20,131 research outputs found

    Hierarchical reasoning game theory based approach for evaluation and testing of autonomous vehicle control systems

    Get PDF
    A hierarchical game theoretic decision making framework is exploited to model driver decisions and interactions in traffic. In this paper, we apply this framework to develop a simulator to evaluate various existing autonomous driving algorithms. Specifically, two algorithms, based on Stackelberg policies and decision trees, are quantitatively compared in a traffic scenario where all the human-driven vehicles are modeled using the presented game theoretic approach. © 2016 IEEE

    GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving

    Full text link
    Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. While existing works focus on modeling agent interactions based on their past trajectories, their future interactions are often ignored. This paper addresses the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer framework to implement it. Specifically, we present a novel Transformer decoder structure that uses the prediction results from the previous level together with the common environment background to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the last level. Through experiments on a large-scale real-world driving dataset, we demonstrate that our model can achieve state-of-the-art prediction accuracy on the interaction prediction task. We also validate the model's capability to jointly reason about the ego agent's motion plans and other agents' behaviors in both open-loop and closed-loop planning tests, outperforming a variety of baseline methods

    Solution Concepts in Hierarchical Games under Bounded Rationality with Applications to Autonomous Driving

    Full text link
    With autonomous vehicles (AV) set to integrate further into regular human traffic, there is an increasing consensus of treating AV motion planning as a multi-agent problem. However, the traditional game theoretic assumption of complete rationality is too strong for the purpose of human driving, and there is a need for understanding human driving as a \emph{bounded rational} activity through a behavioral game theoretic lens. To that end, we adapt three metamodels of bounded rational behavior; two based on Quantal level-k and one based on Nash equilibrium with quantal errors. We formalize the different solution concepts that can be applied in the context of hierarchical games, a framework used in multi-agent motion planning, for the purpose of creating game theoretic models of driving behavior. Furthermore, based on a contributed dataset of human driving at a busy urban intersection with a total of ~4k agents and ~44k decision points, we evaluate the behavior models on the basis of model fit to naturalistic data, as well as their predictive capacity. Our results suggest that among the behavior models evaluated, modeling driving behavior as pure strategy NE with quantal errors at the level of maneuvers with bounds sampling of actions at the level of trajectories provides the best fit to naturalistic driving behavior, and there is a significant impact of situational factors on the performance of behavior models

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    Coordination in software agent systems

    Get PDF

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    ML-MAS : a Hybrid AI Framework for Self-Driving Vehicles

    Get PDF
    Postprin
    corecore