2,671 research outputs found

    Hierarchy of surface models and irreducible triangulations

    Get PDF
    AbstractGiven a triangulated closed surface, the problem of constructing a hierarchy of surface models of decreasing level of detail has attracted much attention in computer graphics. A hierarchy provides view-dependent refinement and facilitates the computation of parameterization. For a triangulated closed surface of n vertices and genus g, we prove that there is a constant c>0 such that if n>c·g, a greedy strategy can identify Θ(n) topology-preserving edge contractions that do not interfere with each other. Further, each of them affects only a constant number of triangles. Repeatedly identifying and contracting such edges produces a topology-preserving hierarchy of O(n+g2) size and O(logn+g) depth. Although several implementations exist for constructing hierarchies, our work is the first to show that a greedy algorithm can efficiently compute a hierarchy of provably small size and low depth. When no contractible edge exists, the triangulation is irreducible. Nakamoto and Ota showed that any irreducible triangulation of an orientable 2-manifold has at most max{342g−72,4} vertices. Using our proof techniques we obtain a new bound of max{240g,4}

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Irreducible Triangulations are Small

    Get PDF
    A triangulation of a surface is \emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus g1g\geq1 has at most 13g413g-4 vertices. The best previous bound was 171g72171g-72.Comment: v2: Referees' comments incorporate

    Canonical ``Loop'' Quantum Gravity and Spin Foam Models

    Get PDF
    The canonical ``loop'' formulation of quantum gravity is a mathematically well defined, background independent, non perturbative standard quantization of Einstein's theory of General Relativity. Some among the most meaningful results of the theory are: 1) the complete calculation of the spectrum of geometric quantities like the area and the volume and the consequent physical predictions about the structure of the space-time at the Plank scale; 2) a microscopical derivation of the Bekenstein-Hawking black-hole entropy formula. Unfortunately, despite recent results, the dynamical aspect of the theory (imposition of the Wheller-De Witt constraint) remains elusive. After a short description of the basic ideas and the main results of loop quantum gravity we show in which sence the exponential of the super Hamiltonian constraint leads to the concept of spin foam and to a four dimensional formulation of the theory. Moreover, we show that some topological field theories as the BF theory in 3 and 4 dimension admits a spin foam formulation. We argue that the spin-foams/spin-networks formalism it is the natural framework to discuss loop quantum gravity and topological field theory.Comment: 17 pages, LaTeX2e, 7 figures. To appear in the proceeding of the XXIII SIGRAV conference, Monopoli (ITALY), September 21st-25th, 1998. Minor correction

    Irreducible triangulations of surfaces with boundary

    Get PDF
    A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly non-orientable) surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was known only for surfaces without boundary (b=0). While our technique yields a worse constant in the O(.) notation, the present proof is elementary, and simpler than the previous ones in the case of surfaces without boundary

    Quantum Tetrahedra

    Full text link
    We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and quantum computing. The apparent twofold nature of the 6j symbol displayed in quantum field theory and quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a unified quantum-computational SU(2)-state sum framework

    Non ambiguous structures on 3-manifolds and quantum symmetry defects

    Get PDF
    The state sums defining the quantum hyperbolic invariants (QHI) of hyperbolic oriented cusped 33-manifolds can be split in a "symmetrization" factor and a "reduced" state sum. We show that these factors are invariants on their own, that we call "symmetry defects" and "reduced QHI", provided the manifolds are endowed with an additional "non ambiguous structure", a new type of combinatorial structure that we introduce in this paper. A suitably normalized version of the symmetry defects applies to compact 33-manifolds endowed with PSL2(C)PSL_2(\mathbb{C})-characters, beyond the case of cusped manifolds. Given a manifold MM with non empty boundary, we provide a partial "holographic" description of the non-ambiguous structures in terms of the intrinsic geometric topology of M\partial M. Special instances of non ambiguous structures can be defined by means of taut triangulations, and the symmetry defects have a particularly nice behaviour on such "taut structures". Natural examples of taut structures are carried by any mapping torus with punctured fibre of negative Euler characteristic, or by sutured manifold hierarchies. For a cusped hyperbolic 33-manifold MM which fibres over S1S^1, we address the question of determining whether the fibrations over a same fibered face of the Thurston ball define the same taut structure. We describe a few examples in detail. In particular, they show that the symmetry defects or the reduced QHI can distinguish taut structures associated to different fibrations of MM. To support the guess that all this is an instance of a general behaviour of state sum invariants of 3-manifolds based on some theory of 6j-symbols, finally we describe similar results about reduced Turaev-Viro invariants.Comment: 58 pages, 32 figures; exposition improved, ready for publicatio

    Invariants of spin networks with boundary in Quantum Gravity and TQFT's

    Get PDF
    The search for classical or quantum combinatorial invariants of compact n-dimensional manifolds (n=3,4) plays a key role both in topological field theories and in lattice quantum gravity. We present here a generalization of the partition function proposed by Ponzano and Regge to the case of a compact 3-dimensional simplicial pair (M3,M3)(M^3, \partial M^3). The resulting state sum Z[(M3,M3)]Z[(M^3, \partial M^3)] contains both Racah-Wigner 6j symbols associated with tetrahedra and Wigner 3jm symbols associated with triangular faces lying in M3\partial M^3. The analysis of the algebraic identities associated with the combinatorial transformations involved in the proof of the topological invariance makes it manifest a common structure underlying the 3-dimensional models with empty and non empty boundaries respectively. The techniques developed in the 3-dimensional case can be further extended in order to deal with combinatorial models in n=2,4 and possibly to establish a hierarchy among such models. As an example we derive here a 2-dimensional closed state sum model including suitable sums of products of double 3jm symbols, each one of them being associated with a triangle in the surface.Comment: 9 page
    corecore