIONS 

In this study, as in Chapter 6, a two-pass search approach with improved two-stage FDR 

strategy was used. This approach greatly benefitted the study; given the further inflated 

search space of the 17 Gbp wheat genome and it’s much larger proteogenomics search 

space. 

Due to the small MS/MS spectral datasets, and being derived from 1D and 2D 

gel, clustering and quality filtering were not feasible. This decision may have 

inadvertently impacted the false positive rate, possibly resulting in a number of 

misidentifications due to spurious partially fragmented MS/MS spectra as a result of the 

absence of clustering, and retained poor quality MS/MS spectra because of the absence 

of any quality filtering. However, the use of multiple proteases probably offset these 

drawbacks to a degree, by reinforcing the identification of numerous annotation events 

derived from different sources. In addition, selection of the most appropriate precursor 

mass tolerances for each of these datasets proved effective, particularly with the high-

accuracy MS/MS spectra. This approach, in combination with the various proteases 
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used to improve coverage, provided an effective method to achieve sufficient coverage 

and deliver an informative proteogenomics analysis. 

The study was able to significantly improve the novel peptide identification rate 

from the trypsin-digested wheat flour by comparison with the initial study by the 

dissertation author [12], by an additional 122 novel peptides, demonstrating a ~8x 

improvement in sensitivity and with similar improvements observed in the identification 

of known proteins. 

The merging of multiple search results from the various protein extracts and 

tissues digested with different proteases resulted in a number of annotation events 

containing multiple different sources of MS/MS spectra from different digests, while 

others consisted of only one source of MS/MS spectra from a single digest. This 

demonstrated that, by using multiple proteases, the coverage within an annotation event 

could be significantly increased and as a result could improve the event probability. 

The MS/MS spectra and RNA-seq data sources in the present study were limited 

to reported findings obtainable as legacy data at the time. Due to the apparent 

differences between proteomics data and RNA-seq data obtained from the different 

tissues, cultivars and wheat-rye hybrids, there was a real potential for increasing the 

FDR, which needed to be taken into consideration when identify any annotation events 

and new predictions. Future studies, with a focus solely on obtaining MS/MS spectra 

and RNA-seq data for proteogenomics analysis, could concentrate on the Chinese 

Spring cultivar and generate sufficient depth and breadth of sampling to reduce the 

occurrence of any false positives. Additionally, when different sources of MS/MS 

spectra, genomic and RNA-seq data are included from different cultivars, the addition 

of variant calls in the splice graph could identify and account for the different sequence 
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variations, allowing for informative side studies with a focus on identifying these 

variants. 

The total number of predicted genes and proteins in this study were probably 

overestimated due to the fragmented nature of the genome, with some longer genes 

spanning scaffolds being identified two or more times. The number of genes could also 

be overestimated due to Augustus splitting the prediction based on the evidence. 

Revisiting the genomic annotation in the future as knowledge of the genome improves 

would likely see these numbers drop. Another problem related to the highly fragmented 

nature of the genome would be the application of the peptide linkage distance, which 

probably would be larger than many chromosome fragments, and which would have 

resulted in a number of annotation events being misidentified, particular on the 

boundaries of a scaffold where a locus may span two or more scaffolds. 

As mentioned in previous chapters, a dynamic way to determine the peptide 

linkage distance was needed. The problem with using a fixed peptide linkage distance 

was clearly illustrated in Section 7.3.6, where a novel gene event was misidentified as a 

gene boundary event due to its close proximity to the neighbouring gene. One 

possibility would be to determine the peptide linkage distance dynamically through 

machine-learning approaches, considering the distribution of genes in the local region 

as well as considering the distribution of all mapped peptides, protein, EST and RNA-

seq alignment evidence. 

Another problem that arose in this study as a result of the fragmented genome 

was the occurrence of partially predicted genes in the reference annotation. In one 

example, detailed in Section 7.3.8, a partially predicted gene caused problems with an 

assigned annotation event that contained a 41 bp ambiguous stretch of amino acid X 

residues, because the reference prediction overlapped the end of the chromosome 
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fragment. This resulted in confusion with the annotation event, as the only unique and 

novel peptide identified in this peptide cluster resided in the ambiguous, supposedly 

known coding part of the prediction, and therefore would not have been identified if 

sufficient coverage of the reference prediction had been available. 

The Enosi tool could be improved to recognise annotations containing 

ambiguous protein sequences and flag these as problems prior to annotation event 

inference, or discard them from the analysis to prevent misinterpretation of annotation 

events. At the very least, the reference predictions used for analysis should be complete 

predictions, either full predictions or truncated, with the GFF and protein prediction in 

complete agreement and with no ambiguous regions confusing the assignment of the 

annotation event. 

Overall, the fragmented wheat genome was a problem when identifying 

annotation events accurately and the final gene predictions were often erroneous or 

incomplete due to a gene overlapping the end of the chromosome fragment. As 

mentioned in previous chapters, possible methods which could be used to overcome 

such limitations in the future could be de novo sequencing of unassigned MS/MS 

spectra, matching the MS/MS spectra against closely homologous sequences, or 

approaches such as template proteogenomics, which could be used to build up complete 

coverage of proteins given closely homologous sequences to use as the genomic 

template and enough MS/MS spectra to provide complete coverage. However, such a 

method has only ever been used for small niche studies, looking at single genes, such as 

antibody genes, but it feasibly could be modified to work on the scale of an entire 

genome. Moving forward, tools such as BUSCO [588], as suggested in Chapter 5, 

Section 5.4, could be applied to conduct an assessment of the genome assembly and 

annotation, to identify any problem areas and to resolve difficult genomic regions. 
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8 GENERAL CONCLUSIONS 

Proteogenomics has evolved greatly over the last decade, holding promise for 

improving genome annotation to match the accelerating rate of genome sequencing 

technologies. However, a number of computational challenges remain, many of which 

have been addressed throughout this thesis, including: how to address the reduction in 

sensitivity due to an inflated search space; how to accurately identify various annotation 

events; how to define the search space; how best to control the false discovery rate 

(FDR); and how best to define the parameters for a MS/MS database search. 

 This thesis identified a bioinformatics framework for conducting 

proteogenomics analysis, defined in a methodology that was iteratively improved and 

demonstrated across four case studies using the Enosi proteogenomics tool. During the 

time Enosi was being further developed, since its publication in [81], the dissertation 

author provided the developers with extensive input through debugging and suggested 

features, while conducting early preliminary studies for grape [8] and wheat [12], which 

were later expanded on within the thesis.  

The dissertation author made further contributions to methodology development 

by adding an evaluation of search parameters, FDR filtering approaches, the screening 

of annotation events to improve the number of annotation events identified, and 

modifications to the search space to improve sensitivity and discrimination between true 

and false positives. 

Finally, the thesis draws conclusions and provides further insight into 

proteogenomics, and highlights a number of considerations for the future of this new 

and rapidly growing field. 
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8.1  CASE STUDIES 

Throughout the thesis a proteogenomics methodology was applied to a number of 

different case studies and it was understood that each case study would highlight the 

benefits and caveats of the applied methodology in an iterative improvement. The 

identified known proteins and numerous novel annotation events identified in each of 

these case studies are illustrated below in Table 8.1. 

 Table 8.1 Summary of proteogenomics annotations across four case studies 

 Bacteria Grape Human Wheat 

Known proteins 3,550 11,779 27,849 16,635 

High confidence known proteins 2,194 5,048 1,047 107 

 

Frame-shifts 9 5 7 46 

Translated UTRs NA 37 4 9 

Exon boundaries 22 16 27 17 

Novel splices NA 1 0 0 

Novel exons NA 9 23 39 

Gene boundaries 19 160 (24) 289 (10) 17 (15) 

Reverse strands 45 112 (10) 262 (50) 24 (24) 

Novel genes 60 1 5 37 

Total annotation events 155 341 (103) 617 (126) 189 (187) 

Annotated genes 145 216 (67) 147 (29) 96 (96) 

 

Augustus gene predictions NA 84,948 29,266 413,587 

Augustus gene predictions as a 
direct result of proteogenomics 

NA 55 49 67 

Note: Numbers in parenthesis represent the exclusive numbers. The inflationary effect of a large peptide 

linkage distance on gene boundaries and reverse strands was removed by assigning a peptide cluster as 

either a proximal or distal event, not both, with preference placed on proximal events. 

In light of these findings, there were a number of problems encountered during 

proteogenomics analysis, which included: the underlying quality of the reference 

annotation; the quality of the genome assembly; the limitation of the available MS/MS 

spectra; and/or the different shortcomings of the applied proteogenomics approach. 

A common challenge across all studies was the use of a fixed peptide linkage 

distance, which was an over-simplification of gene sizes and intergenic distances. The 

use of a fixed peptide linkage distance likely contributed to misidentified annotation 

events due to the many varying degrees of gene overlap, gene size and intergenic 
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distances across genomes the size of bacteria to larger, eukaryotic genomes. The use of 

a fixed peptide linkage distance was a significant problem and was resolved in part by 

identifying the exclusive annotation events, as highlighted in Figure 8.1, however, a 

more robust solution will be needed in future methodologies and/or later versions of 

Enosi, to more accurately identify the annotation events and by extension perform more 

accurate annotation event level filtering for more confident gene predictions. 

The majority of case studies were able to utilise MS-Cluster to improve the 

overall quality of the MS/MS spectra, by clustering and merging and with PepNovo to 

remove any lower quality MS/MS spectra. However, there were two case studies, 

namely the bacterial and wheat studies, where this was not entirely possible. In the 

bacterial case study, the MS/MS spectra were suitable for clustering. However, the 

spectra were derived from 1D gels, and had relatively few peaks and lower peak 

intensities, resulting in relatively high spectral losses when using PepNovo. In the wheat 

case study, there were too few spectra per dataset, which did not allow for clustering, 

and the spectra were derived from 1D and 2D gels, which led to relatively fewer peaks 

and peak intensities and again resulted in higher spectral losses when using PepNovo. 

Therefore, there may have been a higher level of false positives derived from these 

datasets, particularly with the wheat case study, as both clustering and quality filtering 

were not possible. Nevertheless, the multiple sources of protease digests for the wheat 

study may have partially compensated, by providing higher coverage and thus 

reinforcing some identifications with multiple different sources of MS/MS spectra. 

Revisiting these studies in the future with larger MS/MS spectral datasets, 

optimally derived from whole cell lysates, would alleviate these problems. While the 

outcomes from the pre-processing steps were not always consistent across all case 

studies, the use of a precursor mass tolerance optimization step greatly improved on the 
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sensitivity of peptide-spectrum match (PSM) identification, while keeping the peptide 

FDR low, which in particular was useful for high-accuracy MS/MS spectra. 

8.1.1 Bacterial 

In Chapter 4, proteogenomics analysis was applied to the nitrogen-fixing bacteria 

Bradyrhizobium diazoefficiens, identifying 155 novel annotation events (Figure 8.1). 

One particular major finding and a number of challenges were identified, as detailed 

below. 

1) Major finding 

One of the novel annotation events identified was found to be an ambiguous annotation 

event, which hinted at a possible sequencing error. The possible sequencing error was 

further assessed and successfully validated, through the identification of a guanine 

insertion indicated from multiple sequence alignment of closely related species. 

Through this identification another avenue for proteogenomics has been highlighted: a 

means to assess the quality of the genome sequence itself within protein-coding regions. 

2) Challenges encountered 

During analysis a number of caveats were also identified, such as the inability to utilise 

the identified annotation events, at least for bacteria, in heuristic gene prediction tools, 

apart from simply validating predictions and performing manual curation. The 

dissertation author is currently unaware of any prokaryotic gene prediction tools that 

consider external peptide evidence as hints during gene prediction. This challenge could 

be addressed by applying modifications to well-known and highly accurate prokaryotic 

gene prediction tools, such as GeneMark [598] and GeneMark.Hmm [599], Prodigal 

[558] and Glimmer [557]. Applying such an approach to accept external peptide hints as 

evidence, during gene prediction, would accelerate bacterial proteogenomics annotation 
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pipelines, such as with the use of Augustus [101, 102], a predominantly eukaryotic gene 

prediction tool demonstrated within Chapters 5 to 7. 

 Another caveat of this analysis was the high proportion of overlapping genes, 

the high proportion of coding to non-coding genes, and relatively small intergenic 

spaces in bacterial genomes. This caveat, which was more commonly identified in this 

study, resulted in a number of novel gene events being misinterpreted as reverse strand 

events, as genes also present on the reverse strand, were not considered by Enosi when 

inferring annotation events. The high proportion of overlapping genes also made the 

two-pass search approach less effective in choosing the most appropriate stop-to-stop 

ORFs from the six-frame translation to reduce the database size and improve sensitivity. 

A way to improve upon the selection of ORFs was later demonstrated in Chapters 6 and 

7; by accepting only relatively significant matches to ORFs and hence likely spurious 

PSMs were removed from the second-pass search. The use of a combined FDR strategy 

within this study reduced sensitivity and proved less effective at accurately 

discriminating true and false positives from within the known and novel search spaces. 

This was later rectified in Chapters 6 and 7 with the improved two-stage FDR strategy, 

but this case study could not be later revisited to utilise the new methodology due to 

time constraints. To account for the high proportion of overlapping genes in this type of 

study, in future the use of stranded RNA-seq analysis [600] could be performed during 

sampling. Possibly in combination with Ribo-seq [464], previously mentioned in 

Section 2.4.1, to confidently identify the expressed gene on either strand and to select 

the most appropriate ORF, if any, prior to peptide mapping and clustering. 

 Although a number of caveats were identified in the present study, the use of 

orthologous gene prediction, demonstrated with predictions sourced from NCBI, 

Prodigal and RAST, proved an effective way to compare the accuracy of different 

prediction approaches. This method also provided an orthogonal approach to validating 
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predictions from the reference, and assist with determining suitable event probability 

thresholds, given there was no means of determining the annotation event FDR at any 

chosen event probability. 

8.1.2 Grape 

In Chapter 5, proteogenomics analysis was applied to Vitis vinifera (grape), identifying 

341 novel annotation events (103 exclusively) that led to 57 Augustus protein 

predictions (Figure 8.1). A number of major findings and challenges were identified, as 

detailed below. 

1) Major findings 

One of the novel annotation events identified hinted at the possibility of an over-

assembly of the genome, particularly on chromosome 7.  The over-assembly was 

inferred after the reference protein, identified novel peptides, and the Augustus gene 

prediction all matched significantly to a RuBisCo protein in NCBI NR, which is 

normally found exclusively in the chloroplast genome. The presence of a RuBisCo gene 

on chromosome 7 is probably a result of reads derived from the chloroplast genome 

being incorporated into the assembly of chromosome 7. The conclusion of an over-

assembled genome is also backed up by the already fragmented nature of the genome, 

with unresolved chromosome fragments, which can fail to resolve into complete 

chromosomes when scaffolds in the assembly contain either long repeat regions and/or 

an over-assembly. Future proteogenomics analysis of the grape genome should 

therefore not proceed until this over-assembly issue can be resolved to prevent such 

occurrences happening in future proteogenomics studies. 

In addition, the original reference annotation was found to contain numerous 

CDS phase errors within the GFF file, which conflicted with the predicted reference 

protein sequences and required correction prior to Augustus gene prediction. This 
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brought into question the employed method used for the original reference annotation. 

Ultimately for the grape genome, many improvements will be required to improve the 

assembly and annotation. Therefore, an in-depth review of both the completeness of the 

assembly and annotation should be considered to identify all of the caveats moving 

forward. For example, the level of completeness of the genome assembly and 

annotation could be determined using tools such as BUSCO [588], which utilises 

single-copy orthologs to assess the completeness of conserved genomic regions, as was 

mentioned in Sections 5.4 and 7.4. 

2) Challenges encountered 

A number of caveats were identified throughout this study, such as the use of low-

accuracy MS/MS spectra, which limited the PSM identification rate and, as a result, 

required larger precursor mass tolerances. Additionally, only a combined FDR strategy 

was implemented, with no two-pass search approach with improved two-stage FDR 

strategy, which was later developed and employed in Chapters 6 and 7, but which could 

not be revisited in this case study due to time constraints. As a direct result from using 

the combined FDR strategy and the larger grape genome translated in six-frames, there 

was also a resultant loss of sensitivity, with 52% fewer known proteins identified when 

performing a proteogenomics search, which also equated to a loss in sensitivity with the 

identification of novel peptides to infer novel annotation events. 

In an attempt to negate the impact of low-accuracy MS/MS spectra and improve 

the sensitivity of novel annotation event identifications, the results from two 

proteogenomics runs with two different precursor mass tolerances of 2.0 Da and 3.0 Da 

were used, which provided 3.3% peptide FDR and 3.9% peptide FDR at the known 

proteome level respectively. The identified annotation events from both of the 

proteogenomics analysis runs were aggregated thus improving the coverage. Given 
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additional sources of MS/MS spectra of higher accuracy and sourced from multiple 

proteases, this same approach towards aggregating proteogenomics results could be 

applied to further improve coverage, as was later demonstrated in Chapter 7. 

 In this study, annotation events with only a single unique and novel peptide 

which were identified outside the applied annotation event thresholds, were accepted 

based on the consideration of other evidence, such as sequence homology to proteins in 

NR with considerations of the genomic coordinates, as well as known peptides, spectral 

counts, and peptide length. This approach provided a means to validate the annotation 

events from other orthogonal protein evidence, not considered in the original 

annotation, as well as provided a means to improve sensitivity, at the same time 

retaining relatively good specificity, as no method to determine the annotation event 

FDR was available. Due to the requirement to manually check matches for entries in 

GenBank for genomic coordinates and orthogonal evidence, the throughput of the 

approach was negatively impacted, making the approach particularly unruly for much 

larger studies. To improve the throughput of annotation event screening a modification 

was later considered and applied in Chapters 6 and 7. 

 Utilizing N-terminal acetylated peptides in both the novel annotation events and 

known proteins to identify translation initiation start (TIS) sites was not a trivial task to 

accomplish in this study, particularly in a relatively larger genome, and required manual 

searching to interpret potential conflicts within the annotation. Results from this 

analysis identified numerous ambiguous identifications due to the protein inference 

problem. A method to resolve this issue to reduce ambiguity and improve throughput 

could have been to consider only unique N-terminal acetylated peptides, as was later 

applied in Chapters 6 and 7. To further assist in resolving the N-terminal end of proteins 

and annotation events, the use of N-terminomics in combination with multiple proteases 

and replicates, top-down proteomics and other more heuristic methods to resolve the 



 

 297 

protein inference problem, from a proteomics-only context (Chapter 2, Table 2.6), could 

be applied. 

Many of the identified novel and known N-terminal acetylated peptides 

appeared to have undergone N-terminal Methionine Excision (NME) [248], due to the 

lack of their 5’ Methionine cap. In instances where the 5’ Methionine cap is retained 

and an alternative translation initiation codon is used, the peptide would not be able to 

map to its genomic coordinates and would go undetected in the current proteogenomics 

methodology. The most practical approach to identifying such peptides would be to 

supply another protein sample, digest, perform N-terminal peptide enrichment and then 

add Methionine aminopeptidase in vitro to cleave off all N-terminal Methionine 

residues, and then map the resulting peptides. The locations of peptides with 5’ 

Methionine caps and alternative translation initiation codons could then be identified by 

comparison to the same samples without treatment with Methionine aminopeptidase. 

 The processing of overly large result files during PSM FDR filtering, from 

combined FDR results, proved problematic, requiring the processing of subsets of the 

search results to achieve filtered results in a reasonable time-frame. But this led to 

reduced accuracy with PSM FDRs and event probabilities. This problem was later 

resolved in Chapters 6 and 7 with the two-pass search approach with improved two-

stage FDR strategy, which essentially provided a multiple step filtering process to 

reduce the final dataset size prior to the final PSM FDR filtering while also improving 

sensitivity and discrimination between true and false positives.  

8.1.3 Human 

In Chapter 6, proteogenomics analysis was applied to Homo sapiens (human) and 617 

novel annotation events (126 exclusively) were identified that led to 52 Augustus 

protein predictions (Figure 8.1). A number of major findings and challenges were 

identified, as detailed below. 
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1) Major findings 

This case study was the first to apply a new methodology in FDR filtering for 

proteogenomics, using a two-pass search approach by accepting only significant 

matches for the second-pass search and the use of an improved two-stage FDR strategy, 

by performing PSM FDR filtering on separated known and novel identified sequences. 

This method was demonstrated to outperform the combined FDR approach and 

conservative two-stage FDR strategies, by identifying 44% more known proteins and 35 

more novel peptides. In addition, the new methodology resulted in reduced search result 

file sizes, allowing for a reduction in the overhead needed to process the files for PSM 

FDR filtering, which was problematic in Chapter 5. This strategy was also later 

employed in Chapter 7. In addition, as a direct result from the improved methodology, 

the identification of an additional 15,020 peptides compared to the ENCODE project 

[11] was realised. 

2) Challenges encountered 

A number of caveats were identified throughout this study, such as the identified 

discrepancy between the proteome of cell line GM12878 and the proteome from 

GENCODE v19. The discrepancy was realised when an expressed pseudogene 

ENSG00000250933.1 also known as glyceraldehyde 3-phosphate dehydrogenase 66 

(GAPDHP66) was identified. This pseudogene is known to be protein-coding in cell 

line GM12878 and non-protein coding in GENCODE v19. As a result, the novel 

peptides identified from the expressed pseudogene were misinterpreted as a translated 

UTR. This highlighted the effect that a lack of support by Enosi to identify expressed 

pseudogenes and non-coding RNAs has on the accuracy of annotation event 

identification, as well as the time it takes to manually and correctly interpret the 

annotation events. This delay could have been avoided by Enosi adding the additional 
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annotation event types by first parsing the known annotation. In addition, future studies 

could identify the known protein-coding pseudogenes and/or RNA genes from the 

different sources being studied, such as cell line GM12878 and supplement the known 

proteome to avoid further false identifications. 

 In comparison to the previous grape study in Chapter 5, in this study an 

improvement was made to the throughput of screening single peptide annotation events. 

The same event probability and peptide parsimony thresholds were applied, and instead 

of using NCBI NR for sequence homology searches, NCBI RefSeq protein was used 

instead at higher stringency to improve the specificity. Due to its impact on throughput, 

with minimal exception, no screening of each match in GenBank for genomic 

coordinates and orthogonal evidence was performed, as was done previously in Chapter 

5 with grape. However, this could be resolved in later studies by automating the process 

by parsing GenBank entries downloaded from NCBI. Other similar concepts to quickly 

and efficiently validate annotation events in a highly specific manner could be via the 

use of spectral library searching or with the use of spectral archives [398]. 

The selection of only unique and known N-terminal acetylated peptides proved 

to be a viable approach to the identification of TIS sites to improve throughput by 

reducing the number to a manageable size, in contrast to Chapter 5 with the grape study 

where every N-terminal acetylated peptide was manually checked and validated. 

The identification of one particular unique and novel N-terminal acetylated 

peptide indicated the TIS site of a new Augustus prediction inferred from a reverse 

strand annotation event, which identified a novel gene on the reverse strand (Section 

6.3.7). This brought to the dissertation author’s attention the fact that unique N-terminal 

acetylated peptides could be used to define the boundaries of annotation events by their 

specific position within the annotation event to avoid including the wrong peptides from 
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other clusters in close proximity. However, this would be highly dependent on the level 

of fragmentation of the genome, with a fragmented genome making the identification of 

any unique peptide highly ambiguous, due to missing genomic regions, and would not 

account for some genes encoding multiple protein isoforms, with multiple TIS sites, and 

which may be expressed concurrently. Further methodologies could also be applied to 

improve the identification of the N-terminal end of proteins, as mentioned previously in 

Section 8.1.2. 

8.1.4 Wheat 

In Chapter 7, a proteogenomics analysis was applied for Triticum aestivum (Bread 

wheat) and 189 novel annotation events (187 exclusively) were identified that led to 70 

Augustus protein predictions (Figure 8.1). A number of major findings and challenges 

were identified, as detailed below. 

1) Major findings 

The same methodology, using the two-pass search approach with improved two-stage 

FDR strategy and annotation event-screening method as employed in Chapter 6, was 

also used in this study, which provided the benefit of increasing the sensitivity of 

annotation event identification, given the much larger 17 Gbp genome. Compared to the 

initial study by the dissertation author with Mayer and colleagues [12], that only utilised 

a small wheat flour tryptic-only MS/MS spectral dataset, 156 additional novel 

annotation events were identified. The use of multiple sources of MS/MS spectra from 

different tissues and multiple different protease digests provided higher coverage than 

using a single protease, and after aggregation resulted in more peptides identified within 

annotation events with improvement of the event probabilities. In addition, the inclusion 

of multiple proteases probably offset some negative effects from not clustering or 

quality filtering each of the MS/MS spectral datasets. 
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2) Challenges encountered 

A number of caveats were identified throughout this study, such as the annotation event 

screening which was done previously in Chapter 6 using RefSeq protein, but in this 

study due to the lack of wheat protein entries, it was necessary to use NR, filtered at 

much higher stringencies to account for the higher redundant and un-curated protein 

repository. The requirement to use NR may have inadvertently introduced false 

positives and suffered from reduced sensitivity in identifying the correct corresponding 

proteins. The inaccuracies introduced from this approach could be negated if spectral 

library/archive approaches were developed, as was suggested in Section 8.1.3. 

 Another caveat that occurred in other studies but was more common in this 

study was the appearance of unique N-terminal acetylated peptides incorporated into the 

middle region of new Augustus predictions. This error was most likely a direct result of 

the highly fragmented genome causing a misidentification of the unique and shared 

status of all identified novel peptides. Further methodologies to improve the 

identification of N-terminal ends of proteins could be applied, as was outlined in 

Section 8.1.2, although what benefits, if any, will be gained by applying these methods 

to a highly fragmented genome in this study is unknown. In addition, due to the small 

size of many chromosome fragments the peptide linkage distance was often much larger 

causing some annotation events to be misidentified, such as novel genes, which may be 

gene boundary events to genes on another chromosome fragment. 

 Another caveat that was a result of a highly fragmented genome was the 

inflation in the number of predicted genes and proteins, due to many genes and proteins 

spanning across chromosome fragments. Additionally, many genes could not be 

predicted due to small scaffolds and missing translation initiation sites off the end of the 
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scaffold, even though proteogenomics evidence, as well as other evidence from the 

reference and orthogonal hints evidence was available. 

Further improvements to the genome assembly and annotation are needed before 

any additional proteogenomics analysis is conducted, which could be assisted using 

tools such as BUSCO [588], as was previously highlighted in Section 8.1.2. 

 A unique issue that was only identified in this study was the misidentification of 

a translated UTR event, revealed as a probable exon boundary event for two different 

protein isoforms within the same gene. The exon boundary event was not primarily 

identified by the Enosi tool, due to two protein isoforms containing an ambiguous X 

amino acid region, where the novel peptides should have been identified as known but 

were instead identified as novel. Resolving the ambiguous sequences would have 

resulted in the novel annotation event not being identified, as the single unique peptide 

was identified within the ‘known’ ambiguous region of the protein. The dissertation 

author drew two conclusions from this observation: 1) if possible, ambiguous X amino 

acid protein sequences in protein predictions should not be included in analysis, 

however this is often difficult due to partial reference predictions with first draft 

genomes; and 2) using all mapped peptides during clustering with at least 1 unique 

peptide, followed by removal of all known peptides would identify many more 

annotation events at a high specificity. Using all peptides during peptide clustering 

would be superior to using only novel peptides, as many more valid peptide clusters 

could be identified containing a unique peptide. Even as the annotation improved the 

sensitivity of novel annotation event identification could remain high as the number of 

identified unique and novel peptides diminished. 
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8.2 FUTURE DIRECTIONS 

Over the course of this thesis an improvement to how proteogenomics could be 

conducted was realised, in terms of further expanding on the case studies outlined 

within this thesis and the field of proteogenomics as a whole.  

8.2.1 Future directions for case studies 

In terms of how any specific case study could be improved in the future, the use of the 

two-pass search approach with improved two-stage FDR strategy, which was developed 

and utilised in the human (Homo sapiens) and wheat (Triticum aestivum) case studies in 

Chapters 6 and 7, respectively, could be applied to the nitrogen-fixing bacteria 

(Bradyrhizobium diazoefficiens) case study in Chapter 4 and the grape (Vitis vinifera) 

case study in Chapter 5. 

To further expand on the case studies, more evidence could be utilised, such as 

larger MS/MS spectral datasets and of higher mass accuracy, preferably from multiple 

different proteases and also comparably suitable large RNA-seq datasets, all of which 

could be provided with high depth and breadth of coverage. In addition, the large 

datasets could also be tailored with other studies in mind, hence value-adding to its use. 

For example, once the datasets have contributed to improving the genome annotation, 

the new predictions could be used in a proteomics-only analysis, examining the 

differences between environmental conditions such as stress, time-points, tissues, 

protein expression levels, and peptide variants between individuals and/or closely 

related species. 

 An example of such a large-scale proteogenomics study could be the human 

genome. As one of the most studied research areas, there is now a plethora of additional 

datasets to choose from, one of the better known being the 1,000 Genome Project [65]. 

This large dataset could provide a resource of RNA-seq data that, when converted to a 
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splice graph, could help identify the complement of variant peptides within a 

population, in a similar manner to the cancer peptides in the study from [474], but from 

1,092 individuals. However, for the study to be comprehensive, proteomics data would 

also need to be obtained representing these individuals. There is currently one large 

resource of MS/MS spectral data for human, from recent proteogenomics studies which 

amassed an impressive 25 million MS/MS spectra from a diverse range of tissues and 

cell lines [450, 451], and which could be further mined for information using the 

methodologies outlined within this thesis to identify more novel annotations which 

previously have been missed. 

 Considering the above-mentioned human studies, a much larger and more 

ambitious undertaking would be to conduct a systems biology study, where the 

genomes, transcriptomes and proteomes of 1,000 individuals would be sampled from a 

wide variety of tissues and multiple ethnicities. This would account for protein-coding 

variants across the global human population at the genomics, transcriptomics and 

proteomics levels, and could form a new standard for identifying variations across 

human populations. To take this one step further and to value-add to such a study, the 

whole epigenome and metabolome could also be mapped from the global population. 

8.2.2 Methodology improvements 

In general terms of future directions for proteogenomics methodologies, huge room 

exists for improvement, with many of these avenues for improvement identified 

throughout this thesis and which are now discussed in detail in the following eleven 

points. 

1) Expanding on event types 

To reduce the occurrence of misinterpreted annotation events, further annotation event 

types could be added to the Enosi tool. The addition of further annotation events could 
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include expressed pseudogenes, for example, the two pseudogenes manually identified 

in Section 6.3.8 and long non-coding RNAs (lncRNAs), which are employed in tools 

such as PGTools [496] (previously discussed in Section 2.4.4). Other types of 

annotation events could include over-predicted genes, N-terminal methionine excision 

(NME) and signal peptides inferred from the presence of non-tryptic N-terminal peptide 

ends, and alternative TIS sites within the known proteins [492]. The identification of 

potential over-predicted genes and TIS sites was conducted manually throughout the 

thesis looking at only unique N-terminal acetylated peptides due to the large numbers 

and ambiguity from the protein inference problem. In addition, sequence variant events 

could also be considered, such as mutation, insertion and deletion, achieved through the 

use of RNA-seq alignments and common variant-calling tools such as the Genome 

Analysis Toolkit (GATK) [473], which could then be converted into a splice graph to 

supplement the standard splice graph. The variant splice graph could then be used to 

answer questions such as differences in the types of variants between samples, to 

identify potential causes of changes in protein function, and to account for physiological 

responses and/or underpin specific phenotypes. 

2) Resolving the negative impact of fragmented genomes 

During the proteogenomics analysis of grape (Chapter 5) and wheat (Chapter 7), the 

level of fragmentation of these respective genomes was quite high, with wheat being the 

most fragmented and grape appearing to be also over-assembled, with numerous 

identifications from chloroplasts and mitochondria. Future proteogenomics studies of 

these genomes could either implement a methodology to utilise sequences of close 

homology to account for the missing genomic regions, such as implementing template 

proteogenomics using a tool similar to GenoMS [481]. The alternative could be to wait 

until they have been assembled sufficiently and accurately, devoid of over-assemblies 

until re-analysis is conducted, to avoid any false positive identification. In order to 
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utilise template proteogenomics, another closely related genome could be added to the 

analysis. Regions of the genome that do not have homology to any of the fragmented or 

partially assembled target genome could be identified, and then selected to use with a 

tool such as GenoMS, which could be modified to handle larger genomic sequences. 

Any MS/MS spectra identified as unassigned to the target genome could be run against 

the homologous genomic fragments to identify missed protein-coding genes. The 

identified proteins could then possibly assist with validating the genome assembly as it 

further improves. 

3) Impact of inaccurate annotation events and filtering prior to gene prediction 

Many novel peptides could not be included into Augustus gene models, as was first 

pointed out in Chapter 5, Section 5.3.4, and found to be the case throughout Chapters 6 

and 7. This had been confirmed to be the case in a previous study [81], even with an 

applied annotation event FDR of 5%, as was communicated to the dissertation author 

(S. Payne, personal communication, September 29, 2012). Based on this information, it 

is not unreasonable to assume that numerous novel peptides, which were not 

incorporated into predictions by chance, could have also been incorporated into the 

predictions, leading to false positives. This was observed to be the case throughout the 

thesis, with some probable spurious peptides within annotation events leading to what 

appeared to be false positive predictions, and in some cases conflicting with other 

evidence. This was at odds with what was suggested in the original study that led to the 

development of Enosi [482]. According to the author of that study, acceptance of novel 

peptides at the PSM and annotation event identification levels was allowed to be more 

tolerant for final filtering of false positives at the gene prediction level with Augustus 

(N. Castellana, personal communication, April 15, 2014). 
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However, as observed from examples throughout this thesis, using Augustus as 

a final false positive peptide-screening tool was not without its problems, particularly 

when the actual FDR at the gene prediction level is not known. To improve the quality 

and throughput of genome annotation the quality of the final gene products need to be 

improved, and therefore the quality of the proteogenomics data provided to Augustus 

prior to gene prediction needs to be improved to reduce the occurrence of false positive 

predictions. 

A number of methods could be employed to reduce the occurrence of false 

positives at the peptide, annotation event and prediction level, as further detailed below. 

4) Defining the peptide cluster prior to annotation event inference 

A method to reduce the occurrence of false positives reaching the annotation event 

inference and gene prediction stage is to change the way peptide clusters, and therefore 

annotation events, are defined by considering other evidence during clustering. One 

variable which most influences the peptide cluster is the peptide linkage distance, which 

defines how peptides are clustered, and the distance between a gene and a cluster, and 

which by extension, directly influences the assignment of events. In particular, the novel 

gene, gene boundary and reverse strand events. 

In Enosi, the peptide linkage distance is currently a fixed value and, at least for 

eukaryotic genomes, is determined based on the majority of gene sizes across the 

genome, unlike in reality where gene sizes often vary widely and can often appear in 

close proximity or with large intergenic distances. A more intuitive approach would be 

to define the peptide linkage distance for each peptide cluster in a dynamic way, looking 

at additional evidence such as: 1) the distribution of all peptides across the genome; 2) 

considering evidence from aligned EST, protein and RNA-seq sequences within the 

region; and 3) the average size of genes in the local region. All of this evidence could be 
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used to build a model of likely gene distribution across the genome using a machine-

learning approach. However, it is unreasonable to assume that the correct peptide 

linkage distance would be chosen every time for every peptide cluster, as it may not 

always be easy to determine due to the level of fragmentation of the genome and the 

available evidence in proximity to the identified peptide clusters. In cases where 

evidence is lacking to build a reliable model, a default peptide linkage distance, 

determined by the user, could be assigned. 

Another method would be to redefine the way peptide clusters are generated. 

Currently in Enosi, all known peptides are removed and then the remaining novel 

peptides are clustered together based on the peptide linkage distance, which may 

include other spurious peptides or peptides that should belong to other nearby clusters. 

Each unique or shared novel peptide is identified in the context of the proteogenomics 

search space (six-frame translated genome and if applicable, splice graph) and whether 

the peptide is absent from the known proteome and the respective genomic coordinates. 

The known peptides are only labeled as either unique or shared in the context of the 

known proteins. Since only novel peptides are used in peptide clustering, with 1 unique 

peptide per cluster, prior to annotation event inference, this highlights a potential 

oversight for the use of the known peptides to identify valid annotation events. 

As was briefly introduced in Section 8.1.4, and will now be expanded on here, a 

better suggestion would be to first perform clustering prior to discriminating between 

known and novel peptides, which would improve the sensitivity of annotation event 

identification when selecting for at least 1 unique peptide per cluster. 

Since the genome annotation will improve over time, the pool of unique novel 

peptides will ultimately be reduced until most peptide clusters only consist of shared 

novel peptides. To avoid this and improve on the sensitivity of annotation event 
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identification, all peptides, including those that are identified to map to known proteins, 

could also be mapped to the six-frame translated genome, and if applicable, splice graph 

and used for peptide clustering, with subsequent removal to leave only novel peptide 

clusters. This would ensure that the sensitivity of annotation event identification would 

not diminish, even as the genome annotation improved. After filtering out all known 

peptides, the remaining peptide clusters with at least 1 unique novel peptide, as well as 

only shared novel peptide clusters (which previously contained at least 1 unique known 

peptide), could be used for annotation event inference. This approach came to light 

when considering the annotation event identified in Section 7.3.8, where a unique novel 

peptide was identified in an ambiguous protein sequence region. Such an approach 

could be implemented into the Enosi tool in future versions, however it would require 

some major reworking of a number of core functions. 

To further expand on this approach, after peptide clustering the included 

peptides could be screened based on other evidence. For example, peptides could be 

excluded to their own peptide clusters if they to do not have the same frame as the 

majority of other peptides (if any) and do not cluster within the same exon/CDS and 

ORF(s). Considerations such as these, if neglected, could lead to ambiguous and likely 

false positive frame-shift events and other proximal events such as translated UTRs and 

exon boundaries, as was identified to be the case in Section 6.3.7. 

Further evidence, which could also be considered, includes the location of 

unique and novel N-terminal acetylated peptides. For example, in Section 6.3.7 a unique 

and novel N-terminal acetylated peptide was identified on the boundaries of a peptide 

cluster, which led to a new prediction in agreement with the N-terminal acetylated 

peptide. 
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As was demonstrated in Section 6.3.7, peptide clusters may sometimes 

inadvertently incorporate other groups of peptides that should not belong together. 

Improvements could be achieved by considering any identified unique N-terminal 

acetylated peptides in the peptide cluster, and then splitting the peptide cluster at the 

location of the N-terminal acetylated peptide. This could be done provided that the 

unique status of the N-terminal acetylated peptide was not incorrectly assigned due to a 

fragmented genome and that multiple protein isoforms have not concurrently been 

expressed containing multiple different TIS sites across the same gene, which would be 

ambiguous due to the protein inference problem and lead to incorrectly splitting peptide 

clusters. However, by identifying the expression of multiple isoforms for a single gene, 

the larger peptide cluster assigned to that gene could be retained to avoid the ambiguous 

splitting of the peptide cluster or peptides could be assigned to the different protein 

isoforms and their respective peptide clusters more coherently. The identification of 

multiple protein isoforms for a gene and the intelligent assignment of peptides to 

different split peptide clusters could be achieved by first using traditional proteomics 

means, using tools such as those listed in Table 2.6, prior to proteogenomics analysis to 

identify the most likely protein isoforms being expressed. Such an approach would, 

however, only be of use for the known proteins used in the proteomics analysis, with 

later interpretation of any novel gene protein isoforms performed post-proteogenomics 

analysis. 

The use of N-terminomics [452] in combination with multiple proteases and 

sample replicates could also be used to improve coverage and assist with the resolution 

of ambiguity by assigning N-terminal acetylated peptides within peptide clusters and 

annotation events, to help define their boundaries and also validate the TIS sites of 

known proteins. This approach could also include the identification of non-AUG 

translation initiation codons and a variety of non-acetylated N-terminal peptides. 
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5) Filtering peptide clusters and annotation events 

Throughout this thesis, during annotation event filtering it was observed that many 

smaller annotation events that were filtered out with lower event thresholds often 

overlapped with larger annotation events with higher event thresholds and were 

erroneously retained as a result. Which contributed to false positives at the peptide, 

annotation event and prediction levels. An example of one such annotation event where 

this occurred was identified in Section 6.3.7, where a single novel peptide was inferred 

as a frame-shift event. It was previously filtered out with a lower event probability, but 

was retained in a larger reverse strand event with a higher event probability, and 

ultimately led to a probable false gene prediction that conflicted with RNA-seq 

evidence in GenBank. 

Many of these caveats could be addressed to improve the final peptide clusters 

and annotation events by identifying and then filtering out these erroneously included 

peptides and annotation events. This would keep the filtering of all annotation events 

consistent, improve specificity and reduce false positives, as well as removing much of 

the manual annotation and screening. 

A further method to improve how novel annotation events can be defined is by 

being more selective in how a PSM and, by extension, the identified peptide is defined 

as known or novel prior to peptide clustering and inference. This approach would 

further improve the discrimination between true and false positives. Currently the Enosi 

tool simply identifies a peptide as known by parsing the known proteome coordinates, 

with all peptides not identified considered as novel. This, like the peptide linkage 

distance, is overly simplistic in its approach. In many instances a spectrum matches the 

proteogenomics search space as well as the known search space due to overlap with 

their respective genomic coordinates, particularly in the combined FDR approach, 
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which makes the search space redundant and reduces sensitivity when applying PSM 

FDR to all known and novel results. The ‘conservative’ two-stage FDR approach 

applied from the study in [474], and examined in detail in Chapter 6, goes to the other 

extreme by completely removing any PSMs identified as known. These problems were 

addressed in this thesis with the improved two-stage FDR strategy, by creating separate 

known and novel search spaces prior to PSM FDR filtering. However, even though this 

was appropriately addressed, there are still a number of spectra which can match both 

the novel and known search spaces and which can be further confounded when the 

search performed by Enosi accepts the top 10 matches, increasing the potential overlap 

between known and novel identifications. 

To further differentiate the novel and known PSMs, the results between the 

known identifications and novel identifications could be compared. Any PSMs 

identified in one search space which have a lower spectral E-value compared to the 

corresponding PSM in the other search space should be retained, while the other PSM is 

discarded. In cases where the spectral E-value is identical in both novel and known 

search spaces, both PSMs should be discarded to avoid ambiguous identifications. This 

method to utilize the spectral E-value provides a convincing approach, as the spectral E-

value is independent of the database size and would allow a simple comparison between 

the likelihood of one spectral interpretation over another. 

6) Increase stringency and specificity at cost of sensitivity 

Lacking the means to apply any other methodology improvements as has been detailed 

elsewhere, an alternative means to reduce the incidence of false positives could be 

achieved by applying much higher stringencies on the quality of the MS/MS spectra by 

only using large clustered MS/MS spectral datasets which could tolerate quality filtering 

at the highest stringencies to reduce false positive rates. In addition, only the highest of 
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event thresholds with the higher event probability (>99.9%) with ≥2 unique peptides per 

peptide cluster could be accepted across all annotation event types. Another approach 

could be to increase the stringency at the PSM level by using a PSM FDR lower than 

1% or by filtering the search results directly using a spectral E-value, which would be 

more suitable for smaller genomes [492]. Multiple different PSM level filtering 

methods could be integrated into Enosi to allow for more flexible approaches for 

filtering. Although these methods would significantly reduce the incidence of false 

positives, they may also negatively impact sensitivity with the loss of many real 

annotation events. The impact of increasing stringencies at the PSM level and/or 

annotation event level could be determined in future studies to ascertain acceptable 

thresholds across different studies using the best balance between sensitivity and 

specificity to achieve the lowest possible false positive rate. 

7) Defining further search spaces for refined control on FDR 

To improve control on FDR the final filtered peptide clusters and annotation events as 

well as the different types of annotation events need to have their boundaries well 

defined, then they can be used to split the proteogenomics search space based on their 

propensity for false positives, for example annotation events from intergenic spaces 

versus intragenic spaces. Referring back to point 1) above, by expanding on the 

repertoire of annotation event types the proteogenomics database could be further split 

into annotation event-specific sequences to define a search space for each annotation 

event and thus improve the identification rate of novel PSMs and the distinction 

between true and false positives. This approach would prove highly beneficial when 

using a higher diversity of proteomics and RNA-seq data. 

The idea to apply PSM FDR filtering on each of the different types of annotation 

events was first mentioned by Nesvizhskii [439], who suggested that each class of novel 
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PSM (i.e. novel PSMs belonging to different annotation event types), could have their 

class or annotation event-specific PSM FDR calculated. For example, the false positive 

rate of the novel gene and distal events, such as gene boundary, translated UTR and 

reverse strand, is much higher than other annotation event types. The number of false 

positives in the intergenic space for novel genes would be highest, and lower for 

translated UTR which is very close to the reference coding region. Furthermore, for 

proximal events the false positive rate would tend to be lower than novel gene and distal 

events, with novel exons and frame-shifts likely to have higher false positive rates than 

novel splice, which would be higher still, compared to exon boundary events. In 

consideration of these varying false positive rates, a multi-stage FDR strategy could be 

applied, as opposed to a two-stage FDR strategy which only implements FDR filtering 

on the known and entire novel search space. 

 Based on the above information, a correlation can be seen with the number of 

expected false positives within certain novel annotation events among the three 

categories of annotation events; novel gene, distal events, and proximal events, and the 

degree of change required for re-annotation. Further work could map the false positive 

rates of each annotation event in a range of different case studies and datasets with a 

variety of different genomic sizes. After improvements to the proteogenomics 

methodology, as previously envisioned, the annotation event FDR could be determined 

within a number of case studies and across the various types of annotation events. From 

such a study, a general rule could be deduced for an applied event probability for each 

annotation event type depending on the size of the genome (within a given range of 

magnitudes), allowing for more appropriate control on the proteogenomics analysis and 

to reduce the false identifications of annotation events and predictions in the future. A 

side-benefit afforded by applying PSM FDR filtering to each of the annotation events 
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would be a further reduction in the processing overhead for FDR filtering, which could 

be particularly advantageous when the datasets used in a study are particularly large. 

8) Improving proteogenomics throughput 

The analysis of large genomes in proteogenomics is often hampered by poor 

throughput, however a means around this issue would be the utilization of high-

performance computing (HPC) resources. There are currently two throughput 

bottlenecks in a proteogenomics workflow: 1) the MS/MS database search and 2) 

applying PSM FDR filtering and local FDR calculations on proteogenomics results. 

As was detailed in Section 2.4.2, a number of methods can be employed to 

improve the throughput of an MS/MS database search, with one such method being the 

splitting of the database into smaller parts, which is employed by the Enosi tool and 

which was employed throughout this thesis. Another method that could efficiently 

utilize HPC resources would be an MS/MS database search tool developed with 

Message Passing Interface (MPI), allowing for searches to be performed across multiple 

nodes in a cluster, such as MassMatrix [601]. However, the large majority of search 

tools, like MS-GF+ [292] and others, only use multi-threading, forcing the user to either 

split databases or use search tools with faster but less sensitivity algorithms, such as the 

sequence tag approach employed by InsPecT [326], and other approaches as highlighted 

in Section 2.4.2. Ultimately, this lack of broad support for MPI in the proteomics 

community relegates MPI to only specialty cases. 

To the best of the dissertation author’s knowledge there is no way to improve 

the throughput of PSM FDR filtering and local FDR calculation. However, by splitting 

the result file and processing each file separately the throughput can be improved at the 

cost of reduced PSM FDR accuracies and conversely to improve accuracies iterative 

searches can be applied to reduce the database size using the two-stage FDR strategy, at 
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the cost of throughput. Therefore, for this stage of the proteogenomics workflow, a 

trade-off between throughput and FDR accuracy needs to be decided, until more 

efficient algorithms are developed or which could possibly implement strategies 

utilizing MPI. 

9) Added functionality to proteogenomics 

Another viable improvement to proteogenomics would be further functionality, by 

adding multiple other pre-processing, post-processing and analysis tools to the 

workflow. For example, PGTools [496] has multiple functionality, such as: 1) allowing 

switching between proteomics- and proteogenomics-only analysis; 2) merging multiple 

search results from multiple search tools to improve sensitivity; 3) a file conversion 

module for handling conversion of multiple spectral data formats into MGF format for 

processing; 4) visualization modules for the generation of Venn diagrams to display 

unique and overlapping peptides; 5) chromosome distribution and Circos plots of 

identified mapped novel peptides; 6) the generation of a treemap to show protein 

grouping; 7) protein annotation; 8) customization of genome databases to suit the type 

of analysis; 9) the ability to port into genome browsers such as the UCSC Genome 

Browser and IGV; and finally 10) generating a summary report. 

These types of additional functions could be integrated into tools, like Enosi, by 

the developers or more easily and much more quickly added by the user with little or no 

assistance by a developer, within a workflow environment such as Yabi, previously 

discussed in Section 2.5. Yabi could run an entire proteogenomics or proteomics 

workflow from beginning to end, with multiple branching inputs and outputs, allowing 

for very powerful workflows that could run on HPC resources. 

Other tools which could be utilized in a workflow environment to enable further 

functionality for proteogenomics and proteomics analysis include pre-processing tools 
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for deconvolution, such as Zscore [293], deisotoping, such as LASSO [294], quality 

filtering, such as PepNovo [302] and/or clustering, such as MS-Cluster [312]. In 

addition, post-processing tools to automate the filtering of annotation events using 

additional information, such as was manually conducted throughout this thesis, as well 

as further post-processing tools such as Cytoscape [602] and STRING [603] for 

functional protein-protein interaction studies, and functional annotation analysis using 

tools like DAVID [604] and AutoFACT [139], could process the final gene and protein 

products for further genomic annotation. 

10) Post-proteogenomics: Integration of multi-stage peptide identification 

In addition, methodologies such as the multi-stage peptide identification strategy [426], 

could also be integrated into such workflow environments. The use of multi-stage 

peptide identification was outlined previously in Section 2.3.9, and aims to assign each 

and every spectrum to a peptide, by iteratively searching conventional databases, 

spectral libraries, identifying common post-translational modifications (PTMs) through 

a “blind” search and finally any remaining unassigned MS/MS spectra searched against 

a translated genome database, as is done in proteogenomics analysis. This method is 

akin to the ‘conservative’ two-stage FDR strategy [474], which was outlined and 

compared in Section 6.3.4, identifying its pitfalls and as previously discussed in terms 

of the ambiguities which can result with the overlap between MS/MS spectra identified 

as both known and novel.  

A modification to the above mentioned multi-stage peptide identification 

strategy could be to first apply a proteogenomics analysis (with splice graph if 

applicable) using the methodologies demonstrated within this thesis, as well as the 

above suggested improvements, followed by gene prediction and validation. Following 

this strategy, any unassigned MS/MS spectra not matching the known proteome or 
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leading to an annotation event, which identified a new or improved gene prediction, 

could then be used in multi-stage peptide identification. This strategy could identify 

further peptide sequences and possibly their genomic coordinates; 1) with unaccounted 

for PTMs; 2) from different database; 3) identified from raw translated reads or 

transcripts de novo assembled from any un-aligned RNA-seq reads not included in the 

initial splice graph; and 4) spectral libraries. Any remaining spectra, by process of 

elimination, may likely be false positives due to poor quality/partial fragmentation. The 

unassigned MS/MS spectra, which would now be accounted for and identified, could 

then re-enter the proteogenomics analysis, with new considerations for adding 

additional PTMs and/or further sequences such as missing genomic regions, splicing 

regions from RNA-seq evidence or derived from particularly small ORFs in the six-

frame translation, missed in the first proteogenomics run. A strategy of this nature could 

be implemented within a workflow environment, such as Yabi, which would enable the 

user to capture meta-data, share workflows and parameters with other collaborators to 

assist within large national or international research efforts. 

11) Integration of ortho-, meta and comparative proteogenomics 

Another improvement to proteogenomics could be an automated approach towards 

applying comparative proteogenomics [446, 448], ortho-proteogenomics [79, 445] and 

metaproteogenomics [503], previously discussed in Section 2.4.3. In comparative 

proteogenomics, given two or more closely related species with proteomics, genomics 

and transcriptomic datasets for each, the identification of annotation events could be 

validated in each of the parallel analyses within the same genomic coordinates. Such an 

approach could help confirm that the identification is real, particularly for single peptide 

annotation events, often referred to as “one-hit-wonders”, which would also do away 

with much of the effort needed to validate novel peptides against orthogonal protein 

repositories. 
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Although the use of event probabilities is touted as a viable solution to salvaging 

single hit peptides for the identification of proximal events [82], the most appropriate 

thresholds needed to be applied to the various annotation events to achieve a high level 

of sensitivity and specificity while keeping the false positive rate low is still unclear. A 

more direct form of validation with the use of two or more confirmed annotation events 

in similar parallel comparative proteogenomics analyses could resolve the ambiguities. 

In ortho-proteogenomics any identifications from a single proteogenomics study 

could be used to further identify genes and proteins in other highly similar genomes [79, 

445], which was highlighted with a few examples in the bacterial study from Chapter 4, 

particularly for the frame-shift event identified in Section 4.3.10. 

Given the complexity of higher eukaryotes, analyses such as these using 

comparative proteogenomics may only be viable for closely related species of bacteria, 

or sub-species or different varieties of higher eukaryotes, which may only differ with 

subtle variations in sequence. Such an approach could be automated to perform analyses 

across different proteogenomics runs in a workflow environment, which when 

comparing the analyses could apply a scoring scheme for the identification of 

annotation events across species. Such an approach would vastly improve sensitivity 

and resolve ambiguous annotation events, as well as fast-track analysis. 

In metaproteogenomics, since many of the species within the bacterial 

communities are likely unknown, an initial step towards a comprehensive analysis could 

be a metaproteomics step for identification of suspected known proteins in the sample 

already represented in public repositories such as GenBank. Through the 

proteogenomics pipeline, these identified MS/MS spectra could then be searched 

against the six-frame translation of the metagenome, mapped, genomic coordinates 

determined, peptides clustered and novel gene events inferred. All the identified novel 
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protein-coding regions could then be annotated and gene models predicted, followed 

with functional annotation based on comparative genomics analysis. The full set of 

MS/MS spectra and the now identified “known” proteome could then be used during a 

full and more thorough metaproteogenomics analysis of the metagenome using the two-

pass approach with improved two-stage FDR strategy, as outlined within this thesis, and 

with potentially some additional improvements suggested throughout this chapter. 

Given sufficient depth of metagenome sequencing, coverage and assembly, the 

identification of unique peptides within a metaproteogenomics analysis would likely 

indicate the identification of proteins unique to a particular bacterial species, and which 

may indicate a unique role within the bacterial community. 

8.2.3 Application of new MS technologies 

Up until now, much has been discussed on how to improve upon the current 

implemented methodologies for proteogenomics, with adjustments to already 

established methods, inherited from developments in proteomics over the last few 

decades. Many of these methods are reflected in the proteogenomics tools listed in 

Section 2.4.4. A quick PubMed search reveals an explosion of new proteogenomics 

tools within the last 12 months of this thesis, all with slight variations compared to the 

Enosi tool used throughout this thesis, which provides a good indication that the future 

of proteogenomics will evolve more rapidly with time. However, there are three new 

technologies into which proteogenomics has yet to tap and predictably will evolve to 

become the gold standard in proteogenomics in the coming years. These tools are: top-

down proteomics, multiplexed data-independent acquisition (DIA) and spectral 

archives. 

 Top-down proteomics, as outlined previously in Section 2.3.2, would be suitable 

for complementing bottom-up proteomics, due to its limitation to provide global 

coverage but powerful ability to provide full coverage of a limited number of proteins, 
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including a full range of their PTMs, due to solubility and ionization problems with 

some large proteins. The technique has improved in throughput over the last decade 

making it a viable tool for large-scale studies, where it is important to identify the N-

terminal end of proteins and to identify sites of potential signal peptide cleavage and 

full coverage of PTMs. This makes the technology a suitable candidate for 

implementation into proteogenomics, allowing further coverage to infer many more 

annotation events both confidently and without ambiguity, resolving the protein 

inference problem, resolving multiple co-expressed protein isoforms, and identifying 

annotation events amongst other paralogous genes and proteins. There are not to the 

dissertation author’s knowledge, currently any proteogenomics tools or strategies 

available that utilize top-down proteomics data. Such tools would require algorithmic 

improvements for handling and interpreting the data, over traditional bottom-up 

approaches. As the mass spectrometry technology improves to generate, interpret and 

handle such data, this will become an important resource to complement current 

bottom-up proteogenomics approaches and in combination with approaches such as N-

terminomics [452]. 

 Multiplexed DIA, as outlined previous in Section 2.3.3, is another technology 

gaining much more traction in recent years, as the rate of technological advancement of 

mass spectrometry has improved, allowing for better speeds of data acquisition, 

interpretation and management. This technology allows for an unprecedented level of 

depth and breadth of coverage by considering all precursor ions (including multiple 

precursor ions from multiplexed MS/MS spectra) and their MS/MS spectra in a sample 

instead of pre-selecting the precursor ions in DDA. Multiplexed DIA also allows for all 

the data from the sample to be stored for further data mining without the need to re-

sample. By incorporating multiplexed DIA into proteogenomics, much more coverage 

would be attainable, and with sufficient control on FDR would allow much higher rates 
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of annotation event discovery. Coupling this technology with top-down proteomics 

would require reconsideration on proteogenomics algorithmic design to accommodate 

the data. This arrangement would ultimately provide near-complete coverage of the 

proteome for proteogenomics analysis, resolving ambiguities with assigning annotation 

events and significantly reducing the occurrence of annotation events with single 

peptides, as well as resolving ambiguities when trying to identify TIS sites. 

 Spectral archives, as outlined previously in Section 2.3.8, is another technology 

that promises to change the landscape for spectral interpretation in MS-based 

proteomics completely, and predictably will have wide sweeping implications for 

proteogenomics in the years to come. In essence, the use of spectral archives would 

allow a higher level of specificity in identification and also discrimination between 

known and novel spectra by matching to a large archive of clustered spectra, both 

identified and unknown. Each spectrum in the archive would improve and be further 

validated each time further spectra are added. This level of enhancement would 

eliminate the ambiguity of assigning matches, since a SSM compared to a PSM, 

provides a much higher sensitivity and specificity. Any spectra from a proteogenomics 

study could contribute to the archive and in return the archive could assist with 

validating known proteins and identifying novel annotation events with confidence. The 

spectral archive would also remove the need to cross-validate matches against curated 

protein databases, as performed manually throughout this thesis, which was identified as 

an important consideration when performing proteogenomics analysis [439]. 

 A possible method which could be used to integrate spectral archives with 

proteogenomics, to identify the type of annotation events and their genomic locations, 

would be to first cluster the spectra by adding it to the spectral archive and contribute 

towards the growing archive. Following this step, sequences from the stop-to-stop 

ORFs of the six-frame genomic translation and sequences from a splice graph could be 
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split into known and novel sequences, based on the known reference annotation. The set 

of known and novel sequences could then be digested in silico to peptide sequences, 

based on different proteases and cleavage specificities and converted into simulated 

spectra using tools such as Mspire [605], all the while keeping track of their genomic 

coordinates. The known simulated spectra derived from the reference annotation could 

be validated against the spectral archive, to see if it matches only known spectra 

identified as belonging to a curated protein within the same genomic coordinates. The 

novel simulated spectra derived from the novel search space could be validated against 

the spectral archive to determine if they happen to match any known spectra already 

identified from a curated protein or un-identified spectra currently not assigned any 

annotation to validate its novelty. All the SSMs could be processed by the 

proteogenomics pipeline with both the identified novel and known spectra (with any 

PTMs) interpreted back into peptide sequences with retained genomic coordinates. The 

peptide sequences could then be clustered and annotation events inferred in context to 

the reference annotation. 

This approach is in contrast to previous methods of spectral identification, as the 

query and target have been inverted during the search stage. However, using this 

approach can provide an unparalleled level of specificity and sensitivity and, if event 

probabilities could be incorporated, the large spectral support provided by the spectral 

archive could be leveraged to improve the discrimination between true and false 

positive annotation events further, with few or no ambiguous annotation events. 

Overall, there is much promise for proteogenomics moving forward, with many 

possible approaches in its application, or a combination of approaches, such as the latest 

considerations with top-down proteomics, multiplexed DIA and spectral archives, to 

truly bring proteogenomics on a par with the latest next generation sequencing 
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technologies. The time when proteogenomics will herald the extinction of the non-

model organism is fast approaching [3]. 

8.2.4 Guidelines for proteogenomics 

To bring proteogenomics into the future, based on the findings from this thesis, some or 

all of the following seven points (Figure 8.1), should be considered in order to better 

contribute to genome annotation efforts: 

1) The use of the latest “next-generation” fast, accurate and sensitive MS/MS search 

tools such as MS-GF+ [407] should be used, or improved proteogenomics 

approaches utilizing multiplexed-DIA spectra and associated search tools, top-down 

proteomics methods and/or highly specific approaches, such as spectral library 

searching e.g. with tools like Tremolo [397] or the spectral archives approach [398, 

399]. In addition, these tools should include methods to improve throughput, such as 

multi-threading and/or MPI support. 

2) The workflow should include a two-pass search approach using significant matches 

in the second-pass and some form of two-stage PSM FDR for the known and then 

all novel sequences. Alternatively, multi-stage PSM FDR to the known sequences 

and then novel sequence from each annotation event type (novel annotation event-

specific PSM FDR) could be applied. To improve the discrimination between the 

known and novel identifications, a probabilistic approach that is independent of the 

database (e.g. spectral E-value) should be used. 

3) Regardless of the proteogenomics approach adopted, to improve the rate and 

accuracy of the assignment of annotation events the workflow should accurately 

cluster peptides using all identified peptides and use of a dynamically and machine-

learned peptide linkage distance, considering other evidence. Peptide clusters should 

have known peptides removed and the novel peptide clusters should be filtered to 

remove any ambiguity introduced from incorrectly clustered peptides, based on 
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other evidence, such as the frame of the majority of peptides within exon/CDS and 

ORF(s). These steps would achieve consistency and reduce ambiguity across all 

identified peptides and annotation events. 

4) In any proteogenomics approach there should be a very broad variety of novel 

annotation event types to account for all different types of search spaces that have 

varying levels of false positive rates. Not only those annotation event types 

identified by Enosi throughout this thesis, but also annotation events such as over-

predicted genes, NME, signal peptides, expressed pseudogenes, expressed non-

coding RNAs, and variants such as insertions, deletions and mutations. Only then 

can better control be applied to the false positive rate throughout the analysis, as 

each annotation event will have its own specific false positive rate. 

5) The identified genomic and RNA-seq derived sequences from the different novel 

annotation events should then feed back into point 2) above, to define the novel 

annotation event-specific search space to apply an annotation event-specific PSM 

FDR and/or apply filtering with unique peptide parsimony and event probability 

thresholds with an annotation event level FDR determined for each annotation event 

type. 

6) After the annotation events have been accepted from point 5) above, they should be 

further filtered for any incorrectly included overlapping peptide clusters, to keep the 

applied thresholds consistent and unambiguous at both the peptide and annotation 

event level, which could otherwise lead to false positive annotation events and 

predictions. 

7)  Finally, heuristic methods of gene prediction, such as Augustus should be used to 

improve the predictions given the proteogenomics evidence as well as any other 

orthogonal evidence. The predictions should be annotated and validated through a 

variety of means, such as an automated annotation pipeline as well as through ‘wet’ 
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lab validation. Any unassigned spectra could be validated through a modified 

template proteogenomics approach and/or a multi-stage peptide identification 

strategy to be identified in a second adjusted run of the proteogenomics pipeline to 

cater for the missed PSMs. All identified predicted novel and modified gene 

products should assist with the identification of orthologous genes in closely related 

species, where applicable, in an ortho-proteogenomics approach. In addition, the 

whole proteogenomics run could be performed in parallel with a closely related 

species, where applicable, with a cross-validation of identified annotation events 

and novel PSMs to improve sensitivity and specificity. Additionally, filtering 

stringencies at the PSM level and annotation event level should be optimized to 

reduce false positives and any identified peptides that were not incorporated into 

validated gene predictions should be investigated to see how to further improve the 

methods employed within points 1) through 6). 

Figure 8.1 Seven guidelines for proteogenomics 

 

8.3 CONCLUSIONS 

This thesis identified and developed a bioinformatics framework for proteogenomics, 

defined within a new methodology, which was demonstrated in a number of case 

studies through which its viability was tested. A number of caveats were identified as 
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the methodology was implemented and, as a result, the methodology evolved through a 

series of modifications and future improvements. In addition, significant contributions 

were made towards the genomic annotations of bacteria, grape, human and wheat, 

highlighting important discoveries and caveats. Overall, the thesis identifies and brings 

to light considerations for future proteogenomics strategies, by suggesting the 

integration of new methods and technologies. 
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APPENDIX 

Appendix File 4.1 Reference predictions are in zip file ‘AppendixFile4.1.zip’ on the DVD provided. 

Appendix File 4.2 Clustering, quality filtering and precursor mass tolerance optimization results 

are in excel file ‘AppendixFile4.2.xlsx’ on the DVD provided. 

Appendix File 4.3 Processed proteogenomics results are in excel file ‘AppendixFile4.3.xlsx’ on the 

DVD provided. 

Appendix File 4.4 Raw proteogenomics results are in zip file ‘AppendixFile4.4.zip’ on the DVD 

provided. 
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Appendix Figure 4.1 Pre and post clustering with and without PepNovo quality filtering 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering.  
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Appendix Figure 4.2 Precursor mass tolerance optimisation 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 4.3 Gene boundary of blr2146 or novel gene 

The gene blr2146 had a gene boundary event, while the study in [502], Prodigal and RAST suggested a 

novel gene annotation event. 
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Appendix Figure 4.4 High confidence novel gene annotation 

A novel gene annotation event in agreement with the study from [502], RAST annotation and Prodigal 

predictions. 
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Appendix Figure 4.5 Exon boundaries of gene bll2019 and bll2380. 

(A) The gene bll2019 (NolA) had an exon boundary event, in agreement with the study from [502]. RAST 

did not predict bll2019, resulting in a novel gene event, while Prodigal predicted bll2019, and is in 

agreement with the exon boundary annotation event. (B) The gene bll2380 had an exon boundary event, 

which was in agreement with the study from [502],  RAST annotation and Prodigal predictions. 
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Appendix Figure 4.6 Gene boundary annotation 

The gene bll0794 (PhoH) and bll0795 both had gene boundary annotations. The evidence from known 

peptides, suggested a gene extension to bll0794, however there was no supporting evidence from the 

RAST annotation and Prodigal predictions. 

 

 

 



 

 335 

Appendix Figure 4.7 Known peptide mapping to blr0594 (trxA) 

The unique peptide “TIIDQGNGAAGPAAADLIK” mapped to gene blr0594 (trxA). The study from 

[502] identified the unique peptide as being N-terminal acetylated indicating an alternative translated 

initiation start (TIS) site. However, according to the MS-GF+ search results in this study, the peptide was 

not N-terminal acetylated. 
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Appendix Figure 4.8 Supporting MS/MS spectra for reverse strand or novel gene event 

Sixteen MS/MS spectra (A-P) supporting the eight novel peptides annotating the reverse strand or novel 

gene annotation event illustrated in Figure 4.1. 
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Appendix Figure 4.9 Supporting MS/MS spectra for exon boundary and frame-shift annotation 

event or sequencing error 

Three MS/MS spectra (A-C) supporting the novel peptide annotating the exon boundary and frame-shift 

annotation event or sequencing error illustrated in Figure 4.2. 
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Appendix Figure 4.10 Supporting MS/MS spectra for gene boundary or novel gene annotation 

event 

Three MS/MS spectra (A-C) supporting the three novel peptides annotating the gene boundary event of 

blr2146 or novel gene illustrated in Appendix Figure 4.3. 
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Appendix Figure 4.11 Supporting MS/MS spectra for a novel gene event 

Eleven MS/MS spectra (A-K) supporting the seven novel peptides annotating a novel gene event 

illustrated in Appendix Figure 4.4. 
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Appendix Figure 4.12 Supporting MS/MS spectra for exon boundary event of gene bll2019 (NoIA) 

Three MS/MS spectra (A-C) supporting the novel peptide annotating the exon boundary event of bll2019 

(NoIA) illustrated in Appendix Figure 4.5A. 
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Appendix Figure 4.13 Supporting MS/MS spectra for exon boundary event of gene bll2380 

Fourteen MS/MS spectra (A-N) supporting the four novel peptides annotating the exon boundary event of 

bll2380 illustrated in Appendix Figure 4.5B. 

Appendix Figure 4.14 Supporting MS/MS spectrum for gene boundary event of gene bll0794 

(PhoH) 

One MS/MS spectrum supporting the novel peptide annotating the gene boundary event of bll0794 

(PhoH) illustrated in Appendix Figure 4.6. 
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Appendix Figure 4.15 Supporting MS/MS spectrum for peptide “TIIDQGNGAAGPAAADLIK”, 

indicating no N-terminal acetylation 

One MS/MS spectrum supporting a known peptide with no N-terminal acetylation, in contrast to the 

study from [502], illustrated in Appendix Figure 4.7. 

 

Appendix File 5.1 Reference predictions are in zip file ‘AppendixFile5.1.zip’ on the DVD provided. 

Appendix File 5.2 Clustering, quality filtering and precursor mass tolerance optimization results 

are in excel file ‘AppendixFile5.2.xlsx’ on the DVD provided. 

Appendix File 5.3 Processed proteogenomics results are in excel file ‘AppendixFile5.3.xlsx’ on the 

DVD provided. 

Appendix File 5.4 Raw proteogenomics results are in zip file ‘AppendixFile5.4.zip’ on the DVD 

provided. 

Appendix File 5.5 Augustus gene predictions are in zip file ‘AppendixFile5.5.zip’ on the DVD 

provided. 

Appendix File 5.6 Augustus gene predictions with incorporated novel peptides are in excel file 

‘AppendixFile5.6.xlsx’ on the DVD provided. 

Appendix File 5.7 NetGene2 splice site prediction results are in zip file ‘AppendixFile5.7.zip’ on the 

DVD provided. 

Appendix File 5.8 Known N-terminal acetylated peptides are in excel file ‘AppendixFile5.8.xlsx’ on 

the DVD. 
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Appendix Figure 5.1 Pre and post clustering with and without PepNovo quality filtering 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 5.2 Precursor mass tolerance optimisation 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 

 

Appendix Figure 5.3 Supporting MS/MS spectra for a novel gene event 

Two MS/MS spectra (A-B) supporting a novel peptide annotating a novel gene event, illustrated in Figure 

5.1. 
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Appendix Figure 5.4 Supporting MS/MS spectra for a novel gene annotation misidentified as a 

reverse strand event 

Eight MS/MS spectra (A-H) supporting novel peptides annotating a novel gene event via a reverse strand 

event, illustrated in Figure 5.2. 
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Appendix Figure 5.5 Supporting MS/MS spectra for a gene boundary annotation event 

Thirteen MS/MS spectra (A-M) supporting novel peptides annotating a gene boundary event illustrated, 

in Figure 5.3. 

Appendix Figure 5.6 Supporting MS/MS spectra for a novel gene annotation via a reverse strand 

annotation event 

Two MS/MS spectra (A-B) supporting novel peptides annotating a novel gene event via a reverse strand 

event, illustrated in Figure 5.4. 
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Appendix Figure 5.7 Supporting MS/MS spectra for a translated UTR annotation event 

Six MS/MS spectra (A-F) supporting novel peptides annotating a translated UTR event, illustrated in 

Figure 5.5. 
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Appendix Figure 5.8 Supporting MS/MS spectra for a translated UTR annotation event 

Nine representative MS/MS spectra (A-I; from a total of 90), supporting novel peptides annotating a 

translated UTR event, illustrated in Figure 5.6. 
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Appendix Figure 5.9 Supporting MS/MS spectra for a novel splice annotation event 

A single MS/MS spectrum supporting the novel peptide annotating a novel splice event, illustrated in 

Figure 5.7. 
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Appendix Figure 5.10 Supporting MS/MS spectra for an exon boundary annotation event 

Five representative MS/MS spectra (A-E; from a total of 59) supporting novel peptides annotating an 

exon boundary event, illustrated in Figure 5.6. 
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Appendix Figure 5.11 Supporting MS/MS spectra for an exon boundary annotation event 

Twelve MS/MS spectra (A-L) supporting novel peptides annotating an exon boundary event, illustrated 

in Figure 5.8. 
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Appendix Figure 5.12 Supporting MS/MS spectra for a frame-shift annotation event 

Three MS/MS spectra (A-C) supporting novel peptides annotating a frame-shift event, illustrated in 

Figure 5.9. 
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Appendix Figure 5.13 Supporting MS/MS spectra for a novel exon annotation event 

Fifteen MS/MS spectra (A-O) supporting novel peptides annotating a novel exon event, illustrated in 

Figure 5.10. 
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Appendix Figure 5.14 Supporting MS/MS spectrum for a N-terminal acetylated peptide suggesting 

a conflict with the reference annotation 

A single MS/MS spectrum supporting an N-terminal acetylated peptide in a known reference protein, 

illustrated in Figure 5.11. 
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Appendix Figure 5.15 Supporting MS/MS spectra for an N-terminal acetylated peptide suggesting a 

conflict with the reference annotation 

Seven MS/MS spectra (A-G) supporting an N-terminal acetylated peptide in a known reference protein, 

illustrated in Figure 5.12. 

 

Appendix Figure 5.16 Supporting MS/MS spectrum for an N-terminal acetylated peptide 

suggesting a conflict with the reference annotation 

A single MS/MS spectrum supporting an N-terminal acetylated peptide in a known reference protein, 

illustrated in Figure 5.13. 
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Appendix Figure 5.17 Supporting MS/MS spectra for an N-terminal acetylated peptide suggesting a 

conflict with the reference annotation 

Five representative MS/MS spectra (A-E; from a total of 23), supporting a N-terminal acetylated peptide 

in a known reference protein, illustrated in Figure 5.14. 
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Appendix Figure 5.18 Supporting MS/MS spectra for an N-terminal acetylated peptide suggesting a 

conflict with the reference annotation 

Two MS/MS spectra (A-B) supporting an N-terminal acetylated peptide in a known reference protein, 

illustrated in Figure 5.15. 

 

Appendix File 6.1 Reference predictions are in zip file ‘AppendixFile6.1.zip’ on the DVD provided. 

Appendix File 6.2 Clustering, quality filtering and precursor mass tolerance optimization results 

are in excel file ‘AppendixFile6.2.xlsx’ on the DVD provided. 

Appendix File 6.3 Processed proteogenomics results are in excel file ‘AppendixFile6.3.xlsx’ on the 

DVD provided. 

Appendix File 6.4 Raw proteogenomics results are in zip file ‘AppendixFile6.4.zip’ on the DVD 

provided. 

Appendix File 6.5 Augustus gene predictions are in zip file ‘AppendixFile6.5.zip’ on the DVD 

provided. 

Appendix File 6.6 Augustus gene predictions with incorporated novel peptides are in excel file 

‘AppendixFile6.6.xlsx’ on the DVD provided. 

Appendix File 6.7 Novel N-terminal acetylated peptides are in excel file ‘AppendixFile6.7.xlsx’ on 

the DVD. 
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Appendix Figure 6.1 Pre and post clustering with and without PepNovo quality filtering 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 6.2 Precursor mass tolerance optimisation 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 6.3 Supporting MS/MS spectra for a novel gene event 

Ten MS/MS spectra (A-J) supporting novel peptides annotating a novel gene event, illustrated in Figure 

6.2. 
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Appendix Figure 6.4 Supporting MS/MS spectra for a gene boundary and novel exon annotation 

events 

Three MS/MS spectra (A-C) supporting novel peptides annotating a gene boundary and novel exon 

events, illustrated in Figure 6.3. 
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Appendix Figure 6.5 Supporting MS/MS spectra for a reverse strand annotation event and 

erroneously included frame-shift annotation event 

Three MS/MS spectra (A-C) supporting novel peptides annotating a reverse strand event, and a likely 

erroneous frame-shift event from peptide “KMMTAVVFLK”, with its lower intensity MS/MS spectrum, 

illustrated in Figure 6.4. 
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Appendix Figure 6.6 Supporting MS/MS spectrum for an exon boundary and translated UTR 

annotation event 

A single MS/MS spectrum supporting a novel peptide annotating an exon boundary and translated UTR 

event, illustrated in Figure 6.5. 
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Appendix Figure 6.7 Supporting MS/MS spectrum for a novel and unique N-terminal acetylated 

peptide 

A single MS/MS spectrum supporting a novel and unique N-terminal acetylated peptide, identified in a 

gene boundary and reverse strand event, and which was not incorporated into any Augustus gene 

predictions. 
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Appendix Figure 6.8 Supporting MS/MS spectrum for a novel and unique N-terminal acetylated 

peptide 

A single MS/MS spectrum supporting a novel and unique N-terminal acetylated peptide, identified in a 

gene boundary and reverse strand event, and which was incorporated into an Augustus gene prediction. 

Appendix Figure 6.9 Supporting MS/MS spectra for a novel and shared N-terminal acetylated 

peptide 

Two MS/MS spectra supporting a novel and shared N-terminal acetylated peptide, identified in a gene 

boundary and reverse strand event, which was not incorporated into the Augustus gene prediction at that 

location. However, the peptide at one of 76 other locations was incorporated into a prediction at that 

location. 
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Appendix File 7.1 Reference predictions are in zip file ‘AppendixFile7.1.zip’ on the DVD provided. 

Appendix File 7.2 Clustering, quality filtering and precursor mass tolerance optimization results 

are in excel file ‘AppendixFile7.2.xlsx’ on the DVD provided. 

Appendix File 7.3 Processed proteogenomics results are in excel file ‘AppendixFile7.3.xlsx’ on the 

DVD provided. 

Appendix File 7.4 Raw proteogenomics results are in zip file ‘AppendixFile7.4.zip’ on the DVD 

provided. 

Appendix File 7.5 Augustus gene predictions are in zip file ‘AppendixFile7.5.zip’ on the DVD 

provided. 

Appendix File 7.6 Augustus gene predictions with incorporated novel peptides are in excel file 

‘AppendixFile7.6.xlsx’ on the DVD provided. 

Appendix File 7.7 Known and novel N-terminal acetylated peptides are in excel file 

‘AppendixFile7.7.xlsx’ on the DVD. 
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Appendix Figure 7.1 Pre and post PepNovo quality filtering for trypsin-digested wheat flour 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 7.2 Pre and post PepNovo quality filtering for chymotrypsin-digested wheat flour 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 7.3 Pre and post PepNovo quality filtering for thermolysin-digested wheat flour 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 7.4 Pre and post PepNovo quality filtering for trypsin-digested meiotic tissue 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 7.5 Pre and post PepNovo quality filtering for AspN-digested meiotic tissue 

(A) Total spectral counts independent of database search. (B) Peptide FDR at equivalent 1% PSM FDR. 

(C) Protein FDR at equivalent 1% PSM FDR. (D) Total number of unique peptides after 1% PSM FDR 

filtering. (E) Total number of PSMs after 1% PSM FDR filtering. 
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Appendix Figure 7.6 Precursor mass tolerance optimisation for trypsin-digested wheat flour 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 7.7 Precursor mass tolerance optimisation for chymotrypsin-digested wheat flour 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 7.8 Precursor mass tolerance optimisation for thermolysin-digested wheat flour 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 7.9 Precursor mass tolerance optimisation for trypsin-digested meiotic tissue 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 7.10 Precursor mass tolerance optimisation for AspN-digested meiotic tissue 

(A) Total number of PSMs before 1% PSM FDR filtering. (B) Total number of PSMs after 1% PSM FDR 

filtering. (C) Peptide FDR at equivalent 1% PSM FDR across precursor mass tolerances. 
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Appendix Figure 7.11 Supporting MS/MS spectra for a novel gene annotation event 

Fourteen representative MS/MS spectra (A-N; from a total of 24), supporting novel peptides annotating a 

novel gene event, illustrated in Figure 7.1. 
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Appendix Figure 7.12 Supporting MS/MS spectra for a novel gene annotation misidentified as a 

gene boundary annotation event 

Twenty-five representative MS/MS spectra (A-Y; from a total of 50) supporting novel peptides annotating 

a gene boundary event, which was actually a novel gene annotation, illustrated in Figure 7.2. 

Appendix Figure 7.13 Supporting MS/MS spectra for a reverse strand annotation event 

Three MS/MS spectra (A-C) supporting novel peptides annotating a reverse strand event, illustrated in 

Figure 7.3. 
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Appendix Figure 7.14 Supporting MS/MS spectra for an exon boundary annotation via a translated 

UTR annotation event 

Twenty-five representative MS/MS spectra (A-Y; from a total of 34) supporting novel peptides annotating 

a translated UTR event, which was more likely an exon boundary annotation, illustrated in Figure 7.4. 

Appendix Figure 7.15 Supporting MS/MS spectra for an exon boundary annotation event 

Two MS/MS spectra (A-B) supporting novel peptides annotating an exon boundary event, illustrated in 

Figure 7.5. 
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Appendix Figure 7.16 Supporting MS/MS spectrum for a frame-shift annotation event 

A single MS/MS spectrum supporting a novel peptide annotating a frame-shift event, illustrated in Figure 

7.6. 
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Appendix Figure 7.17 Supporting MS/MS spectrum for a novel exon annotation event 

A single MS/MS spectrum supporting a novel peptide annotating a novel exon event, illustrated in Figure 

7.7. 
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