463 research outputs found

    Data Visualization, Dimensionality Reduction, and Data Alignment via Manifold Learning

    Get PDF
    The high dimensionality of modern data introduces significant challenges in descriptive and exploratory data analysis. These challenges gave rise to extensive work on dimensionality reduction and manifold learning aiming to provide low dimensional representations that preserve or uncover intrinsic patterns and structures in the data. In this thesis, we expand the current literature in manifold learning developing two methods called DIG (Dynamical Information Geometry) and GRAE (Geometry Regularized Autoencoders). DIG is a method capable of finding low-dimensional representations of high-frequency multivariate time series data, especially suited for visualization. GRAE is a general framework which splices the well-established machinery from kernel manifold learning methods to recover a sensitive geometry, alongside the parametric structure of autoencoders. Manifold learning can also be useful to study data collected from different measurement instruments, conditions, or protocols of the same underlying system. In such cases the data is acquired in a multi-domain representation. The last two Chapters of this thesis are devoted to two new methods capable of aligning multi-domain data, leveraging their geometric structure alongside limited common information. First, we present DTA (Diffusion Transport Alignment), a semi-supervised manifold alignment method that exploits prior one-to-one correspondence knowledge between distinct data views and finds an aligned common representation. And finally, we introduce MALI (Manifold Alignment with Label Information). Here we drop the one-to-one prior correspondences assumption, since in many scenarios such information can not be provided, either due to the nature of the experimental design, or it becomes extremely costly. Instead, MALI only needs side-information in the form of discrete labels/classes present in both domains

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results

    Embedding Retrieval of Articulated Geometry Models

    Get PDF

    Face recognition from face motion manifolds using robust kernel resistor-average distance

    Full text link
    In this work we consider face recognition from face motion manifolds. An information-theoretic approach with Resistor-Average Distance (RAD) as a dissimilarity measure between distributions of face images is proposed. We introduce a kernel-based algorithm that retains the simplicity of the closed-form expression for the RAD between two normal distributions, while allowing for modelling of complex, nonlinear manifolds. Additionally, it is shown how errors in the face registration process can be modelled to significantly improve recognition. Recognition performance of our method is experimentally demonstrated and shown to outperform state-of-the-art algorithms. Recognition rates of 97–100% are consistently achieved on databases of 35– 90 people

    Learning Generative Models across Incomparable Spaces

    Full text link
    Generative Adversarial Networks have shown remarkable success in learning a distribution that faithfully recovers a reference distribution in its entirety. However, in some cases, we may want to only learn some aspects (e.g., cluster or manifold structure), while modifying others (e.g., style, orientation or dimension). In this work, we propose an approach to learn generative models across such incomparable spaces, and demonstrate how to steer the learned distribution towards target properties. A key component of our model is the Gromov-Wasserstein distance, a notion of discrepancy that compares distributions relationally rather than absolutely. While this framework subsumes current generative models in identically reproducing distributions, its inherent flexibility allows application to tasks in manifold learning, relational learning and cross-domain learning.Comment: International Conference on Machine Learning (ICML
    • …
    corecore