11 research outputs found

    A New Hybrid Embedding Method in Iris Biometric System

    Get PDF
    The challenging part in achieving high security biometrics data is viewed from the engineering perspective which includes security, accuracy, speeds and application size. The objective of this paper is to increase the accuracy through an embedding technique. A combination of modified pixel value differencing and wavelet decomposition techniques were used in this study. The pixels were scanned in a new direction embedded with the wavelet difference matrix. The system is developed using both eyes and each eye is enrolled with 10 snaps. The embedding process creates the embedded iris feature and the reverse process of embedding is known as de-embedding. Two thousands iris from CASIA database are used. The application is developed using MATLAB and executed for 5-20 iterations. The new hybrid system shows better performance in accuracy in terms of False Acceptance Rate (FAR), embedding capacity and Peak Signal to Noise Ratio (PSNR) values as benchmarked with the existing method. The finding shows that the output of the embedding capacity is 743801 and 41.10dB of PSNR. The good PSNR value is between 40-50 dB. The implication of this study contributes to a higher accuracy in iris biometric security. Future work should focus on the genetic algorithm to recognize human iris in biometric system

    Image Encryption Using Huffman Coding for Steganography, Elliptic Curve Cryptography and DWT for Compression

    Get PDF
    Abstract-An abstract is a brief summary of a research article or in-depth analysis of a particular subject or discipline, and is often used to help the reader quickly ascertain the paper's purpose. Images can be encrypted in several ways, by using different techniques and different encryption methods. In this paper, I am using Huffman Coding method for image steganography, Elliptic Curve Cryptography for image encryption and Discrete Wavelet Transform for image compression. In my work I am using steganography, encryption and compression all together on the image data. After applying all these techniques on image data it results in an encryption method which is highly secure. For the implementation of the proposed work we are using Matlab software

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    Digital watermarking methods for data security and authentication

    Get PDF
    Philosophiae Doctor - PhDCryptology is the study of systems that typically originate from a consideration of the ideal circumstances under which secure information exchange is to take place. It involves the study of cryptographic and other processes that might be introduced for breaking the output of such systems - cryptanalysis. This includes the introduction of formal mathematical methods for the design of a cryptosystem and for estimating its theoretical level of securit

    An analysis of alphabet-based techniques in text steganography

    Get PDF
    Steganography and cryptography are methods in information hiding.Cryptography scrambles the secret message, whereas steganography conceals a secret message in a carrier medium.An audio, video, image, and text can be used as a cover medium for hiding messages in steganography. The final output of steganography is a stego object that is sent to a receiver using a stego key. Suspiciousness of a generated stego text will encourage eavesdroppers to reveal the hidden message from stego text. Having reviewed substitution, injection, and propagation techniques for steganography, this paper discovers that there is a suspicion in the generated stego text. It is also discovered that text steganography using Genetic Algorithm (GA) is less focused by researchers compared to image and audio.Accordingly, this paper proposes that the adoption of GA should be focused in future works to protect stego text from suspiciousness due to the effectiveness and efficiency used in other media.Suspiciousness against stego text is very important in steganography to avoid third parties detecting the existence of secret message

    Image watermarking, steganography, and morphological processing

    Get PDF
    With the fast development of computer technology, research in the fields of multimedia security, image processing, and robot vision have recently become popular. Image watermarking, steganogrphic system, morphological processing and shortest path planning are important subjects among them. In this dissertation, the fundamental techniques are reviewed first followed by the presentation of novel algorithms and theorems for these three subjects. The research on multimedia security consists of two parts, image watermarking and steganographic system. In image watermarking, several algorithms are developed to achieve different goals as shown below. In order to embed more watermarks and to minimize distortion of watermarked images, a novel watermarking technique using combinational spatial and frequency domains is presented. In order to correct rounding errors, a novel technique based on the genetic algorithm (GA) is developed. By separating medical images into Region of Interest (ROI) and non-ROI parts, higher compression rates can be achieved where the ROI is compressed by lossless compression and the non-ROI by lossy compression. The GA-based watermarking technique can also be considered as a fundamental platform for other fragile watermarking techniques. In order to simplify the selection and integrate different watermarking techniques, a novel adjusted-purpose digital watermarking is developed. In order to enlarge the capacity of robust watermarking, a novel robust high-capacity watermarking is developed. In steganographic system, a novel steganographic algorithm is developed by using GA to break the inspection of steganalytic system. In morphological processing, the GA-based techniques are developed to decompose arbitrary shapes of big binary structuring elements and arbitrary values of big grayscale structuring elements into small ones. The decomposition is suited for a parallel-pipelined architecture. The techniques can speed up the morphological processing and allow full freedom for users to design any type and any size of binary and grayscale structuring elements. In applications such as shortest path planning, a novel method is first presented to obtaining Euclidean distance transformation (EDT) in just two scans of image. The shortest path can be extracted based on distance maps by tracking minimum values. In order to record the motion path, a new chain-code representation is developed to allow forward and backward movements. By placing the smooth turning-angle constraint, it is possible to mimic realistic motions of cars. By using dynamically rotational morphology, it is not only guarantee collision-free in the shortest path, but also reduce time complexity dramatically. As soon as the distance map of a destination and collision-free codes have been established off-line, shortest paths of cars given any starting location toward the destination can be promptly obtained on-line

    Robust data protection and high efficiency for IoTs streams in the cloud

    Get PDF
    Remotely generated streaming of the Internet of Things (IoTs) data has become a vital category upon which many applications rely. Smart meters collect readings for household activities such as power and gas consumption every second - the readings are transmitted wirelessly through various channels and public hops to the operation centres. Due to the unusually large streams sizes, the operation centres are using cloud servers where various entities process the data on a real-time basis for billing and power management. It is possible that smart pipe projects (where oil pipes are continuously monitored using sensors) and collected streams are sent to the public cloud for real-time flawed detection. There are many other similar applications that can render the world a convenient place which result in climate change mitigation and transportation improvement to name a few. Despite the obvious advantages of these applications, some unique challenges arise posing some questions regarding a suitable balance between guaranteeing the streams security, such as privacy, authenticity and integrity, while not hindering the direct operations on those streams, while also handling data management issues, such as the volume of protected streams during transmission and storage. These challenges become more complicated when the streams reside on third-party cloud servers. In this thesis, a few novel techniques are introduced to address these problems. We begin by protecting the privacy and authenticity of transmitted readings without disrupting the direct operations. We propose two steganography techniques that rely on different mathematical security models. The results look promising - security: only the approved party who has the required security tokens can retrieve the hidden secret, and distortion effect with the difference between the original and protected readings that are almost at zero. This means the streams can be used in their protected form at intermediate hops or third party servers. We then improved the integrity of the transmitted protected streams which are prone to intentional or unintentional noise - we proposed a secure error detection and correction based stenographic technique. This allows legitimate recipients to (1) detect and recover any noise loss from the hidden sensitive information without privacy disclosure, and (2) remedy the received protected readings by using the corrected version of the secret hidden data. It is evident from the experiments that our technique has robust recovery capabilities (i.e. Root Mean Square (RMS) <0.01%, Bit Error Rate (BER) = 0 and PRD < 1%). To solve the issue of huge transmitted protected streams, two compression algorithms for lossless IoTs readings are introduced to ensure the volume of protected readings at intermediate hops is reduced without revealing the hidden secrets. The first uses Gaussian approximation function to represent IoTs streams in a few parameters regardless of the roughness in the signal. The second reduces the randomness of the IoTs streams into a smaller finite field by splitting to enhance repetition and avoiding the floating operations round errors issues. Under the same conditions, our both techniques were superior to existing models mathematically (i.e. the entropy was halved) and empirically (i.e. achieved ratio was 3.8:1 to 4.5:1). We were driven by the question ‘Can the size of multi-incoming compressed protected streams be re-reduced on the cloud without decompression?’ to overcome the issue of vast quantities of compressed and protected IoTs streams on the cloud. A novel lossless size reduction algorithm was introduced to prove the possibility of reducing the size of already compressed IoTs protected readings. This is successfully achieved by employing similarity measurements to classify the compressed streams into subsets in order to reduce the effect of uncorrelated compressed streams. The values of every subset was treated independently for further reduction. Both mathematical and empirical experiments proved the possibility of enhancing the entropy (i.e. almost reduced by 50%) and the resultant size reduction (i.e. up to 2:1)

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..
    corecore