239 research outputs found

    New catalysts for miniaturized methanol fuel cells

    Get PDF

    Synthesis of Platinum Rare Earth Alloy Catalysts for Fuel Cells

    Get PDF

    Vapor Synthesis and Thermal Evolution of Supportless, Metal Nanotubes and Application as Electrocatalysts

    Get PDF
    One of the major limitations of proton exchange membrane fuel cells (PEMFCs) is the high cost and poor durability of the currently preferred catalyst design, small Pt nanoparticles supported on high surface area carbon (Pt/C). Unsupported, high-aspect ratio nanostructured catalysts, or extended surface catalysts, are a promising paradigm as electrocatalysts for a number of electrochemical reactions. These extended surface catalysts generally exhibit higher specific activities compared to their carbon-supported nanoparticle counterparts that have been ascribed to their unique electronic, surface and structural properties. Extended surface catalysts frequently maintain enhanced durability over supported catalysts during fuel cell operation because they are not susceptible to the same modes of degradation inherent to small supported nanoparticles. Considering the success of extended surfaces as catalysts, we have synthesized metallic, mixed-phase, and alloyed bimetallic nanotubes by a chemical vapor deposition (CVD) technique to catalyze a number of reactions relevant for fuel cells. In this CVD process, metalorganic precursors, namely metal-acetylacetonates, are decomposed by a mild thermal treatment and deposited as conformal nanoparticulate layers within a sacrificial anodic alumina template. Following vapor deposition, the nanotube samples may be annealed while still in the template to induce a series of changes with implications on electrocatalysis, including nano-porosity, alloying, and surface coordination. This synthesis technique and successive thermal modification is applicable for the deposition of a number of metals. The metallic nanotubes prepared by this method are highly active catalysts for a host of electrochemical reactions that are promising for fuel cell applications. The effects of composition, heat treatment temperature and gas environment on the activity and durability of these materials have been studied for oxygen reduction, methanol oxidation, formic acid oxidation, and hydrogen oxidation

    Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry

    Get PDF
    Alloys, intermetallic compounds and multi-metal oxides are generally made by traditional solid-state methods that often require melting or grinding/pressing powders followed by high temperature annealing (> 1000 degrees C) for days or weeks. The research presented here takes advantage of the fact that nanoparticles have a large fraction of their atoms on the surface making them highly reactive and their small size virtually eliminates the solid-solid diffusion process as the rate limiting step. Materials that normally require high temperatures and long annealing times become more accessible at relatively low-temperatures because of the increased interfacial contact between the nanoparticle reactants. Metal nanoparticles, formed via reduction of metal salts in an aqueous solution and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites in stoichometric proportions. The composite mixtures were then annealed at relatively low temperatures to form alloy and intermetallic compounds at or below 600 degrees C. This method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional methods. Nanoparticles of Pt (supported or unsupported) were added to a metal salt solution of tetraethylene glycol and heated to obtain alloy and intermetallic nanoparticles. The supported intermetallic nanoparticles were tested as catalysts and PtPb/Vulcan XC-72 showed enhanced catalytic activity for formic acid oxidation while Pt3Sn/Vulcan XC-72 and Cu3Pt/y-Al2O3 catalyzed CO oxidiation at lower temperatures than supported Pt. Intermetallic nanoparticles of Pd were synthesized by conversion chemistry methods previously mentioned and were supported on carbon and alumina. These nanoparticles were tested for Suzuki cross-coupling reactions. However; the homocoupled product was generally favored. The catalytic activity of Pd3Pb/y-Al2O3 was tested for the Heck reaction and gave results comparable to Pd/y-Al2O3 with a slightly better selectivity. Conversion chemistry techniques were used to convert Pt nanocubes into Ptbased intermetallic nanocrystals in solution. It was discovered that aggregated clusters of Pt nanoparticles were capable of converting to FePt3; however, when Pt nanocubes were used the intermetallic phase did not form. Alternatively, it was possible to form PtSn nanocubes by a conversion reaction with SnCl2

    Nanoalloy Electrocatalysts for Electrochemical Devices

    Get PDF
    This Special Issue reprint covers the most recent advances in nanoalloy electrocatalysts, concerning not only the synthesis, characterization, and modeling, but especially reports of their activity, functionality, durability, and low cost

    Ionomer-stabilised Pt and Pt-Ti bimetallic electrocatalysts for the proton exchange membrane fuel cell

    Get PDF
    This work aims to address the need for more durable electrocatalysts with lower precious metal content for proton exchange membrane fuel cells (PEMFCs), through the development of novel electrocatalyst materials and preparation routes. In this work, 'Nafion-Pt/C' electrocatalysts have been derived from ionomer-stabilised Pt nanoparticles synthesised via a novel, wet-chemical route that offers unprecedented control over the formation of the Pt-ionomer interface, with a view towards maximising the utilisation of the electrocatalyst. Nafion-Pt/C electrocatalysts have been characterised using ex-situ electrochemical techniques, and single-cell PEMFC testing to determine their activity and selectivity towards the oxygen reduction reaction (ORR), and to compare their utilisation and durability with commercially-available electrocatalysts. Nafion-Pt/C catalysts with agglomerated Pt particles exhibited a twofold improvement in durability vs. commercial catalysts, whilst offering similar ORR activities. Their enhanced durability was attributed to inhibition of Pt particle growth mechanisms by a passivating layer of Nafion introduced during the synthesis of Nafion-stabilised colloidal Pt. The second part of this work investigated methods for the synthesis of bimetallic nanoparticles consisting of an early transition-metal core (Ti) enclosed in a Pt shell, expected to offer higher intrinsic activity towards oxygen reduction than Pt alone, whilst being less prone to degradation than other alloys of Pt such as Pt-Ni, Pt-Co and Pt-Fe

    ์•ก์ฒด ๊ธฐํŒ ์Šคํผํ„ฐ๋ง์„ ํ†ตํ•œ ๋‹ด์ง€ ์ด‰๋งค ์ œ์ž‘ ๋ฐ ์ „๊ธฐํ™”ํ•™ ์ด‰๋งค๋กœ์˜ ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2014. 8. ์„ฑ์˜์€.ํƒ„์†Œ ๋‹ด์ง€์ฒด ์œ„์— ๊ณ ๋ฅด๊ฒŒ ๋ถ„์‚ฐ๋œ ๋ฐฑ๊ธˆ ๋‚˜๋…ธ ์ž…์ž๋Š” ๋‹ค์–‘ํ•œ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์˜ ์ด‰๋งค๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ์œ ์šฉํ•œ ๋ฌผ์งˆ์ด๋‹ค. ๋ฐฑ๊ธˆ์€ ๋Œ€๋ถ€๋ถ„์˜ ์ „๊ธฐํ™”ํ•™ ๋ฐ˜์‘์—์„œ ๋†’์€ ๊ตํ™˜ ์ „๋ฅ˜๋ฐ€๋„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์ด‰๋งค์˜ ํ™œ์„ฑ์ด ๋›ฐ์–ด๋‚˜๋ฉฐ, ๋‚˜๋…ธ ํฌ๊ธฐ์˜ ๋ฌผ์งˆ๋กœ ํ•ฉ์„ฑํ•  ๊ฒฝ์šฐ ํ‘œ๋ฉด์  ๋Œ€ ๋ถ€ํ”ผ๋น„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜์—ฌ ๋†’์€ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํƒ„์†Œ ๋‹ด์ง€์ฒด๋Š” ๊ธˆ์† ๋‚˜๋…ธ ์ž…์ž์˜ ์•ˆ์ •์„ฑ์„ ๋†’์—ฌ์ฃผ๊ณ  ํƒ„์†Œ์—์„œ ๋ฐฑ๊ธˆ์œผ๋กœ์˜ ์ „์ž ์ „๋‹ฌ๋กœ ์ธํ•œ ์ด‰๋งค ํ™œ์„ฑ ์ฆ๊ฐ€ ์—ญ์‹œ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‚˜๋…ธ ๋‹ด์ง€ ๋ฐฑ๊ธˆ ์ž…์ž๋Š” ์ฃผ๋กœ ๋ฐฑ๊ธˆ ์ „๊ตฌ์ฒด๋ฅผ ํ™˜์›์‹œ์ผœ ์ž…์ž๋ฅผ ํ˜•์„ฑํ•˜๋Š” ์ผ€๋ฏธ์ปฌ ๋ฉ”์†Œ๋“œ๋ฅผ ํ†ตํ•ด ํ•ฉ์„ฑ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด ํ™˜์› ํ•ฉ์„ฑ๋ฒ•์€ ์ „๊ตฌ์ฒด์˜ ๋†’์€ ๊ฐ€๊ฒฉ ๋ฐ ์‹คํ—˜ ๊ณผ์ •์—์„œ ์‚ฌ์šฉ๋˜๋Š” ํ™˜์›์ œ์™€ ๊ณ„๋ฉดํ™œ์„ฑ์ œ๋กœ ์ธํ•œ ํ™˜๊ฒฝ ๋ฌธ์ œ ๋“ฑ ๊ฒฝ์ œโ€ขํ™˜๊ฒฝ์ ์ธ ์ธก๋ฉด์—์„œ ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ „๊ตฌ์ฒด์™€ ํ™˜์›์ œ์˜ ํ™˜์› ์ „์œ„์— ๊ฐ•ํ•˜๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์›ํ•˜๋Š” ์กฐ์„ฑ ๋ฐ ํ˜•ํƒœ์˜ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐ์—๋„ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธˆ์† ์ „๊ตฌ์ฒด ๋ฐ ํ™˜์›์ œ, ๊ณ„๋ฉดํ™œ์„ฑ์ œ์˜ ์‚ฌ์šฉ์„ ์ตœ์†Œํ™”ํ•˜์—ฌ ๋‚˜๋…ธ ๋‹ด์ง€ ๋ฐฑ๊ธˆ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํ•ฉ์„ฑ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๊ณ , ํ•ฉ์„ฑ๋œ ์ž…์ž๋ฅผ ์ „๊ธฐํ™”ํ•™์  ์ด‰๋งค๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•ด ๋ณด๊ณ ์ž ํ•œ๋‹ค. ์ „๊ธฐํ™”ํ•™์  ์ด‰๋งค ์ ์šฉ ์—ฌ๋ถ€๋Š” ์‚ฐ์†Œ ํ™˜์› ๋ฐ˜์‘์„ ์ด์šฉํ•˜์—ฌ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํƒ„์†Œ ๋‹ด์ง€์ฒด ์œ„์— ๊ณ ๋ฅด๊ฒŒ ๋ถ„์‚ฐ๋œ ๋ฐฑ๊ธˆ ๋‚˜๋…ธ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ด์˜จ์„ฑ ์•ก์ฒด ๊ธฐํŒ ์œ„์— ์Šคํผํ„ฐ๋ง ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ ์ •ํ•˜์˜€๋‹ค. ํƒ„์†Œ ๋‹ด์ง€์ฒด๊ฐ€ ๋ถ„์‚ฐ๋œ ์ด์˜จ์„ฑ ์•ก์ฒด ์œ„์— ์ง์ ‘ ๋ฐฑ๊ธˆ์„ ์Šคํผํ„ฐ๋ง ํ•œ ํ›„ ํ›„ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ๋ฐฑ๊ธˆ ์ž…์ž์™€ ํƒ„์†Œ ๋‹ด์ง€์ฒด ์‚ฌ์ด์˜ ๊ฒฐํ•ฉ์„ ๊ฐ•ํ™”์‹œ์ผœ ์ฃผ๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋‚˜๋…ธ ๋‹ต์ง€ ๋ฐฑ๊ธˆ ์ž…์ž๋ฅผ ์†์‰ฝ๊ฒŒ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ด์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๊ธˆ์† ์ž…์ž ํ‘œ๋ฉด์— ํก์ฐฉ๋œ ์Œ์ด์˜จ์ด ํƒ„์†Œ ๋‹ด์ง€์ฒด์™€ ์ง์ ‘ ๋ฐ˜์‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž„์„ ๋ฐํ˜€๋‚ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋ ‡๊ฒŒ ํ•ฉ์„ฑ๋œ ์ž…์ž๋Š” ์Œ์ด์˜จ์˜ ๊ฐ•ํ•œ ํก์ฐฉ์œผ๋กœ ์ธํ•ด ๋ฐฑ๊ธˆ์˜ ํ‘œ๋ฉด์ด ์ „ํ•ด์งˆ์— ๋…ธ์ถœ ๋˜์ง€ ์•Š์•„ ์ „๊ธฐํ™”ํ•™์  ์ด‰๋งค๋กœ ์‚ฌ์šฉํ•˜๊ธฐ์—๋Š” ์ ํ•ฉํ•˜์ง€ ์•Š์•˜๋‹ค. ๋น„ํœ˜๋ฐœ์„ฑ ๊ณ ๋ถ„์ž ๋ฌผ์งˆ์ธ PEG๋ฅผ ๋Œ€์ฒด ๊ธฐํŒ์œผ๋กœ ์ ์šฉํ•˜์—ฌ ๋ฐฑ๊ธˆ ๋‹ด์ง€ ์ด‰๋งค๋ฅผ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์ด ๊ฒฝ์šฐ ์ด์˜จ์„ฑ ์•ก์ฒด์™€ ๋‹ฌ๋ฆฌ ํ›„ ์—ด์ฒ˜๋ฆฌ ์—†์ด๋„ ๋ฐ”๋กœ ๋‹ด์ง€ ์ž…์ž๊ฐ€ ํ•ฉ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ ‡๊ฒŒ ํ•ฉ์„ฑ๋œ ์ด‰๋งค๋Š” ์ „๊ธฐํ™”ํ•™์ ์œผ๋กœ๋„ ๋†’์€ ํ™œ์„ฑ์„ ๋„๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ ๋˜์–ด ์•ก์ฒด ๊ธฐํŒ ์Šคํผํ„ฐ๋ง์ด ๋‹ด์ง€ ๋‚˜๋…ธ ์ด‰๋งค๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋งค์šฐ ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ•ฉ์„ฑ๋ฒ•์œผ๋กœ ๋ฐฑ๊ธˆ ๋‹จ์ผ ์ด‰๋งค๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐ์—๋งŒ ๊ทธ์น˜์ง€ ์•Š๊ณ , ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ์˜ ์ด‰๋งค๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‘์šฉํ•˜๊ณ ์ž ํ•ฉ์„ฑ๋ฒ•์˜ ๊ฐœ์„ ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋‘ ๊ฐœ ์ด์ƒ์˜ ํƒ€๊ฒŸ์„ ๋™์‹œ์— ์Šคํผํ„ฐ๋ง ํ•˜๋Š” ์ฝ”์Šคํผํ„ฐ๋ง์„ ํ†ตํ•ด ๋ฐฑ๊ธˆ-์ฝ”๋ฐœํŠธ ๋ฐ ๋ฐฑ๊ธˆ-๋‹ˆ์ผˆ ํ•ฉ๊ธˆ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. XRD ๋ฐ STEM EDS ๋ถ„์„์„ ํ†ตํ•ด ๋‹จ์ˆœํ•œ ์ฝ”์Šคํผํ„ฐ๋ง์„ ํ†ตํ•ด ํ•ฉ๊ธˆ ๊ตฌ์กฐ๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ํ˜•์„ฑ๋˜์—ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ ํ•ฉ๊ธˆ ์ด‰๋งค๋Š” ์ „์ž ๊ตฌ์กฐ ๋ฐ ์›์ž๊ฐ„ ๊ฑฐ๋ฆฌ์˜ ๋ณ€ํ™”๋กœ ์ธํ•ด ๊ฐœ์„ ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋งˆ์ดํฌ๋กœ์›จ์ด๋ธŒ ์žฅ๋น„์˜ ๋„์›€์„ ๋ฐ›์•„ ์ฝ”์–ด-์‰˜ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ๋‚˜๋…ธ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜์˜€๋‹ค. ์Šคํผํ„ฐ๋ง์„ ์ด์šฉํ•˜์—ฌ ์ฝ”์–ด๊ฐ€ ๋˜๋Š” ์ฝ”๋ฐœํŠธ ๋‚˜๋…ธ์ž…์ž๋ฅผ ๋น„ํœ˜๋ฐœ์„ฑ ์šฉ์•ก ๋‚ด์— ํ•ฉ์„ฑํ•˜์˜€๊ณ , ๋ฐฑ๊ธˆ ์‰˜ ๋ฌผ์งˆ์˜ ์ „๊ตฌ์ฒด๋ฅผ ์ฃผ์ž…ํ•œ ํ›„ ๋งˆ์ดํฌ๋กœ ์›จ์ด๋ธŒ๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ๋ฐฑ๊ธˆ ์‰˜์„ ์ฆ์ฐฉ์‹œ์ผฐ๋‹ค. ๋‘ ๋‹จ๊ณ„๋กœ ํ•ฉ์„ฑ๋œ ๋‚˜๋…ธ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ ๋ถ„์„ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด 2-3 nm์˜ ๋งค์šฐ ์ž‘์€ ํฌ๊ธฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ฝ”์–ด-์‰˜ ๊ตฌ์กฐ๋ฅผ ๋„๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์›์ž์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ์ฝ”์–ด์— ์›์ž ๊ฐ„ ๊ฑฐ๋ฆฌ ๊ฐ์†Œ ๋ฐ ์ „์ž ๊ตฌ์กฐ ๋ณ€ํ™” ์—ญ์‹œ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋‹จ์ผ ๋ฌผ์งˆ ์ด‰๋งค์— ๋น„ํ•ด ๋†’์€ ์ „๊ธฐํ™”ํ•™์  ํ™œ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋ฐฑ๊ธˆ ๊ธฐ๋ฐ˜์˜ ์ž…์ž๋ฟ ์•„๋‹ˆ๋ผ, ์ž์„ฑ์„ ๋„๋Š” ์ฝ”๋ฐœํŠธ ์˜ฅ์‚ฌ์ด๋“œ ๋‚˜๋…ธ ์ž…์ž ์—ญ์‹œ ํ•ฉ์„ฑ์ด ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํƒ„์†Œ ๋‹ด์ง€์ฒด๋ฅผ ๋‚˜๋…ธ ์ž…์ž ํ•ฉ์„ฑ์ด ๋๋‚œ ํ›„ ์ฃผ์ž…ํ•˜๋Š” ๋ฐฉ์‹์„ ํ†ตํ•ด ์ž์„ฑ์„ ๋„๋Š” ์ฝ”๋ฐœํŠธ์ž„์—๋„ ๋ญ‰์นจ ์—†์ด ๊ณ ๋ฅด๊ฒŒ ๋ถ„์‚ฐ๋œ ๋‹ด์ง€ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ด๋ ‡๊ฒŒ ํ•ฉ์„ฑ๋œ ์ด‰๋งค๋Š” ์‚ฐ์†Œ ํ™˜์› ๋ฐ˜์‘ ๋ฐ ์‚ฐ์†Œ ์ƒ์„ฑ ๋ฐ˜์‘ ๋ชจ๋‘์— ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์—ฌ ์–‘๋ฐฉํ–ฅ ๊ธฐ๋Šฅ์„ฑ ์ด‰๋งค๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋‹จ์ˆœํ•œ ์Šคํผํ„ฐ๋ง์„ ํ†ตํ•ด ๊ณ ๋ฅธ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ๋‚˜๋…ธ ๋‹ด์ง€ ์ด‰๋งค๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๊ณ , ์ด‰๋งค ํ•ฉ์„ฑ ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ด์ง€ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์—ญ์‹œ ์ตœ์ดˆ๋กœ ๋ฐํ˜”๋‹ค. ๋˜ํ•œ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์„ ๊ฐœ์„ ํ•˜์—ฌ ๋ฐฑ๊ธˆ ๊ธฐ๋ฐ˜ ํ•ฉ๊ธˆ ๋ฐ ์ฝ”์–ด-์‰˜ ๊ตฌ์กฐ์˜ ๋‚˜๋…ธ ์ž…์ž์™€ ์ž์„ฑ ์‚ฐํ™”๋ฌผ ๋‚˜๋…ธ์ž…์ž ํ•ฉ์„ฑ์—๋„ ์„ฑ๊ณตํ•˜์˜€์œผ๋ฉฐ, ์ด๋“ค ์ด‰๋งค๋Š” ๊ฐœ์„ ๋œ ์‚ฐ์†Œ ํ™˜์› ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค.Chapter 1. Introduction 1.1. Fuel cells and nanocatalyst 1.2. Basis of sputtering technique 1.3. Nanoparticle synthesis via sputtering technique 1.4. Subject of research in the thesis 1.5. References Chapter 2. Experimental 2.1. Synthesis of carbon supported metal nanoparticle 2.1.1. Carbon supported Pt nanoparticles 2.1.2. Carbon supported Co3O4 nanoparticles 2.1.3. Carbon supported PtCo and PtNi alloy nanoparticles 2.1.4. Carbon supported Pt@Co nanoparticles 2.2. Electronic structure characterization 2.3. Physicochemical characterization 2.4. References Chapter 3. Results and Discussion 3.1. Establishment of the liquid sputtering method 3.1.1. Sputterin onto ionic liquids 3.1.1.1. Carbon supported metal nanoparticle synthesis 3.1.1.2. Supporting mechanism and electrocatalytic activities 3.1.2. Sputtering onto PEG 3.2. Application of the liquid sputtering method 3.2.1. Alloy nanoparticles via co-sputtering 3.2.2. Core-shell nanoparticles via microwave associated 2-step method 3.2.3. Co oxide/C electrocatalyst 3.3. References Chapter 4. ConclusionsDocto

    DEVELOPMENT OF NEW SUPPORTED CATALYSTS FOR DIRECT ETHANOL FUEL CELLS

    Get PDF
    Fuel cells are electrochemical energy conversion devices to be fed with a fuel and oxidant in order to generate electricity. Ethanol has, recently, shown a promising potential to replace hydrogen as a fuel directly fed into the cell due to its liquid state and sustainability. The challenge, however, is the significantly slow ethanol oxidation kinetics. Therefore, an affordable, highly active, and stable catalyst is necessary for activating such reaction. Platinum (and its alloys) is known as the most active metal for fuel cell catalysis, but its scarce presence has made the fuel cell commercialisation non-feasible. Also, it is very susceptible to poisoning by carbonaceous species which considerably decreases the catalyst lifetime. Palladium has shown a good potential to replace Pt. It is more abundant than Pt and has shown a comparable performance. Furthermore, it is more tolerant for poisoning species. In this thesis, Pd nanoparticles (NPs) are prepared by chemical reduction on five different carbon supports all of which are physically characterised and evaluated for ethanol oxidation. Because of a critical balance amongst the physiochemical characteristics (surface area, porosity, crystallinity extent), Vulcan carbon (XC72) has presented the highest support functionality for Pd ethanol oxidation as measured by the obtained current density. Numerous research efforts have co-concluded that adding a 2nd metal to Pd is beneficial economically and technically. Yet, a few groups have given attention to the trimetallic Pd-based electrocatalysts. Therefore, the main target of this thesis is to investigate various trimetallic combinations and synthesis methods to prepare C-supported trimetallic catalysts. Three different borohydride reduction synthetic protocols were deployed to prepare PdAuNi catalysts. The sodium borhydride-2-propanol (SBIPP) method gives the highest performing PdAuNi/C catalyst with 9-A/mgPd current density peak and - 0.36-V-vs-NHE onset potential while the single Pd counterpart gives only 2 A/mgPd and - 0.26 V, respectively. The physical characterisation shows enhanced physical alloy structure of this PdAuNi. Using the SBIPP protocol, 12 other catalyst combinations from Pd and two other metals were prepared with 12 wt.% metal loading. PdAu-based catalysts have shown significant enhancement of the Pd activity and stability towards ethanol oxidation. PdAuRh, in particular, produces a remarkable oxidation current peak of 10 A/mgPd and - 0.4-V onset potential. The PdAuRh and PdAuNi catalysts seem to present serious candidates to replace Pt and facilitate the transition into an affordable low-carbon technology to supply sustainable electricity.====================================================================================== ูArabic Abstract ุชุนุชุจุฑ ุฎู„ุงูŠุง ุงู„ูˆู‚ูˆุฏ ุฃุฌู‡ุฒุฉ ุชุญูˆูŠู„ ุทุงู‚ุฉ ูŠุชู… ุชุบุฐูŠุชู‡ุง ุจูˆู‚ูˆุฏ ูˆู…ุคูƒุณุฏ ู„ูƒูŠ ุชูˆู„ุฏ ูƒู‡ุฑุจุงุก. ูˆุญุฏูŠุซุง ู„ุงู‚ูŠ ูˆู‚ูˆุฏ ุงู„ุงูŠุซุงู†ูˆู„ ุงู‡ุชู…ุงู… ุงู„ุจุงุญุซูŠู† ูƒูˆู‚ูˆุฏ ู„ุชุบุฐูŠุฉ ุงู„ุฎู„ูŠุฉ ุจุฏู„ุง ู…ู† ุงู„ู‡ูŠุฏุฑูˆุฌูŠู† ู†ุธุฑุง ู„ุทุจูŠุนุชู‡ ุงู„ุณุงุฆู„ุฉ ูˆุงุณุชุฏุงู…ุฉ ูˆุฌูˆุฏู‡. ูˆู„ูƒู† ุงู„ุชุญุฏูŠ ุงู…ุงู…ู‡ ู‡ูˆ ุงู„ุจุทุก ุงู„ุดุฏูŠุฏ ููŠ ุชูุงุนู„ ุงูƒุณุฏุชู‡ ุฏุงุฎู„ ุงู„ุฎู„ูŠุฉ. ู„ุฐุง ู…ู† ุงู„ุถุฑูˆุฑูŠ ุฅูŠุฌุงุฏ ุญูุงุฒ ู†ุดุท ุฌุฏุง ู„ุชุญููŠุฒ ุงูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„ ู„ูˆู‚ุช ุทูˆูŠู„ ู†ุณุจูŠุง. ูŠุนุฑู ู…ุนุฏู† ุงู„ุจู„ุงุชูŠู† ุจุฃู†ู‡ ุงู†ุดุท ุงู„ู…ุนุงุฏู† ู„ุชุญููŠุฒ ุชูุงุนู„ุงุช ุฎู„ุงูŠุง ุงู„ูˆู‚ูˆุฏ ูˆู„ูƒู† ู†ุฏุฑุชู‡ ุงู„ุดุฏูŠุฏุฉ ุชุฌุนู„ ุชุณูˆูŠู‚ ุฎู„ุงูŠุง ุงู„ูˆู‚ูˆุฏ ุชุฌุงุฑูŠุง ุบูŠุฑ ู…ุฌุฏูŠ. ุฃูŠุถุง ูุงู† ู…ุนุฏู† ุงู„ุจู„ุงุชูŠู† ู„ุง ูŠู‚ุงู… ุงู„ุณู…ูˆู… ุงู„ูƒุฑุจูˆู†ูŠุฉ ุงู„ุชูŠ ู‚ุฏ ุชูˆุฌุฏ ุนู„ู‰ ุดูƒู„ ุดูˆุงุฆุจ ุงูˆ ุชู†ุชุฌ ุงุซู†ุงุก ุงู„ุชูุงุนู„ุงุช ููŠ ุฎู„ุงูŠุง ุงู„ูˆู‚ูˆุฏ ู…ู…ุง ูŠุฌุนู„ ุนู…ุฑ ุงู„ุญูุงุฒ ุงู„ูุนู„ูŠ ู‚ุตูŠุฑ ุฌุฏุง. ุนู„ู‰ ุงู„ุฌุงู†ุจ ุงู„ุขุฎุฑ ู…ุนุฏู† ุงู„ุจู„ุงุฏูŠูˆู… ูŠู‚ุฏู… ุจุฏูŠู„ ู…ู†ุงุณุจ ู„ู„ุจู„ุงุชูŠู† ุญูŠุซ ุงู†ู‡ ุงู‚ู„ ู†ุฏุฑุฉ ู…ู† ุงู„ุจู„ุงุชูŠู† ููŠ ุงู„ู‚ุดุฑุฉ ุงู„ุฃุฑุถูŠุฉ ูˆ ูŠุนู…ู„ ุจูƒูุงุกุฉ ุชู†ุงุธุฑ ุงู„ุจู„ุงุชูŠู†. ุฅุถุงูุฉ ุงู„ูŠ ุฐู„ูƒ ูุงู† ุนู…ุฑ ุญูุงุฒ ุงู„ุจู„ุงุฏูŠูˆู… ุฃุทูˆู„ ู…ู† ุงู„ุจู„ุงุชูŠู† ู†ุธุฑุง ู„ู‚ุฏุฑุฉ ุงู„ุฃูˆู„ ุนู„ู‰ ู…ู‚ุงูˆู…ุฉ ุงู„ุชุณู…ู… ุจุงู„ุนูŠู†ุงุช ุงู„ูƒุฑุจูˆู†ูŠุฉ. ููŠ ู‡ุฐู‡ ุงู„ุฑุณุงู„ุฉ ุฌุณูŠู…ุงุช ุงู„ุจู„ุงุฏูŠูˆู… ุงู„ู†ุงู†ูˆูŠุฉ ุชู… ุชุญุถูŠุฑู‡ุง ุจุงู„ุงุฎุชุฒุงู„ ุงู„ูƒูŠู…ูŠุงุก ูˆ ุชู… ุชุซุจูŠุชู‡ุง ุนู„ู‰ ุฎู…ุณุฉ ุฃู†ูˆุงุน ูƒุฑุจูˆู† ู…ุฎุชู„ูุฉ ูƒู„ ู…ู†ู‡ู… ุชู… ุชุญู„ูŠู‡ ููŠุฒูŠุงุฆูŠุง ูˆ ูƒูŠู…ูŠุงุฆูŠุง ูˆ ุชู… ุชุทุจูŠู‚ู‡ุง ู„ุฃูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„. ู†ุธุฑุง ู„ุชุฏุงุฎู„ ุชุฃุซูŠุฑุงุช ุงู„ุฎูˆุงุต ุงู„ููŠุฒูˆูƒูŠู…ูŠุงุฆูŠุฉ ู…ุซู„ ุงู„ู…ุณุงุญุฉ ุงู„ุณุทุญูŠุฉ ูˆุงู„ู…ุณุงู…ูŠุฉ ูˆุฏุฑุฌุฉ ุงู„ุชุจู„ูˆุฑ ูุงู† ุงู„ูƒุฑุจูˆู† ู…ู† ู†ูˆุน ููˆู„ูƒุงู† 72 ู‚ุฏู… ุงูุถู„ ุฃุฏุงุก ู‡ู†ุฏุณูŠ ูƒุญุงู…ู„ ู„ุญูุงุฒ ุงู„ุจู„ุงุฏูŠูˆู… ู„ุฃูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„ ูŠุนุฑู ู…ู† ุฎู„ุงู„ ุดุฏุฉ ุงู„ุชูŠุงุฑ ุงู„ูƒู‡ุฑุจูŠ ุงู„ู†ุงุชุฌ ู…ู† ุงู„ุชูุงุนู„. ุงู„ุนุฏูŠุฏ ู…ู† ุงู„ุฏุฑุงุณุงุช ุงู„ุณุงุจู‚ุฉ ุชูˆุตู„ุช ุงู„ู‰ ุงู† ุฅุถุงูุฉ ุนู†ุตุฑ ุขุฎุฑ ุงู„ูŠ ุงู„ุจู„ุงุฏูŠูˆู… ูŠุญู‚ู‚ ู…ุตู„ุญุฉ ู…ุฒุฏูˆุฌุฉ ุจุฑูุน ุงู„ูƒูุงุกุฉ ูˆ ุชู‚ู„ูŠู„ ุงู„ูƒู…ูŠุฉ ุงู„ู…ุณุชู‡ู„ูƒุฉ ู…ู† ู…ุนุฏู† ุงู„ุจู„ุงุฏูŠูˆู… ุงู„ู†ุจูŠู„. ูˆ ู„ูƒู† ุงู„ู‚ู„ูŠู„ ู…ู† ุงู„ุฏุฑุงุณุงุช ุฑูƒุฒ ุนู„ู‰ ุฏุฑุงุณุฉ ุฅุถุงูุฉ ุนู†ุตุฑูŠู† ุงู„ูŠ ุงู„ุจู„ุงุฏูŠูˆู… ุจุฏู„ุง ู…ู† ุนู†ุตุฑ ูˆุงุญุฏ. ู„ุฐุง ุงู„ู‡ุฏู ููŠ ู‡ุฐุง ุงู„ุนู…ู„ ู‡ูˆ ูุญุต ุชุฑูƒูŠุจุงุช ู…ุญูุฒุฉ ู…ุฎุชู„ูุฉ ู…ู† ุซู„ุงุซ ู…ุนุงุฏู† (ุจู„ุงุฏูŠูˆู… ุฅุถุงูุฉ ุงู„ู‰ ู…ุนุฏู†ูŠู† ุงุฎุฑูŠู†) ูˆุทุฑู‚ ุชุญุถูŠุฑ ู…ุฎุชู„ูุฉ. ุซู„ุงุซ ุทุฑู‚ ุงุฎุชุฒุงู„ ุจุงุณุชุฎุฏุงู… ุงู„ุจูˆุฑูˆู‡ูŠุฏุฑูŠุฏ ุชู… ุชุทุจูŠู‚ุงู‡ุง ู„ุงู†ุชุงุฌ ุซู„ุงุซ ุญูุงุฒุงุช ุซู„ุงุซูŠุฉ ู…ู† ุงู„ุจู„ุงุฏูŠูˆู… ูˆ ุงู„ุฐู‡ุจ ูˆ ุงู„ู†ูŠูƒู„. ุงู„ุญูุงุฒ ุงู„ู…ู†ุชุฌ ุจุงุณุชุฎุฏุงู… ุชุฑูƒุจูŠุฉ ุจูˆุฑูˆู‡ูŠุฏุฑูŠุฏ ุงู„ุตูˆุฏูŠูˆู… ูˆ ุงู„ุจูˆุฑูˆุจุงู†ูˆู„ ุงู„ุซู†ุงุฆูŠ ู‡ูˆ ุงุนู„ุงู‡ู… ุฃุฏุงุก ุจูƒุซุงู‚ุฉ ุชูŠุงุฑ 9 ุงู…ุจูŠุฑ/ู…ุฌู… (ุจู„ุงุฏูŠูˆู…) ูˆ ุฌู‡ุฏ ุจุฏุฃ ุฃูƒุณุฏุฉ -0.36 ููˆู„ุช ุจูŠู†ู…ุง ุงู„ุญูุงุฒูŠ ุงู„ุฃุญุงุฏูŠ ู…ู† ุงู„ุจู„ุงุฏูŠูˆู… ุงุนุทูŠ ูู‚ุท 2 ุงู…ุจูŠุฑ/ู…ุฌู… (ุจู„ุงุฏูŠูˆู…) ูˆ ุงุจุชุฏุก ุงูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„ ู…ุน ูุฑู‚ ุฌู‡ุฏ -0.26 ููˆู„ุช. ุงู„ุชุดุฎูŠุต ุงู„ููŠุฒูŠุงุฆูŠ ู„ู‡ุฐุง ุงู„ุญูุงุฒ ุจูŠู†ูŠุฉ ุงู†ุดุงุฆูŠุฉ ู…ุญุณู†ุฉ ู…ู† ุณุจูŠูƒุฉ ุงู„ุจู„ุงุฏูŠูˆู… ูˆ ุงู„ุฐู‡ุจ ูˆ ุงู„ู†ูŠูƒู„. ูˆ ุจู†ูุณ ุทุฑูŠู‚ุฉ ุงู„ุชุญุถูŠุฑ ุชู… ุชุญุถูŠุฑ 12 ุญูุงุฒ ุซู„ุงุซู‰ ุงุฎุฑูŠ ู…ู† ุงู„ุจู„ุงุฏูŠูˆู… ูˆ ู…ุนุฏู†ูŠู† ุงุฎุฑูŠู† ูˆ ู…ุนุฏู„ ุชุญู…ูŠู„ ุงู„ู…ุนุฏู† ุนู„ู‰ ุงู„ูƒุฑุจูˆู† ูŠูƒุงูุฆ 12% ุจุงู„ูˆุฒู†. ุจุตูุฉ ุนุงู…ุฉ ุงู„ุญูุงุฒุงุช ุงู„ุชูŠ ุชุญุชูˆูŠ ุนู„ู‰ ุจู„ุงุฏูŠูˆู… ูˆ ุฐู‡ุจ ุฅุถุงูุฉ ุงู„ู‰ ู…ุนุฏู† ุงุฎุฑ ุชู‚ุฏู… ุฃุฏุงุก ู…ุญุณู† ุชุฌุงู‡ ุงูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„ ุงูƒุซุฑ ู…ู† ุงู„ุญูุงุฒุงุช ุงู„ุฃุฎุฑู‰. ุงู†ุดุท ู‡ุคู„ุงุก ู‡ูˆ ุงู„ุญูุงุฒ ุงู„ุฐูŠ ูŠุญุชูˆูŠ ุนู„ู‰ ุจู„ุงุฏูŠูˆู… ูˆ ุฐู‡ุจ ูˆ ุฑูˆุฏูŠูˆู… ูˆ ุงู„ุฐูŠ ุงู†ุชุฌ ูƒุซุงู‚ุฉ ุชูŠุงุฑ ู…ุฑุชูุนุฉ ุจู‚ูŠู…ุฉ 10 ุงู…ุจูŠุฑ/ู…ุฌู… (ุจู„ุงุฏูŠูˆู…) ูˆ ุจุฏุฃ ุฃูƒุณุฏุฉ ุงู„ุงูŠุซุงู†ูˆู„ ุนู†ุฏ ุชุทุจูŠู‚ ุฌู‡ุฏ -0.4 ููˆู„ุช. ุงู† ู‡ุฐุง ุงู„ุญูุงุฒ ุงู„ุซู„ุงุซูŠ ูˆ ุฃูŠุถุง ุงู„ุญูุงุฒ ุงู„ู…ุญุชูˆูŠ ุนู„ู‰ ุจู„ุงุฏูŠูˆู… ูˆ ุฐู‡ุจ ูˆ ู†ูŠูƒู„ ูŠู‚ุฏู…ูˆู† ุจุฏุงุฆู„ ู†ุงุฌุญุฉ ูˆ ุฌุฏูŠุฉ ู„ุงุณุชุจุฏุงู„ ุงู„ุจู„ุงุชูŠู† ูˆ ูŠู…ูƒู†ู‡ู… ุชุณู‡ูŠู„ ุงู„ุงู†ุชู‚ุงู„ ุงู„ูŠ ุชู‚ู†ูŠุฉ ู…ู†ุนุฏู…ุฉ ุงู„ูƒุฑุจูˆู† ู„ุฅู†ุชุงุฌ ุงู„ูƒู‡ุฑุจุงุก ุจุดูƒู„ ู…ุณุชุฏุงู…
    • โ€ฆ
    corecore