15,330 research outputs found

    High dynamic range color image enhancement using fuzzy logic and bacterial foraging

    Get PDF
    High dynamic range images contain both the underexposed and the overexposed regions. The enhancement of the underexposed and the overexposed regions is the main concern of this paper. Two new transformation functions are proposed to modify the fuzzy membership values of under and the overexposed regions of an image respectively.For the overexposed regions, a rectangular hyperbolic function is used while for the underexposed regions, an S-function is applied. The shape and range of these functions can be controlled by the parameters involved, which are optimized using the bacterial foraging optimization algorithm so as to obtain the enhanced image. The hue, saturation, and intensity (HSV) color space is employed for the purpose of enhancement, where the hue component is preserved to keep the original color composition intact. This approach is applicable to a degraded image of mixed type. On comparison, the proposed transforms yield better results than the existing transformation functions17 for both the underexposed and the overexposed regions

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization

    Get PDF
    Image enhancement aims at processing an input image so that the visual content of the output image is more pleasing or more useful for certain applications. Although histogram equalization is widely used in image enhancement due to its simplicity and effectiveness, it changes the mean brightness of the enhanced image and introduces a high level of noise and distortion. To address these problems, this paper proposes image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE). FIMHE uses fuzzy intensity measure to first segment the histogram of the original image, and then clip the histogram adaptively in order to prevent excessive image enhancement. Experiments on the Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods

    Design of Novel Algorithm and Architecture for Gaussian Based Color Image Enhancement System for Real Time Applications

    Full text link
    This paper presents the development of a new algorithm for Gaussian based color image enhancement system. The algorithm has been designed into architecture suitable for FPGA/ASIC implementation. The color image enhancement is achieved by first convolving an original image with a Gaussian kernel since Gaussian distribution is a point spread function which smoothen the image. Further, logarithm-domain processing and gain/offset corrections are employed in order to enhance and translate pixels into the display range of 0 to 255. The proposed algorithm not only provides better dynamic range compression and color rendition effect but also achieves color constancy in an image. The design exploits high degrees of pipelining and parallel processing to achieve real time performance. The design has been realized by RTL compliant Verilog coding and fits into a single FPGA with a gate count utilization of 321,804. The proposed method is implemented using Xilinx Virtex-II Pro XC2VP40-7FF1148 FPGA device and is capable of processing high resolution color motion pictures of sizes of up to 1600x1200 pixels at the real time video rate of 116 frames per second. This shows that the proposed design would work for not only still images but also for high resolution video sequences.Comment: 15 pages, 15 figure

    Adaptive smoothness constraint image multilevel fuzzy enhancement algorithm

    Get PDF
    For the problems of poor enhancement effect and long time consuming of the traditional algorithm, an adaptive smoothness constraint image multilevel fuzzy enhancement algorithm based on secondary color-to-grayscale conversion is proposed. By using fuzzy set theory and generalized fuzzy set theory, a new linear generalized fuzzy operator transformation is carried out to obtain a new linear generalized fuzzy operator. By using linear generalized membership transformation and inverse transformation, secondary color-to-grayscale conversion of adaptive smoothness constraint image is performed. Combined with generalized fuzzy operator, the region contrast fuzzy enhancement of adaptive smoothness constraint image is realized, and image multilevel fuzzy enhancement is realized. Experimental results show that the fuzzy degree of the image is reduced by the improved algorithm, and the clarity of the adaptive smoothness constraint image is improved effectively. The time consuming is short, and it has some advantages
    • …
    corecore